
Appendix

0.1 Formal Definition of Precision

To evaluate the accuracy of pattern summarization, we use precision(P) to evaluate how
accurately the summarization process groups nodes according to their true labels and
encodings. It is defined based on two key criteria:

• Label Precision (PL): The proportion of nodes correctly grouped under the same
summarization label as their ground truth label.

• Encoding Precision (PE): The proportion of nodes correctly assigned to a summa-
rization structure matching their ground truth encoding.

• Overall Precision (P): The proportion of nodes that are simultaneously correctly
grouped and encoded.

Formally, given a graph G = (V, E), let:

• yL
i be the ground truth label of node i

• ŷL
i be the predicted label after summarization

• yE
i be the ground truth encoding of node i

• ŷE
i be the predicted encoding after summarization

• 1(·) be the indicator function, returning 1 if the condition is true and 0 otherwise

Then, the precision metrics are:

PL =
1
|V| ∑

i∈V
1(ŷL

i = yL
i )

PE =
1
|V| ∑

i∈V
1(ŷE

i = yE
i )

P =
1
|V| ∑

i∈V
1(ŷL

i = yL
i ∧ ŷE

i = yE
i )

where PL measures how well the summarization maintains node groupings, PE mea-
sures the accuracy of encoding assignments, and P evaluates the joint correctness of both
aspects.

A higher precision indicates that the summarization more accurately preserves the
original graph structure.
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0.2 Runtime Analysis

Figure 1 illustrates the running time of all techniques in Sec. 5.2 on different-sized datasets
(number of nodes). They can be roughly divided into two groups. One contains our two
techniques (GRD and RDM) and two simulation algorithms (Evolutionary Reordering
and MinLA). The else contains the other algorithms. In comparison to two simulation
methods, the running time of our two techniques is reasonable. However, compared to
others, our running time is two orders of magnitude longer. It is because the pattern-
aware summarization requires merging all 2-hops node pairs. It is time-consuming
(O(d3

av(dav + logn + logdav))), where dav is the average node degree). Using the Random-
ized summarization reduces the time complexity (O(d3

av)), but it is still time-consuming.

We leave it as a future work that may be solved by – 1) using locality sensitive hashing
(LSH) to accelerate the neighborhood searching; 2) using parallel computing to calculate
cost reductions of different node pairs simultaneously; and 3) using a progressive pattern
cost computation, which avoids recalculating the cost of a super-node in each merge.
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Figure 1: The running time of nine algorithms on twenty datasets. A bi-symmetric log
scale is employed on the y-axis.

0.3 Dataset Sources

The datasets used in our experiments originate from publicly available sources:

• chesapeake, bio-grid-mouse, bio-grid-plant: Retrieved from the Network Reposi-
tory [1].

• everglades: Ecological network data from [2, 3].

• lesmis, jazz, visbrazil, netscience, dwt_419, price_1000: Available from [4].

• radoslaw: Email communication network from [5].

• sch: Student interaction network from [6, 7].
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• econ-wm2: Economic network data from [8].

• Caltech36: Social network dataset from [9].

• asoiaf, petster-hamster, wiki_edit_eu, wiki_talk_br: Available from the KONECT
dataset repository [10], with additional data on Wikipedia messages from [11].

• bn-mouse, bn-fly: Brain network datasets from [12].

For further details, these datasets can be accessed through their respective repositories
and original publications.

0.4 Qualitative Results for Sec. 5.2

Dataset Ours (GRD) MinLA LO
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Figure 2: Matrices of chesapeake graph (39 nodes and 170 edges) and lesmis graph (77
nodes and 254 edges) reordered by our approach (GRD) and the other three reordering
algorithms (MinLA [13], LO [14], and LO-δI [15, 16]). In each matrix, we highlight 5 types
of salient patterns identified by the graph summarization used by GRD.
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