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Abstract

Matrix-based graph visualization is effective in re-
vealing relationships among entities in graphs. The vis-
ibility of structural patterns depends on the ordering
of rows/columns in matrices. Most existing approaches
mainly settle on an ideal ordering according to quality
metrics, which emphasize certain types of patterns but
ignore others. This paper proposes a summarization-
based pattern-aware reordering approach to highlight
multiple patterns simultaneously. First, a pattern-aware
graph summarization utilizes the Minimum Descrip-
tion Length (MDL) technique to identify various types
of patterns from the input graph. Second, we pro-
pose a coarse-to-fine reordering mechanism to gener-
ate matrix-based visualizations that maintain the struc-
ture of all identified patterns. Experimental results of
two comparative studies and a user study on several
datasets demonstrate that our approach simultaneously
highlights more types of patterns than other approaches
and performs well across multiple quality metrics.

Keywords: Graph summarization. Graph visualization.
Matrix-based visualization. Matrix reordering.

1. Introduction

Graph visualization is beneficial for depicting relation-
ships among entities, which are concerned with multiple
scenarios, ranging from interpersonal relationship analysis
in sociology [37, 4, 34, 8] to protein structures analysis in
biology [36]. Matrix visualization is one of the most clas-
sical approaches in graph visualization to uncover topol-
ogy structures. In a matrix, each row/column corresponds
to an entity in the graph data. The relationship between
two entities is encoded by drawing a cell at the intersec-
tion of the two entities’ corresponding rows/columns. Ma-

trix visualization is free from node overlapping and edge
crossing issues that trouble node-link diagrams [7]. How-
ever, meaningful patterns in matrices (e.g., diagonal and off-
diagonal blocks) can only be observed when rows/columns
are arranged in a specific order. Therefore, the order of
rows/columns plays a significant role when implementing
analysis tasks with matrix visualizations.

In real-world scenarios, analysis tasks, such as explor-
ing multiple information diffusion patterns within a specific
population, have a need to simultaneously analyze multi-
ple patterns. However, it is challenging to find an order-
ing scheme that can capture and highlight multiple patterns.
This is because the various orders that may be employed to
highlight different patterns may also conflict with one an-
other, making it both necessary and challenging to identify
multiple patterns within a matrix. Existing reordering al-
gorithms mainly recommend an ordering scheme through
an optimization process driven by metrics designed for cer-
tain patterns (e.g., blocks, stars, and bands, as shown in
Tab.1). However, those metrics appreciate certain patterns
but ignore others and even suppress them. For instance,
MinLA [31] pursuits a high linear arrangement (LA) metric
to highlight diagonal blocks. However, this approach re-
sults in low scores for cells further away from the diagonal,
ultimately disrupting the visualization of off-diagonal pat-
terns (see the second column of Tab.1). Similarly, Moran’s
I (MI) [35] (see the last column of Tab.1) emphasizes block
patterns and star patterns but dislikes sparsely connected
bands. Analysts always have to employ diverse reordering
algorithms to explore patterns. Nevertheless, selecting re-
ordering schemes needs expertise in reordering algorithms,
and browsing multiple matrices could be exhausting.

To address this challenge, we propose a pattern-aware
approach for highlighting multiple patterns in symmetric bi-
nary matrices. The proposed approach consists of two steps:
pattern-aware graph summarization and coarse-to-fine ma-
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trix reordering.

Pattern

Block

Star

Off-diagonal Block

Bands

Anti Pattern

Anti Pattern

PR LA BW MI

0.78 0.90 0.70 0.81

0.47 0.72 0.40 0.70

0.33 0.40 0.10 0.89

0.64 0.80 0.80 0.40

PR LA BW MI

0.38 0.65 0.20 0.40

0.47 0.77 0.60 0.56Bandwidth Anti Pattern

(a)

(b)

(c)

(d)

(e)

(f)

Table 1. Patterns and anti-patterns with four common metrics. All
metrics are calculated according to their definitions and normal-
ized to a range of [0, 1]. They are positively correlated with qual-
ity. It is noteworthy that the band pattern is characterized as a
chain, resulting in a lower MI score due to the emphasis of MI on
connectivity.

First, our approach describes a graph as a set of base pat-
terns (e.g., Tab.1a-d) with corrections to emphasize patterns
with salient structures. We search for the description with
minimum length and utilize it as the pattern-aware graph
summarization. Second, we design a reordering mechanism
to generate matrix visualizations according to the graph
summarization. To preserve the identified patterns, we con-
sider each pattern as a group of nodes, namely a supernode,
and reorder supernodes to arrange the matrix from a coarse
level. Then, we fine-tune the inner structure of each pat-
tern to determine the order of each row/column at the fine
level. Following the above two steps, salient patterns can
be highlighted in priority. Overall, the graph summariza-
tion techniques sketch out a graph by searching a combina-
tion of salient patterns, which provides a solution for pattern
conflicts. The ordering scheme derived from the summa-
rization can, therefore, restore the visual patterns of more
salient structures than other algorithms, as demonstrated in
the two quantitative experiments. We also implemented a
user study to evaluate the effectiveness of our approach in
terms of end-user pattern awareness.

The contributions of this paper include:
1) A summarization-based pattern-aware matrix reordering

approach that summarizes salience patterns from graphs
and reorders corresponding matrices to highlight them;

2) A series of quantitative experiments designed to evaluate
our summarization algorithm and reordering mechanism.

2. Related Work

2.1. Graph Summarization

With the rapid growth of real-world datasets, the cor-
responding graph visualization suffers from visual clutter,
posing challenges for data analysis. To solve this issue,

graph summarization provides an overview of a graph by
aggregating nodes and edges.

Existing studies mainly use bit-compression approaches
to summarize graphs [25] without information loss. Bit-
compression-based approaches utilize the two-part MDL
principle to minimize the description length of the graph.
For instance, Navlakha et al. [27] presented a representa-
tion for graphs as a <summary, corrections> pair and used
the MDL principle to yield a coarse level representation.
The following work [10] proposed bipartite graph mining
with MDL (BL-MDL). It follows a bottom-up and greedy
approach to find a better summary graph. The Vocabulary-
based summarization of Graphs (VoG) [22] summarizes a
graph based on its distinct subgraphs of certain fixed types
(cliques, bi-cliques, stars, chains) and decomposes the input
graph into possible subgraphs. The MDL principle is then
utilized to identify the type of each subgraph and define the
graph summary of the subgraph composition, which may
non-redundantly describe the graph.

Applying MDL-based graph summarization approaches
can losslessly compress visualizations into a contracted rep-
resentation with summarized structures or patterns [22, 10].
For matrix visualizations, arranging rows/columns accord-
ing to the summarization can aggregate cells into patterns
to achieve a simplified representation. Existing summariza-
tion approaches rarely consider the matrix reordering prob-
lem or only highlight patterns without optimizing the matrix
quality metrics [22]. There is still a gap between graph sum-
marization approaches and the matrix reordering problem.
We propose an approach to fill the gap by introducing the
two algorithms, Greedy [27] and VoG [22], to improve the
quality of matrices while enabling them to highlight mean-
ingful patterns.

2.2. Matrix Reordering

Node-link diagrams and matrix visualizations are two
major approaches to visual graph data. Unlike node-link
diagrams suitable for topology-based tasks, matrix visual-
ization is deemed more appropriate for the task of identify-
ing patterns for users [29]. However, the usefulness of ma-
trix visualizations is always limited by unsuitable reorder-
ing methods for rows/columns. To address this issue, var-
ious matrix reordering strategies have been proposed. The
typical reordering process consists of three steps: 1) convert
data into a representation (e.g., adjacency matrix), which re-
lates to the problem space, 2) iteratively rearrange the per-
mutation in the problem space until the quality metric meets
the desired threshold, and 3) reorder the matrix accordingly.

Problem Space Definition. Available space definitions
include distance matrices [19], Laplacian matrices [2], and
Eigenvector spaces [16, 20]. The general goal of these prob-
lem spaces is to cluster similar rows together and thus gen-
erate meaningful patterns.



Permutation Determination. The permutation determi-
nation procedures can be divided into six major categories:
Robinsonian algorithms, spectral algorithms, dimension re-
duction algorithms, heuristic algorithms, graph-theoretic al-
gorithms, and biclustering algorithms [6]. First, Robinso-
nian approaches [32, 3] mainly reorganize a matrix through
clustering of similar rows/columns while separating dissim-
ilar ones. The Bipolarization algorithm [19] upholds a simi-
lar principle and effectively illustrates the bi-polar organiza-
tion (Tab.1a,c,e). Second, spectral methods [16] use eigen-
values and eigenvectors to calculate a permutation with effi-
cient implementations. They project each row/column into
the eigenvector space and use distances between eigenvec-
tors to calculate the permutation. For example, Chen’s
rank-two ellipse reordering method [11] tends to recognize
off-diagonal block patterns (Tab.1c). Third, dimension re-
duction techniques [30] produce a one-dimension represen-
tation that captures the (non-)linear relationships in data,
which prioritize high-level patterns (Tab.1a) over detailed
matrix patterns (Tab.1b). Fourth, heuristics [9] are able
to transform reordering problems into alternative problem
spaces. For example, Niermann et al. [28] utilized a genetic
algorithm to obtain the best permutation which has the min-
imal number of bits to encode the matrix. This resulted in a
tendency towards displaying orderly patterns. Fifth, graph-
theoretic approaches [26] rely on leveraging the underlying
graph topology structure to compute a linear order and opti-
mize the layout cost function, such as profile, connectivity,
similarity or shortest path. Finally, biclustering [13] con-
ducts simultaneous clustering in two dimensions, detecting
groups of rows/columns that exhibit analogous activity pat-
terns. Visual block patterns with continuous colors (Tab.
1a,c) are hence highlighted.

Although patterns are regarded as an important goal of
matrix reordering algorithms [6, 5, 23], they only high-
light limited patterns. The metrics they aim to optimize fo-
cus on placing similar rows/columns together and gathering
cells to form continuous blocks such as diagonal and off-
diagonal blocks. To highlight a wider range of patterns, we
propose a new approach that quantifies the pattern salience
in matrices and selects the most salient patterns to highlight.
Moreover, it is less limited by metrics because its pattern
identification does not depend on metrics optimization.

3. Background

We employ mathematical symbols to explain the prob-
lem of matrix reordering in Tab.2. A graph G = (V,E) can
be represented in the form of adjacency matrix A = (n×n),
where n = |V | and each cell Ai j = 1/0 denotes whether
nodes i and j are connected by an edge. The matrix of an
undirected and unweighted graph is symmetric and binary
and can be visualized by an n× n bitmap, namely a matrix
visualization.

Symbol Description
G(V,E) Graph with a node-set V and an edge-set E
A The adjacency matrix of G

G(V,E) Summary graph with super-nodes V and super-
edges E

A The corresponding adjacency matrix of G
d(G) The density of G
n(V) Original nodes in the super-node V
Ω Vocabulary of structure types
ω ∈Ω One structure in the vocabulary Ω

⊕ Exclusive OR, the symmetric difference of two
sets

C Corrections for restoring G to G
Cω(u) Corrections of encoding u with structure ω

Γ(v) Neighbors of a node v
Πu,v All node pairs between super-nodes u and v

Au,v
Connected node pairs between super-nodes u
and v

LG
The length of encoding G with the two-part
MDL

cost(u) The cost of describing a node u

costΩ(u)
The cost of describing a node u with the vocab-
ulary Ω

cost(eu,v) The cost of describing an edge eu,v

s(u,v) The cost reduction of merging nodes u & v

Table 2. Definition of symbols.

Different ordering schemes can significantly affect the
effectiveness of matrix visualizations. Reordering ap-
proaches aim to generate an ordering for all rows/columns
that can clearly represent patterns. In this section, we intro-
duce the following perspectives for assessing an ordering
scheme.

3.1. Patterns

Matrix reordering approaches mainly consider the fol-
lowing six types of visual patterns (see Tab.1) summarized
by existing studies [6, 5, 23].

• Block patterns refer to a contiguous group of cells on
the main diagonal of the matrix, with a size of at least
2× 2 cells. They correspond to cliques where nodes
are densely connected in topology structures.

• Off-diagonal block patterns are blocks of cells
placed symmetrically off the diagonal. Their topology
structures can be regarded as bi-cliques, where one set
of nodes connects with another set while nodes within
the same set do not connect.

• Star patterns have a horizontal line and a vertical
line that is connected, with or without discontinuities.



They represent star structures where one node (hub) is
connected to several other nodes (spokes) while spoke
nodes are not connected.

• Band patterns refer to parallel lines in a matrix that
follow the diagonal. Their topology structures can
manifest as chain structures or cycles.

• Noise anti-pattern indicates a lack of apparent topol-
ogy structures in the matrix. Or the reordering ap-
proach fails to capture the underlying topology struc-
ture, which is undesirable.

• Bandwidth anti-pattern does not correspond to any
meaningful topology structure in the input graph. They
often arise as a typical outcome of optimizing for the
bandwidth metric.

3.2. Quality Metrics

Existing studies proposed three typical distance-based
measures: the profile [15], linear arrangement [21], and
bandwidth [17], to measure the quality of the matrix. Given
a one-dimensional alignment of the nodes φ , the three mea-
surements calculate the distance between two nodes (i.e., u
and v) in G through the following equations.

1) Profile (PR) counts the sum of the distance from the
diagonal to the farthest-way non-zero cell for each column.

PR(φ ,G) = ∑
u∈V

(φ(u)− min
v∈{u}

⋃
Γ(u)

φ(v)), (1)

where Γ(u) = {v ∈V : (u,v) ∈ E}.
2) Linear arrangement (LA) calculates the sum of ev-

ery two connected nodes’ distances in the alignment φ .
LA(φ ,G) = ∑

(u,v)∈E
λ ((u,v),φ ,G), (2)

where λ (u,v) = |φ(u)−φ(v)|.
3) Bandwidth (BW) measures the maximum distance

between every two connected nodes along rows.
BW (φ ,G) = max

(u,v)∈E
λ ((u,v),φ ,G). (3)

To evaluate the salience of patterns in matrices, Moran’s
I (MI) [35] is proposed to quantify the continuous block
patterns, without specifically aiming to specify what a pat-
tern actually constitutes.

MI(φ ,G) =−1+2
n−1

∑
i=1

s(G,φ(i),φ(i+1)), (4)

where s(G,u,v) = cB(G) · B(G,u,v) + cW (G) ·W (G,u,v)
measures the neighborhood similarity between u and v.
Behrisch et al. [5] presented a pattern-driven quality mea-
surement called Magnostics. Magnostics assess how a re-
ordering result can reveal a group of patterns based on
the similarity between the matrix image and base patterns.
However, it regards the entire matrix as a global pattern
and does not consider local patterns that are more common
because graphs are usually composed of multiple substruc-

tures (local patterns). Consequently, this metric is less suit-
able to compute benchmarks [35] and we did not include it
in our subsequent analyses.

Observing how these measures work can help us summa-
rize the goal of matrix reordering because they are the opti-
mization targets of multiple existing reordering algorithms.
We list the quality score for each pattern and anti-pattern in
Tab.1 on the four metrics (PR, LA, BW, and MI). After cal-
culating the scores based on their definitions, we normalize
them and correlate them positively with the quality (higher
scores indicate better quality):

P̂R = 1− PR
|V |× (|V |−1)/2

, L̂A = 1− LA
|V |× |E|

,

ˆBW = 1− BW
|V |

, M̂I =
MI +1

2
.

(5)

Optimizing distance-based metrics (PR, LA, BW) gathers
cells to the diagonal and hence forms block patterns. They
were proven to be less responsive to other patterns such as
stars and bands and may produce anti patterns [35]. Al-
though Beusekom et al. [35] introduced MI to alleviate such
phenomenon, the MI scores of sparsely connected patterns
are relatively lower (Tab.1), such as bands (0.40).

3.3. Graph Summarization

Graph summarization describing patterns in a graph can
be used to inspect the representation effectiveness of a ma-
trix with an ordering scheme. Here, we introduce two gen-
eration approaches to graph summarization: Greedy [27]
and VoG [22].

3.3.1 Greedy

b c

a
h

g f
e

d

Original Graph

x=(a)
w=(b, c)

z=(d, e, f)

y=(g, h)

Summary

+(a, e) -(g, d)

Corrections

= +

Figure 1. An example shows how Greedy [27] works. Greedy
summarizes the original graph with a summary graph. The sum-
mary graph can be restored to the original graph by adding or
deleting correction edges.

Greedy [27] aims at generating a brief description to sum-
marize graph structure. It shortens the description of a
graph by aggregating similar nodes and edges into super-
nodes and super-edges, as shown in Fig.1. Greedy first iden-
tifies super-nodes by merging neighbor nodes with similar
connections to others. For example, nodes h and g have al-
most identical neighbors (d, e, and f ). Thus, Greedy merges
them into two super-nodes y={g, h} and z={d, e, f} and adds
a super-edge (y, z) to indicate that nodes d, e, and f all con-
nect to nodes g and h. However, the original graph does not



contain the edge (g, d). Hence, Greedy increases a correc-
tion -(g, d). Instead of describing the original four edges
among nodes h, g, d, e, and f, the summary only has one
super-edge with one correction edge -(g, d). It saves the
description length.

Following such a principle, Greedy compresses the orig-
inal graph G(V,E) into the summary graph G with cor-
rections C. The summary graph G = (V,E) consists of
super-nodes V and super-edges E. Each super-node con-
tains one or more original nodes. Each super-edge retains
edges across different super-nodes. The corrections C con-
sist of nodes and edges not expressed by G: C =G⊕G.

The goal is to compute an optimal representation of
nodes (V ) and edges (E), which minimizes the description
length, defined as the cost sum of all super-nodes:

LG = ∑
u∈V

cost(u). (6)

The cost of a super-node u and a super-edge eu,v are defined
as:

cost(u) = ∑
v∈Γ(u),u∈V

cost(eu,v), (7)

cost(eu,v) = min(|Πu,v|− |Au,v|+1, |Au,v|), (8)

where Πu,v means all original node pairs (a,b) from super-
nodes u to v (a ∈ u and b ∈ v), and Au,v ⊆ Πu,v means con-
nected original node pairs. Greedy chooses a cheaper en-
coding scheme to express the connections between u and v.
If nodes in u are tightly connected to nodes in v, namely
|Πu,v| − |Au,v|+ 1 > |Au,v|, Greedy builds the super-edge
(+1) and encoding the missing edges (Πu,v|− |Au,v|) as the
corrections. Otherwise, Greedy removes the super-edge and
encodes the existing edges (|Au,v|) as the corrections.

Greedy approximates the global goal (the minimum cost
of the graph) with a local optimization goal. It utilizes a
greedy process to iteratively merge the pair of nodes with
the largest cost reduction:
Step 1: For every two nodes within a two-hop distance,

merge them and compute their costs before and af-
ter the merge. Store the node pair into a max heap if
the cost decreases.

Step 2: Pop out and merge the node pair with the max cost
reduction s from the heap. Then update the costs
of their neighbors within two hops and remove node
pairs without cost reduction.

Step 3: Repeat step 2 until the heap is empty.
The cost reduction s of merging u and v into a super-node

w is formally defined as:
s(u,v) = (costu + costv− costw)/(costu + costv). (9)

3.3.2 VoG

VoG [22] defines the form of graph summarization as pre-
defined structures with corrections. It chooses the structure

with the least encoding cost to encode a subgraph. The
subgraph in Fig.2a can be represented as a star (Fig.2b)
with four corrections (adding edges (a,b), (b,c), (c,d), and
(d,a)). However, encoding it as a clique (Fig.2c) has fewer
corrections (removing edges (a,c) and (b,d)). Thus, VoG
chooses to encode the subgraph as a clique.

a

b c

d

e

(a) Original Graph (b) Encoding as a Star (c) Encoding as a Clique

+(a, d)

+(a, b)

+(b, c)

+(c, d)

-(a, c)

-(b, d)
a

b c

d

ee

da

b c

Figure 2. An example shows how VoG [22] works. (a) is the orig-
inal graph. (b) VoG first encodes it as a star, which requires four
correction edges to recover the original graph. (c) VoG encodes the
original graph as a clique, which requires only two corrections.

VoG first uses SlashBurn [24] to split the graph into
several subgraphs. To find the best structure for encod-
ing a subgraph, VoG proposes a pre-defined “vocabulary”
of structures (Ω = {clique,star,chain,bi-clique, . . .}) with
their cost definitions. VoG assigns a structure type for each
subgraph with the least cost by traversing the “vocabulary”.

4. Pattern-aware Matrix Reordering

A convenient and efficient reordering approach should
break the limitation of pattern types while preserving the
key ideas of optimization goals: G1) reducing isolated
black/white cells by arranging cells with the same color ver-
tically or horizontally (MI) or gathering black cells close to
the diagonal (PR, LA, and BW), and G2) forming important
patterns on a broader range of pattern types (e.g., stars and
bands).

To achieve the above two goals, we propose a pattern-
aware matrix reordering approach to highlight multiple pat-
terns following two steps. In the first step, we employ a
pattern-aware graph summarization to extract salient pat-
terns from the graph data and minimize isolated edges.
Moving to the next step, our approach uses a coarse-to-
fine matrix reordering mechanism to transform the graph
summarization into a matrix and reorder the matrix at both
coarse and fine levels. By doing so, we are able to effec-
tively preserve and highlight the identified patterns. Our
approach absorbs advantages from two state-of-the-art tech-
niques, Greedy [27] and VoG [22], and overcomes their
shortcomings by combining them into a unified framework.

4.1. Pattern-aware Graph Summarization

Summarizing above, minimizing isolated edges and se-
lecting salient patterns can benefit from the minimum de-
scription length calculation. We first analyze the strengths
and shortcomings of two graph summarization approaches
to motivate ours.



Greedy. Minimizing the cost defined by Greedy (Eq.6)
leads to three results: 1) nodes in one super-node are
sparsely connected, 2) two sets of nodes belonging to two
connected super-nodes are densely connected, and 3) nodes
in one self-looped super-node are densely connected. When
analogizing to the matrix ordering problem, the above three
results lead to 1) empty blocks along the diagonal, 2) off-
diagonal blocks, and 3) diagonal blocks, respectively. Be-
sides these structures, other isolated edges are regarded as
corrections, which cause higher costs. Thus, minimizing
the cost equals reducing isolated edges. Based on this ob-
servation, Greedy can be used to reduce the isolated edges,
which conforms to G1. However, Greedy supports only
three types of patterns due to limited considerations in the
cost definition.

VoG. VoG proposes several cost definitions of different
structure types in a “vocabulary”. This helps to identify the
best structure type to represent a subgraph. Less encoding
costs lead to more precise matches. When analogizing to
the matrix ordering problem, VoG can help identify the base
pattern of given blocks. When the given block (subgraph)
matches one base pattern (topology structure), its encod-
ing cost minimizes. It quantifies the salience of a pattern,
which conforms to G2. However, the cost calculation of
VoG needs a pre-defined subgraph division. The subgraph
division approach [24] employed in VoG considers neither
the “vocabulary” nor the cost calculation. Therefore, VoG
could still miss significant patterns in matrices when the
subgraph division is not the optimal segmentation.

To overcome their shortcomings, we propose a pattern-
aware graph summarization algorithm, which coordinates
Greedy and VoG into a unified framework. Specifically, we
take advantage of both Greedy and VoG to re-define the cost
of a super-node u:

cost(u) = costΩ(u)︸ ︷︷ ︸
cost of structure

+ ∑
v∈Γ(u)

cost(eu,v)︸ ︷︷ ︸
cost of connected edges

, (10)

where Ω represents the “vocabulary”, and costΩ(u) de-
fined by VoG represents encoding a super-node u as a
structure ω ∈ Ω. Minimizing costΩ(u) gathers origi-
nal nodes into structures defined in ω ∈ Ω (G2), which
also reduces isolated nodes (G1). Meanwhile, minimiz-
ing ∑v∈Γ(u) cost(eu,v) gathers original edges into fully con-
nected super-edges, which reduces the number of isolated
edges (G1).

We compute costΩ(u) by encoding u as a structure ω ∈Ω

with the minimum description length:
costΩ(u) = min

ω∈Ω
{1+L(Cω(u))},ω ∈Ω, (11)

where 1 is the cost of the structure ω and L(Cω(u)) is the
cost of corrections. VoG gives several heuristics for find-
ing the minimum corrections of encoding a super-node u as

ω . We improve two of them (heuristics for finding chains
and bi-cliques) to reach more accurate costs. Note that the
“vocabulary” is extensible for customized patterns.

Algorithm 1 Correction of encoding a graph as a bi-clique
Require: G(V,E);
Ensure: C: the correction, a set of edges;

1: Init correction C =∅;
2: lc←MaxDegree(V ); ▷ left center
3: rc←∅; ▷ right center
4: degmax← 0;
5: for v ∈ Γ(lc) do ▷ neighbors of left center
6: edges← Av,Γ(lc); ▷ edges between v and Γ(lc)
7: deg← degree(v)−|edges|;
8: rc← v if deg >= degmax;
9: end for

10: l←{lc}, r←{rc}, V ←V −{lc,rc};
11: for each node v ∈V do
12: costl ← |Av,l |+ |Πv,r|− |Av,r|; ▷ encoding v in left
13: costr← |Av,r|+ |Πv,l |− |Av,l |; ▷ encoding v in right
14: if costl < costr then
15: add v to l;
16: add +Av,l and −(Πv,r−Av,r) to C;
17: else
18: add v to r;
19: add +Av,r and −(Πv,l−Av,l) to C;
20: end if
21: end for
22: return C;

1) Clique: Corrections for encoding a super-node with
the clique are the missing edges. Finding them requires
counting unconnected node pairs.

2) Star: Encoding a super-node as a star requires two
parts of corrections: 1) the lack of edges between the
hub and spokes and 2) redundant edges among spokes.
Heuristically, VoG regards the node with the highest
degree as the hub, and other nodes are thus spokes.

3) Chain: VoG’s heuristic first finds the furthest node of
a random node using Breadth-First Search (BFS). Re-
garding the furthest node as the beginning of the chain,
it uses BFS again to find the subsequent furthest node
as the end of the chain. It regards the rest edges as cor-
rections, which leads to a higher cost. We improve it
by iteratively finding chains in the remaining subgraph
and attaching them to the last chain.

4) Bi-clique: We propose a heuristic to find the largest
bi-clique (Algorithm1). It first regards two nodes as
the cores of the bi-clique’s two parts. Other nodes are
classified into two parts according to their connections.

5) Empty: The empty structure is the opposite of the
clique. It means that there is no edge existing between
any pair of nodes. Thus, non-empty cells are repre-
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Figure 4. The pipeline of our pattern-aware matrix reordering approach. It is composed of two components. The pattern-aware summariza-
tion approach identifies patterns in (a) the original graph and generates (b) a summary graph, where each super-node in the summary graph
corresponds to a pattern. The coarse-to-fine matrix reordering mechanism transforms the summary graph into the matrix representation.
Given (c) the original matrix, our approach first aggregates its rows/columns into (d) a coarse matrix according to the summary graph. (e)
To optimize quality metrics, we first reorder the matrix at the coarse level. (f) A fine-grained matrix is restored by reversing the aggregation
phase. (g) We fine-tune the restored matrix by reordering the sub-matrix corresponding to each pattern.

sented as corrections. Forming empty patterns reduces
isolated cells.
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Figure 3. An example shows how our unified pattern-aware cost
definition works. (a) the original subgraph; (b) the summary graph
with two corrections is generated following our two-part MDL
principle.

Example. Fig.3 shows an example of using our pattern-
aware cost definition. Nodes 1-5 form a super-node α be-
cause they nearly formulate a star, which is one structure
in our “vocabulary” Ω. By testing every structure in Ω,
we finally choose a star to encode α because it only has
one correction edge: +(1,5). Thus, the structure cost of
the super-node α is 2. Then, a super-edge is created be-
tween the super-node α and node 6 because it only costs 2
(one super-edge and one correction edge −(5,6)). Thus,
the total cost of the subgraph is 4. The correction set
C = {+(1,5),−(5,6)} means that it requires adding edge
(1,5) and removing edge (5,6) from the summary graph to
restore the original graph.

Pattern-aware summarization. Our algorithm mini-
mizes the total costs of all nodes, which selects the salient
pattern and reduces corrections. Fig.4a-b show the input
and the output of our pattern-aware summarization algo-
rithm. Given the original graph (Fig.4a), our approach fol-
lows the optimization process of Greedy, which iteratively
merges two nodes with the largest cost reduction. Finally, it
outputs a summary graph (Fig.4b), where each super-node
presents a structure (pattern). Seeking high performance,
we implement a faster version of Greedy, named Random-
ized, which sacrifices some accuracy to improve the per-
formance. Randomized randomly picks a node u to merge

with its one/two-hop neighbor v with the largest cost reduc-
tion. The process is iteratively performed until the cost is
no more reduced.

Time Complexity. Our pattern-aware summarization re-
quires merging all 2-hops node pairs, resulting in a time
complexity of (O(d3

av(dav + logn+ logdav))), where dav is
the average node degree). Since the Randomized method
selects random nodes and their one/two-hop neighbors for
merging, utilizing this approach can reduce the time com-
plexity to (O(d3

av)). We leave it as a future work that may
be solved by: 1) using locality sensitive hashing (LSH) [10]
to accelerate the neighborhood searching; 2) using paral-
lel computing to calculate cost reductions of different node
pairs simultaneously; and 3) using a progressive pattern cost
computation, which avoids recalculating the cost of a super-
node in each merge.

In summary, the proposed graph summarization ap-
proach unblocks the structure limitation of Greedy by intro-
ducing an extensible “vocabulary” including different types
of structures. Simultaneously, our approach employs a lo-
cally optimal segmentation, which can generate shorter de-
scriptions than those yielded by VoG.

4.2. Coarse-to-fine Matrix Reordering

To highlight identified patterns in matrices, we need to
convert the identified patterns into the matrix representa-
tion while maintaining matrix qualities. Thus, we propose a
coarse-to-fine matrix reordering mechanism that makes use
of existing reordering algorithms to maintain matrix quali-
ties while emphasizing patterns through a two-level archi-
tecture. It is composed of four phases (Fig.4c-g).

Phase 1: Aggregation. In order to retain patterns,
we first aggregate each recognized pattern into a coarse
row/column (Fig.4c-d) so that rows/columns belonging to
the same pattern are not disturbed during reordering. There-
fore, the original matrix is aggregated into a coarse matrix



(Fig.4d), which corresponds to the summary graph. Note
that the coarse matrix is weighted since each coarse cell is
composed of multiple original cells, whose weight is de-
fined as the number of original cells.

Phase 2: Coarse Matrix Reordering. Our approach
reorders the coarse matrix to optimize metrics, preserving
matrix qualities (Fig.4d-e). We update the metric definitions
into a weighted version to adapt to coarse matrices:

PR = ∑
u∈V

(φ(u)− min
v∈{u}

⋃
Γ(u)

φ(v))×w(u,v),

LA = ∑
(u,v)∈E

λ ((u,v),φ ,G)×w(u,v),

BW = max
(u,v)∈E

λ ((u,v),φ ,G)×w(u,v),

(12)

where w(u,v) is the weight of cell (u,v). Because MI can
handle weighted matrices, we do not modify it. During our
preliminary tests, we found that minimizing LA consistently
yielded superior quality measurements compared to other
methods we considered, such as Optimal Leaf Ordering.
This empirical observation led us to select MinLA [31] for
ordering the coarse matrix, as it aligned well with our re-
search objectives of enhancing the clarity and interpretabil-
ity of the matrix patterns. We acknowledge that MinLA [31]
can be computationally intensive, but its efficacy in our con-
text justified its selection.

Phase 3: Recovery. The recovery is the inverse of the
aggregation process (Fig.4e-f), which converts the coarse
matrix into a fine-grained matrix.

Phase 4: Fine-tuning. In the fine-tuning phase (Fig.4f-
g), we obtain a sub-matrix for each pattern by tailoring the
corresponding rows/columns. We employ MinLA again to
reorder each sub-matrix individually, based on its proven ef-
fectiveness in our initial tests. The final ordering for the en-
tire matrix is then obtained by concatenating the node order-
ings in the individual sub-matrices. We would like to em-
phasize that the reordering algorithms utilized in Phases 2
and 4 are interchangeable, allowing for adaptability and ex-
ploration of alternative methods in future research endeav-
ors. This flexibility is crucial as it enables the adaptation of
our approach to various contexts and requirements.

5. Evaluation and Results

We evaluated our approach in three aspects. First, we
compared the pattern summarization precision between our
approach and VoG [22] on a synthetic dataset. Second, we
compared our approach to existing matrix reordering algo-
rithms on four quality metrics. Finally, we conducted a user
study to evaluate the effectiveness of our approach in high-
lighting patterns, which compared the efforts of end-users
in recognizing patterns using different approaches.

Implementation. All experiments were performed on a
PC with an i7-9700K CPU (3.6 GHz) and 32 GiB RAM.
The specific implementation and results of all experiments

are available on GitHub1.

5.1. Comparison of Pattern Summarization Precision

Our pattern-aware summarization is inspired by the con-
cept of VoG [22]. As previously analyzed, our approach
offers some advantages over VoG. To further compare the
performance of our method to VoG, we evaluated the preci-
sion of pattern summarization for both approaches.

Algorithms. Our approach provides two implementa-
tions: either Greedy (GRD) and Randomized (RDM) can
be utilized to minimize the total cost. Therefore, we com-
pared both implementations (GRD and RDM) with VoG..

Datasets. Due to the lack of datasets with labeled
patterns, we generated a synthetic dataset in accordance
with [12]. It is comprised of several graphs. In each graph,
the four pattern types outlined in Sec.3 were chosen. We
randomly assigned five to ten nodes to each pattern. Each
type of pattern was added five times to the graph. We linked
two patterns with a probability pc. For two connected pat-
terns, edges were deleted at random with a probability pnb
(noise between patterns). In each pattern, existing edges
would be deleted and two disconnected nodes would be
connected with a probability pni (noise in patterns). We it-
eratively fixed two of three probabilities to 25%, while the
third was increased from 0% to 50% with a 5% increment,
yielding 33 graphs. We introduced noise in the patterns to
simulate real-world scenarios where patterns may not be
clear-cut. The noise was carefully calibrated to assess the
robustness and adaptability of our method in recognizing
patterns amidst uncertainties. The impact of noise on pat-
tern recognition was meticulously analyzed to understand
the thresholds beyond which the noise significantly alters
the identified patterns.

Collected Data and Statistical Analysis. We com-
puted precision as the proportion of correctly summarized
nodes, where a node is considered correctly summarized
if its assigned pattern in the summarization result matches
the ground truth pattern. A formal mathematical defini-
tion of precision is provided in Appendix. We performed
a Conover’s test [14] to determine the significance be-
tween our approach and VoG. We adjusted the p-value with
Holm’s method [18]. We considered the introduced noise
levels while computing precision to ensure that the evalu-
ation is reflective of the method’s capability to handle un-
certainties and variations in the data. The significance tests
were conducted with due consideration to the noise levels,
providing insights into the method’s reliability under differ-
ent noise conditions.

Result. The results indicate that the pattern summariza-
tion precision of GRD (µ=.48, σ=.21) and RDM (µ=.49,
σ=.20) is greater (p < .01) than VoG (µ=.21, σ=.06). As

1https://github.com/pattern-aware-reordering/
Implementation

https://github.com/pattern-aware-reordering/Implementation
https://github.com/pattern-aware-reordering/Implementation


shown in Fig.5, our techniques behave better than VoG on
most configurations. Whereas, when the between-patterns
noise pnb and the within-patterns noise pni are relatively
high (equivalent to 50%), our techniques resemble VoG. Be-
cause the introduced noise transforms the original patterns
into other patterns or even noise, neither approach can cor-
rectly recognize them.
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Figure 5. Comparison of the precision of pattern summarization
between GRD, RDM, and VoG [22], while varying the connec-
tion probability pc, the within-patterns noise pni, and the between-
patterns noise pnb respectively. (a) varies pc from 0 to 50% with
pni and pnb fixed at 25%; (b) varies pni from 0 to 50% with pc and
pnb fixed at 25%; (c) varies pnb from 0 to 50% with pc and pni
fixed at 25%.

Dataset |V | |E| d(G) Description

chesapeake 39 170 0.229 road network
everglades 69 880 0.375 ecology network
lesmis 77 254 0.087 characters network
radoslaw 167 3,250 0.235 email network
jazz 198 2,742 0.141 collaboration network
visbrazil 222 336 0.014 tree-like network
sch 242 7,882 0.270 student interaction
econ-wm2 257 2,375 0.072 economic network
netscience 379 914 0.013 collaboration network
dwt_419 419 1,572 0.018 plannar structure
Caltech36 769 16,656 0.056 social network
asoiaf 796 2,823 0.009 characters network
petster-hamster 921 4,032 0.010 social network
price_1000 1,000 999 0.002 tree-like network
bn-mouse 1,029 1,559 0.003 brain network
wiki_talk_br 1,049 2,330 0.004 Wikipedia messages
wiki_edit_eu 1,135 2,585 0.004 Wikipedia edition
bio-grid-mouse 1,450 1,636 0.002 biological network
bio-grid-plant 1,717 3,098 0.002 biological network
bn-fly 1,781 8,911 0.006 brain network

Table 3. Overview of the dataset
5.2. Comparison of Matrix Reordering Measures

This section compared our approach to seven other re-
ordering algorithms based on four existing quality metrics.

Datasets. We conducted experiments on various
datasets, selected for their diverse sizes and characteristics.
The basic statistics and description of each dataset can be
found in Tab.3.

Algorithms. We compared our approach to seven widely
employed matrix reordering algorithms. Six of them were

chosen according to the six categories summarized in [6];
the collection-aware leaf ordering includes an algorithm
that specifically optimized for Moran’s I, which was re-
cently proposed and has not been surveyed by the taxon-
omy. We re-implemented these seven algorithms, and the
implementation details could be found on our GitHub page.

1) MinLA [31] (graph-theoretic approach);
2) Biclustering [6] (biclustering approach);
3) Evolutionary Reordering [28] (heuristic approach);
4) Leaf Ordering (LO, Robinsonian approach) [3];
5) MDS [33] (dimension reduction approach);
6) Rank-Two [11, 6] (spectral approach);
7) Leaf Ordering using Moran’s I (LO-δI) [35, 1].

Metrics. For the resulting matrix ordering, we selected
four existing metrics (LA, PR, BW, and MI). All metrics
were scaled into [0,1] and positively correlated to the qual-
ity. As indicators for further analysis, we employed the 95%
confidence interval (CI) for each quality metric. We used a
Friedman test to examine any significant differences among
algorithms. We conducted comprehensive pair-wise com-
parisons based on the Conover’s test [14] for any signifi-
cant difference that emerged from the Friedman test. The
p-value was adjusted using Holm’s method [18].

Quantitative Results . As shown in Fig.6, we compare
our two approaches (GRD and RDM) to the other seven
baseline algorithms with the significance level of p < .05.
In 39 (red cells with p < .05) out of (2 ours×7 baselines =
56) comparisons, our techniques significantly outperform
baselines. The blue cells primarily correspond to the three
baselines: MinLA, LO and LO-δI . Our two approaches and
minLA perform similarly in terms of the LA/PR/BW, as ev-
idenced by the similarity of histogram and confidence in-
tervals shown in Fig.6b-d. However, our GRD significantly
outperforms minLA on MI in Fig.6a. Likewise, our GRD
shows comparable performance to LO and LO-δI on MI,
but demonstrates superior performance on LA and BW. Our
approach cannot outperform algorithms designed to mini-
mize certain metrics within their territory (e.g., LO-δI for
MI and MinLA for LA), but it still finds the position: 1) no
algorithm is significantly better than our approach on any
metric, and 2) no algorithm is superior to our approach on
all metrics. It suggests that our pattern-aware matrix re-
ordering approach shows substantial improvement on most
metrics without negative influence, successfully preserving
or even enhancing matrix qualities. Details on runtime per-
formance are provided in Appendix.

Qualitative results We perform a qualitative analysis
by highlighting patterns on matrices. Our GRD generates
a summary graph for a given graph dataset in the first step
(Fig.4b), which consists of supernodes and superlinks.
These supernodes correspond to the five “vocabularies”
mentioned in Sec.4.1, which are also reflected in the
patterns shown in Tab.1. By leveraging this graph summa-
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Figure 6. (a-d) are comparisons of four metrics (MI, LA, PR, and BW) between our techniques and baselines. The interval plots above
show the 95% confidence interval (CI) of metric values. Histograms show distributions of metric values on individual datasets. The 2×9
pixel maps below demonstrate the p-value of the Conover’s test. A smaller p-value means the difference is more significant. Blue cells
mean baselines are better, while red cells mean ours are better. Cells with deeper color suggest greater significance.

rization, we are able to highlight patterns in all matrices.
Specifically, if other reordering algorithms produce results
that contain the same pattern we have identified, the
corresponding area of the matrix representing the pattern
will be colored accordingly. We highlight patterns in
the matrices of the seven reordering algorithms across
all the datasets, based on the graph summarization of
GRD and RDM respectively. All of the result figures
are available on https://osf.io/gb3wq/?view_
only=3d3c4ac16d0444ad9815cfa22c91fd9f.
Visualizations for this analysis are provided in Appendix
(see Figure 2). The result demonstrates the comparison
of our GRD with the three most competitive baselines
(MinLA, LO and LO-δI) on two datasets (chessapeake and
lesmis). First, our GRD effectively preserves the identified
patterns, which are highlighted along the diagonal. This can
be attributed to our approach of transforming the summary
graph into a coarse level matrix, which has demonstrated
superior performance in pattern preservation. Second,
clear evidence indicates that other methods exhibit a sig-
nificantly lower number of highlighted patterns compared
to our GRD. This only means that the three baselines fail
to identify all the patterns we summarized. Although all
three baselines optimize their quality metric and are able
to show certain visual patterns, their interpretability falls
short when compared to our GRD. Third, as illustrated in
the top row of the visualization, our GRD, LO, and LO-δI
are capable of displaying the chain structure (blue cells).
However, it is noteworthy that our GRD demonstrates a
chain structure that is more consistent with human visual
perception. Moreover, our GRD excels in highlighting the
bi-cliques (yellow cells).

5.3. User Study

The purpose of this user study is to evaluate our ap-
proach’s ability in pattern highlighting. Detailed settings
of the user study are introduced as follows.

Algorithms. According to the findings of our experi-

ment on metric comparison, MinLA [31] and LO-δI [35]
are the baselines that are most effective on optimizing met-
rics. Thus, in the user study, we used them as baselines to
compare the effectiveness of pattern highlighting with the
proposed techniques (GRD and RDM).

Participants. We recruited 15 participants (4 females
and 11 males; aged 21-25). They are all researchers or stu-
dents with a background in computer science. 5 participants
reported that they have practical experience with graph vi-
sualization and matrix visualization. The others said they
had taken the necessary courses to equip them with basic
visualization knowledge. Each participant received $15 be-
fore the user study.

Stimuli. Due to the lack of labeled datasets, we gen-
erated a synthetic dataset for this user study using the
same procedure in Sec.5.1. Each synthetic graph consists
of a star, a clique, a bi-clique, a chain, an empty, and
a small amount of noise. All patterns have eight nodes.
We generated five graphs by randomly configuring pc ∈
[0%,20%], pni ∈ [0%,20%], and pnb ∈ [80%,100%]. Gen-
erated graphs were reordered by four algorithms (MinLA,
LO-δI , GRD, and RDM). In summary, the user study used
5×4 = 20 matrices. Each of them has 5×8 = 40 rows and
columns.

Task. Participants were asked to identify and label pat-
terns from 20 matrices through a web system, as shown in
Fig.7. Specifically, they needed to recognize patterns, se-
lect each recognized pattern by brushing the cells or point-
and-click, and label the cells with a pattern type (clique,
bi-clique, chain, and star). They were asked to execute their
tasks as quickly and accurately as they could. Note that la-
beling more or fewer cells is considered incorrect.

Procedure. The study began by introducing the purpose,
background knowledge of the patterns, the system interface,
and the study task. Then, we provided participants with a
practice matrix. Before moving to the next phase, we made
sure that participants understand how to perform the task
and how to use the interface. Subsequently, participants

https://osf.io/gb3wq/?view_only=3d3c4ac16d0444ad9815cfa22c91fd9f
https://osf.io/gb3wq/?view_only=3d3c4ac16d0444ad9815cfa22c91fd9f
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Figure 7. The interface of the user study. The number in the left
top corner indicates the progress. The left matrix is the stimuli
shown to participants. Participants can label patterns by brush-
ing cells. Brushed cells are colored in red and labeled cells are
colored in gray. Brushing one cell would also select its mirrored
counterpart since the matrix is symmetric. After brushing one pat-
tern, participants can choose one of four pattern types and click
the blue button for confirmation. Participants can continue to the
next activity by pressing the red button, or return to the previous
task by clicking the green one.

can start the formal study. To counterbalance learning ef-
fects, the order of 20 matrices was randomly assigned to
each participant. The study was conducted on a PC with a
mouse, keyboard, and 27-inch display (with a resolution of
3840× 2160). The formal study lasted around fifteen min-
utes.

Hypotheses. We hypothesized that our techniques
would highlight more patterns. Consequently, with our
techniques, participants would recognize patterns more ef-
ficiently than with the baselines. Due to the fact that our
two techniques performed comparably in previous studies,
we hypothesized that their effectiveness would make little
difference.
H1: GRD is more effective than both MinLA and LO-δI for

participants to perform pattern identification tasks.
H2: RDM is more effective than both MinLA and LO-δI

for participants to perform pattern identification tasks.
H3: The effectiveness of GRD and RDM makes no differ-

ence.
Collected Data and Statistical Analysis. We recorded

the pattern labeling results and their task completion time.
The task of pattern identification is regarded as a multi-
class classification task. We obtained the ground truth data
through the generation step, which recorded which cells be-
long to which pattern. Subsequently, we updated the true
positive, false positive, and false negative counts based on
the user’s labeling of each cell in the ground truth. Using
this information, we calculated precision and recall mea-
sures for each pattern and aggregated them to determine the
user’s accuracy for the entire matrix. Consequently, the ef-
fectiveness of different algorithms can be measured by the
micro F1-score (equals to the micro precision and micro

recall) and the average labeling time per pattern. We em-
ployed the Conover’s test to conduct pairwise comparisons
with a significance level of .05. All tests were adjusted with
Holm’s method [18].

Quantitative Results. As shown in Fig.8a, our two tech-
niques (GRD and RDM) enable participants to identify pat-
terns more accurately than baselines (MinLA and LO-δI).
There is no statistically significant difference (p = .06 >
.05) between our two techniques. The average labeling time
also reveals that our techniques accelerate participants’ abil-
ity to identify patterns over baselines (p < .05). Our two
techniques do not show a significant difference in terms of
labeling time (Fig.8b).

In general, all results support H1-3. To further analyze
the collected data, we break down the results by different
patterns (Fig.8c-d). We observe that all algorithms highlight
cliques similarly, but perform differently on other patterns.
We observe that MinLA excels at highlighting cliques, as its
design aligns bi-cliques along the diagonal, which naturally
supports cliques. However, this disrupts bi-cliques, where
our techniques outperform MinLA significantly. Similarly,
LO-δI performs poorly on stars and chains, due to its opti-
mization target (MI) being less responsive to these patterns
(0.70 for stars, 0.40 for chains). Our techniques, on the
other hand, achieve superior precision and recall on these
patterns, maintaining global pattern integrity.

6. Discussion

We discussed our study from the following four aspects.
Significance. After decades of research, numerous re-

ordering algorithms have been developed to improve the
quality of matrix visualization. Nonetheless, highlighting
multiple patterns in matrices is still challenging. By incor-
porating a pattern-aware graph summarization algorithm,
our approach opens up new opportunities for highlighting
patterns. On the one hand, customized patterns can be in-
troduced into graph summarization to facilitate a variety of
tasks. On the other hand, our approach preserves the unique
characteristics of the employed reordering algorithms. For
instance, our approach reduces users’ pattern recognition
efforts while retaining MinLA’s capability to minimize lin-
ear arrangement.

Generalizability. The pattern-aware summarization is
applicable to more than only matrices. It can be expanded
to improve the readability of graph layouts. The pattern-
highlighting property can also be applied to node-link dia-
grams. Using pattern-aware summarization can also benefit
scatterplots. Similarities can be drawn between the prox-
imity of data points in a scatterplot and the proximity of
nodes in a graph. To construct a pattern-aware summary
for scatterplots and node-link diagrams, it is necessary to
investigate new pattern discovery heuristics.

Limitations. We list three additional limitations of our
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approach, which could be addressed in the future. First, pat-
terns have no clear demarcations and may exhibit smooth
transitions from one to another. Enforcing rigid and clear
pattern boundaries could potentially mask the presence of
other plausible patterns. It is noteworthy that our current
method employs a hard segmentation approach, where a
node is definitively assigned to a single pattern. However,
a node may inherently belong to multiple patterns in real-
ity. To address this, we plan to assign a probability to each
node or edge, indicating its likelihood of belonging to a
certain pattern. It might soften the “stiffness” of different
patterns. Second, supporting custom patterns requires de-
signing new heuristics, which is challenging for non-expert
users. It may be alleviated by the community contributing
more pattern discovery heuristics to our open-source imple-
mentation. Third, our approach stops when merging two
nodes reduces no cost, which may fall into a local mini-
mum without generating larger patterns. We plan to employ
the concept of simulated annealing to escape from saddle
points, which tolerates a degree of cost rise.

Future Work. We identified several potential exten-
sions of our work. First, our approach can be extended
to address the non-binary matrix reordering problem. In
Sec.4.2, we provided several metrics’ variants to assess the
qualities of weighted matrices. It could be the initial step
of extending existing reordering algorithms to non-binary
matrices, particularly algorithms aimed at optimizing met-
rics. In addition, reordering non-binary matrices requires
surveying patterns on non-binary cells, namely weighted
patterns. New heuristics for searching weighted patterns
should be incorporated into our approach to facilitate their
highlighting. Second, our cost definition can be extended to
measure the sensitivity of the proposed techniques to dif-
ferent patterns. Magnostics [5] evaluates the global pat-
tern sensitivity but is unable to measure local patterns. Our
pattern-aware summarization algorithm can merge adjacent

rows/columns to form local patterns. The cost definition is
able to quantify the local pattern salience. Utilizing our cost
definition in the future will allow us to measure the sensi-
tivity of existing techniques to different patterns. Third, in
the current process of obtaining graph summarization, we
have assigned equal weight to both the summary and cor-
rections. However, the potential impact of varying weight
on pattern emphasis warrants further exploration in future
research. For example, when analysts prioritize pattern dis-
covery over correction identification, manual adjustment of
weights can be employed to achieve the desired effect. Fur-
thermore, different base patterns can be assigned distinct
weights, allowing for greater flexibility in user interaction.
As our approach successfully preserves identified patterns,
users can selectively adjust the encoding costs of various
patterns based on their analysis tasks, ultimately yielding
their desired matrix visualizations.

7. Conclusion

We design and evaluate a summarization-based pattern-
aware matrix reordering approach, which generates pattern-
preserving matrix orderings. It has two stages: the data-
level stage produces a pattern-aware summary, and the
visual-level stage reorders the matrix using existing algo-
rithms in a pattern-preserving mechanism. To evaluate our
approach, we conducted three quantitative experiments: a
comparison of pattern summarization precision, a compar-
ison of matrix quality metrics, and a user study to exam-
ine the accuracy of end-user pattern recognition. The re-
sults demonstrated that our approach achieved better per-
formance than existing algorithms comprehensively.
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