
L2-GNN: Graph Neural Networks with Fast Spectral Filters Using Twice Linear
Parameterization

Siying Huanga, Xin Yanga, Zhengda Lub,*, Hongxing Qina, Huaiwen Zhangc, Yiqun Wanga,*

aChongqing University, Chongqing 400044, China
bUniversity of Chinese Academy of Science, Beijing 100049, China

cInner Mongolia University, Hohhot 010021, China

Abstract

To improve learning on irregular 3D shapes, such
as meshes with varying discretizations and point clouds
with different samplings, we propose L2-GNN, a new
graph neural network that approximates the spectral fil-
ters using twice linear parameterization. First, we pa-
rameterize the spectral filters using wavelet filter basis
functions. The parameterization allows for an enlarged
receptive field of graph convolutions, which can simulta-
neously capture low-frequency and high-frequency in-
formation. Second, we parameterize the wavelet filter
basis functions using Chebyshev polynomial basis func-
tions. This parameterization reduces the computational
complexity of graph convolutions while maintaining ro-
bustness to the change of mesh discretization and point
cloud sampling. Our L2-GNN based on the fast spec-
tral filter can be used for shape correspondence, clas-
sification, and segmentation tasks on non-regular mesh
or point cloud data. Experimental results show that our
method outperforms the current state of the art in terms
of both quality and efficiency.

Keywords: Graph Neural Networks, Spectral Filters,
Linear Parameterization, Irregular 3D Shapes

1. Introduction

In recent years, research on three-dimensional (3D)
shape data such as meshes and point clouds has received
increasing attention due to their richer information to rep-
resent the real world. With the success of convolutional
neural networks (CNNs) in analyzing images and videos,
many researchers have explored how to apply CNNs to 3D
shapes. However, 3D shape data is irregular, and no com-
mon method currently exists for applying convolution to 3D
shapes.

A good CNN on 3D shapes should satisfy the follow-
ing three criteria: (1) The convolution operator should have

*Corresponding authors

a strong ability to aggregate shape information and obtain
more meaningful information from shape data. (2) The con-
volution operator should be robust to the irregularity of dif-
ferent shapes, such as different discretizations of meshes
and different samplings of point clouds. (3) The convo-
lution filter should have low computational complexity to
achieve good scalability for large-scale 3D data.

Some mesh-based methods [1, 2] mimic the idea of
CNNs on two-dimensional (2D) data and apply local pa-
rameterization spatially on the mesh. Although these meth-
ods have achieved higher performance in shape correspon-
dence tasks, they cannot be applied to point clouds due to
the need for local parameterization. MeshCNN [3] proposes
a convolution operation defined on mesh edges for shape
classification and segmentation while it is sensitive to the
change of mesh discretization as the meshes with different
discretizations have different edge connectivity. Some re-
cent approaches [4–6] require computing intrinsic informa-
tion to handle different discretizations on meshes, leading to
an enormous time cost. Point-based methods [7–10] often
have strong information aggregation capabilities due to the
carefully designed convolution operators, but these methods
usually do not consider the effects of point cloud sampling.

Graph neural networks are another type of approach
for handling 3D shapes. SpectralCNN [11] proposes to
use spectral filters for convolution in the graph frequency
domain, but this approach performs poorly due to the
loss of locality of the convolution kernel, and computing
spectral transform requires high computational complexity.
ChebyGCN [12] utilizes the Chebyshev polynomials to pa-
rameterize spectral filters and achieves faster convolution
speed. SplineCNN [13] uses B-splines to directly weight
neighborhoods in the graph spatial domain. However, these
acceleration methods cannot satisfy the robustness of net-
works to mesh discretization because the acquisition of lo-
cal information is highly related to mesh discretization.
Some works [14–16] introduce graph wavelets [17] into
graph neural networks. However, these methods either can-
not be applied to scenarios with different discretizations
[14] or require computing wavelet functions [15,16], which

1

Figure 1. The overview of our L2-GNN network which inputs feature f ∈ RN×C of 3D shapes and outputs feature F̂ ∈ RN×D . Employing
an overall twice-linear parameterization structure, in the L2-GCONV layer, we utilize neural network parameters as coefficients for wavelet
basis functions to select wavelet filters with different scales for capturing low-frequency and high-frequency features. Additionally, we
leverage Chebyshev polynomials to parameterize the basis functions of the wavelet filters, aiming to accelerate the training speed. Finally,
we apply the output features to various tasks on data with different discretizations, achieving promising results.

require a very high computational complexity.
In this paper, we propose L2-GNN, a fast graph neural

network suitable for shape correspondence, classification,
and segmentation tasks on both meshes and point cloud
data. As shown in the Fig. 1, our idea is to use two linear
parameterizations to approximate the spectral filter, while
satisfying performance, robustness, and speed requirements
at the same time. The basis functions of the first linear
parameterization are the wavelet filter basis functions. By
parameterizing the spectral filter with wavelet filter basis
functions, we can not only maintain the local property of
the filter but also incorporate global-aware information to
further enhance the information aggregation ability of the
convolutional operator. The basis functions of the second
linear parameterization are the Chebyshev polynomial ba-
sis functions. We can speed up the convolution operation by
parameterizing the wavelet filters with Chebyshev polyno-
mials while maintaining the robustness to mesh discretiza-
tion or point cloud sampling. Our experimental evaluations
demonstrate that our graph neural network outperforms re-
cent state-of-the-art methods on most tasks for both point
clouds and meshes.

The main contributions of this work are summarized as
follows:

• We present a new spectral filter based on two linear
parameterizations that can enhance the information ag-
gregation ability by increasing the receptive field while
maintaining locality.

• Our proposed convolutional approach can reduce the
computation complexity of convolution while main-
taining robustness to the change of mesh discretization
and point cloud sampling.

• L2-GNN offers a new approach to address challenges
in 3D deep learning, due to its ability to handle meshes

and point clouds simultaneously and its strong perfor-
mance across various tasks, such as shape correspon-
dence, classification, and segmentation.

2. Related Work

There are many deep learning technologies applied to 3D
shapes. We mainly review the work of 3D deep Learning
and graph neural networks.

2.1. 3D Deep Learning

Traditional methods [18–23] typically use descriptors to
represent features of 3D shapes, but the effectiveness of
such methods needs improvement. The emergence of deep
learning has made 3D deep learning possible. 3D deep
learning methods are generally divided into two categories
based on mesh and point cloud representations. Mesh-based
methods are to apply learning methods on mesh represen-
tation. Some methods [1, 2, 13, 24–27] define convolution
operations directly on manifolds. However, these methods
need to consider the rotation of convolution operators in the
tangent plane. Some methods [28–32] introduce the equiv-
ariant property in the convolution for the networks to ad-
dress this problem. Subsequently, many works [5, 33–37]
focus on extending the expressive power of the convolution
operation. They propose to manipulate vector-valued data
in local tangent space. [38,39] propose a multiscale framelet
transform convolution method, which effectively reduces
noise in nodes and structures, enhancing the robustness and
flexibility of spectral graph neural networks in handling in-
complete or perturbed graph data. MeshCNN [3] is a typical
deep-learning framework specifically designed for process-
ing polygonal meshes. It employs a novel mesh convolution
operation on the local geometries of each edge and achieves
good experimental results. Laplacian2Mesh [40] proposes
to map the input mesh to the multi-dimensional Laplacian-
Beltrami space, which can be used for the classification and

2

Figure 2. The illustration of our fast spectral filter leveraging twice-linear parameterization is as follows: With a single dimension features
f as input, (a) we first adopt wavelet filter basis parameterization for the spectral filter, (b) then each wavelet filter basis is parameterized
by the Chebyshev polynomials. Finally, we obtain the features f̂ after convolution.

segmentation tasks.
On the other hand, point-based approaches typically fo-

cus on processing point cloud data. PointNet [7] is the first
successful point cloud neural network, which directly learns
features from point clouds. PointNet++ [8] then proposes a
multi-scale architecture to further enhance the network on
the tasks based on point clouds. DGCNN [9] dynamically
updates the graph structure between layers to better learn
semantic information of point sets. This method can ex-
tract local features of point clouds while maintaining vertex
permutation invariance. Many recent works [10,41–49] ex-
tend these traditional works by incorporating connectivity
information, dynamic filters, cycle consistency and equiv-
alent rigid transformations to further improve the perfor-
mance. Recently, some methods [5, 6, 50, 51] can produce
good learning effects on both mesh and point cloud. How-
ever, these methods are difficult to perform well on both
mesh and point cloud data while maintaining efficiency.

2.2. Graph Neural Networks

Recently, graph neural networks have progressed
rapidly, showing strong learning capabilities on irregular
graphs and different applications [52–54]. As both meshes
and point clouds can be easily converted into graph struc-
tures, graph neural networks have also been widely used
for processing 3D shapes. Spectral CNN [11] first per-
forms convolution operations on the graph spectral do-
main through the Fourier transform. ChebyGCN [12] ap-
proximate the spectral filter by Chebyshev polynomials
with k order, which avoids spectral decomposition and
speeds up the convolution process. GCN [55] further
simplifies the spectral filter to 1 order and proposes a
method for semi-supervised learning on graphs. Further-
more, GAT [56] combines a self-attention mechanism to
aggregate neighboring nodes, achieving adaptive learning
of different neighbor weights. SplineCNN [13] uses B-
Spline kernel functions to perform convolution. The net-
work achieves good performance, but due to the design of
pseudo-coordinates on the edges, it does not have the in-

variant property of rigid transformation. LGCL [57] pro-
poses a learnable graph convolution layer to perform regu-
lar convolution operations on graphs. ACSCNN [58] uses
anisotropic Chebyshev polynomial kernels to achieve good
performance on shape correspondence tasks. AMGCN [16]
proposes to learn features trained by U-Net [59] to perform
dense shape correspondence in an anisotropic (direction-
sensitive) and multi-scale manner.

In addition to the Fourier spectral domain, wavelets have
been used in various computer vision and machine learning
applications, which can also be applied to graph neural net-
works, known as graph wavelets [17]. GWNN [14] uses the
graph wavelet transform instead of the graph Fourier trans-
form to extract features from graph signals. However, this
method can only be used for graph structures with fixed dis-
cretization. To this end, MGCN [15] focuses on mesh struc-
ture and proposes a multi-scale graph convolutional net-
work to learn compact and informative descriptors, which
can maintain robustness to the change of mesh resolution
while improving the discriminative power of descriptors.
However, the method has low computational efficiency due
to the complex computation of eigendecomposition for con-
structing the graph wavelets, and its performance has not
been validated on point cloud data.

3. Method

3.1. Overview

Given a 3D shape represented by a mesh M = (V,E)
or a point cloud P , where V = {vi|i = 1, ..., N} and P =
{pi|i = 1, ...,M} are 3D coordinates and E = {ei,j |i, j =
1, ..., N} is the set of edges on the mesh, our goal is to
compute a feature f (vi) ∈ RD for any given vertex vi
by our proposed graph neural network. Subsequently, the
learned features can be processed using different frame-
works to achieve correspondence, segmentation, and clas-
sification tasks. In the following sections, we first intro-
duce the background of the graph neural network using one
linear parametrization in Sec. 3.2. Then we describe our

3

proposed spectral filters using twice linear parametrization
in Sec. 3.3. Finally, we discussed the details of our graph
convolution layer and network architecture in Sec. 3.4.

3.2. Background

Graph neural networks are a type of neural network de-
signed to work with non-Euclidean data that can output the
node features. When the input feature is f ∈ RN , a new
feature f̂ ∈ RN can be calculated through graph convolu-
tion operation T∗f . The convolution in the time domain is
equal to the product in the frequency domain. The spectral
convolution on the graph can be defined as follows.

f̂ = T∗f = Φ
((
ΦTT

)
⊙
(
ΦT f

))
= Φwθ ΦT f (1)

where wθ represents the filter in the spectral domain, Φ is
the matrix of eigenvector. This process involves projecting
the graph signal f into the spectral domain as ΦT f , ap-
plying the filter wθ to its frequency components, and then
transforming the filtered signal back into the spatial domain
by multiplying it with Φ, producing the final output f̂ .

One fundamental work is ChebyGCN [12], which uses
one type of linear parametrization, the Chebyshev polyno-
mial parametrization, to fit spectral filters. Since the spec-
tral filter is represented by linear parametrization, the com-
putational complexity can be significantly reduced, which
has become the basis for many subsequent graph neural net-
works. In ChebyGCN, the spectral filter is expressed as fol-
lows.

wθ =

K−1∑
k=0

θkTk(Λ̃) (2)

where Tk is a k-order Chebyshev polynomial and can be
calculated using a recursive formula Tk(x) = 2 ∗ x ∗
Tk−1(x) − Tk−2(x), and Λ̃ = 2Λ

λmax
− IN , which is a scal-

ing matrix that scales the eigenvalue matrix Λ to a range of
[-1,1] for using Chebyshev polynomial, where λmax is the
maximum eigenvalue of Λ.

Due to linear parametrization, the eigenvalue matrix in
the spectral filter wθ can be combined with the eigenvector
matrix to obtain the Laplacian matrix L as in Eq. 1, which
avoids the computation of multiplying the eigenvalue ma-
trix and largely reduces the complexity. The output features
can be calculated as follows.

f̂ = ΦwθΦ
T f ≈

K−1∑
k=0

θkTk(L̃)f (3)

where L̃ = ΦΛ̃ΦT = 2L
λmax

− IN .

3.3. Fast Spectral Filter Using Twice Linear Parameteri-
zation

ChebyGCN [12] only uses a single linear parameteriza-
tion to obtain fast local spectral filters, but this also brings

Figure 3. Two examples of classic wavelet filter basis func-
tions: (a) Good example, (b) Bad example. We present the sum of
squares G(λ) (black curve), h(λ) (blue curve) and g(tkλ) (other
coloured curves). When G ≡ 1, the filter can better reconstruct
the given signal.

two issues. On the one hand, the receptive field of this
convolutional method is local, and obtaining higher perfor-
mance usually requires a larger receptive field. On the other
hand, the spatial receptive field of this k-order polynomial
filter is the k-ring neighborhood around the vertex, which
makes it vulnerable to the effects of mesh discretization or
point cloud sampling.

To this end, our idea is to use twice linear parametriza-
tion as shown in Fig. 2. Our spectral filter is first linearly
parameterized by the non-local wavelet filter basis function,
and then the wavelet filter basis function is further linearly
parameterized by the Chebyshev polynomial basis function.
Since the wavelet function on shapes is independent of dis-
cretization and sampling, the proposed spectral filter is ro-
bust to mesh discretization or point cloud sampling. We
further utilize Chebyshev polynomial to parameterize the
wavelet filter basis functions, which reduce the computa-
tional complexity of the wavelet. In this way, the obtained
spectral filter maintains the properties of fast processing,
large spatial receptive fields, and discretization robustness
at the same time. Next, we will first introduce the method
of linear parameterization of spectral filters using wavelet
filter basis functions, and then introduce the method of lin-
ear parameterization of wavelet filter basis functions using
Chebyshev polynomial basis functions.

Wavelet filter basis functions are a set of orthogonal
bases in the spectral domain. They are typically composed
of a scaling filter function h(λ), which captures the low-
frequency components, and a set of wavelet filter func-
tions {g(tkλ)}Kk=1 at different scales tk, which represent
the high-frequency components. Mexican hat functions are
classic wavelet filter basis functions, as shown in Fig. 3. A
good wavelet filter basis should satisfy the following con-
straint.

G(λ) = h2 (λ) +

K∑
k=1

g2 (tkλ) ≡ 1 (4)

For simplification, we define gtk (λj) to represent both

4

Figure 4. Our spectral filter is parameterized by the wavelet filter
basis. We choose graph wavelet functions using five wavelet filters
with different scales on one vertex to represent the spatial convo-
lution. Compared with Chebyshev polynomial parameterization in
ChebyGCN [12], our proposed method can capture low-frequency
and high-frequency information simultaneously.

filter functions.

gtk (λ) =

{
h (λ) , if k = 0
g (tkλ) , if k > 0

(5)

The spectral filter wθ can be expressed on the wavelet
filter basis functions as follows.

wθ =

K∑
k=0

θkdiag
(
{gtk (λi)}

K
i=0

)
=

K∑
k=0

θkgtk (Λ) (6)

where λi is the ith eigenvalue of matrix Λ.
Given eigenvector matrix Φ, eigenvalue matrix Λ, and

the wavelet filter basis functions {gtk(λ)}
K
k=0, the graph

wavelet function ψtk,v with scale tk on vertex v can be de-
fined as follows [17].

ψtk,v =

N−1∑
i=0

gtk (λi)ϕi (v)ϕi (7)

where ϕi is the ith eigenvector of matrix Φ, and ϕi(v) is the
vth component of ϕi, representing the response of vertex v
at frequency λi.

The spectral convolution on the graph can then be de-
rived as follows.

f̂ = T∗f ≈
K∑

k=0

θkΨtkf (8)

where Ψtk is a wavelet matrix composed of graph wavelet
functions ψtk with all scales tk = 0...K.

Due to the multiscale nature of wavelet filter basis func-
tions, our proposed convolution can capture low-frequency
and high-frequency information on shape as shown in
Fig. 4. However, to calculate Φgtk (Λ)Φ

T , we need to ap-
ply eigendecomposition for the Laplacian matrix and obtain
the eigenvector matrix and eigenvalue matrix, which is very
time-consuming. To this end, we propose to use a second
linear parameterization to approximate the wavelet filter ba-
sis functions gtk to achieve a fast spectral filter.

We choose Chebyshev polynomial basis for the second
linear parameterization. The Chebyshev polynomials typi-
cally satisfy the following conditions. Given T0 = 1, T1=z,

z∈[−1, 1], Tm (z) can be generated by the recursive rela-
tions: Tm (z) = 2zTm−1 (z)−Tm−2 (z). Any function a(z)
can be parameterized by the Chebyshev polynomial basis in
an M-truncated form as follows.

a (z) =
1

2
c0 +

M−1∑
m=1

cmTm (z) (9)

The coefficients can be calculated in the Hilbert space of
Chebyshev polynomial basis:

cm =
2

π

∫ π

0

cos(mθ)g(cos(θ))dθ. (10)

For our case, we have the Laplacian matrix L, the max-
imum eigenvalue λmax, and λ ∈ [0, λmax]. We define
λ = λmax

2 and z can be expressed as: z = λ−λ
λ

∈ [−1, 1].
In this case, our wavelet filter basis gtn (λ) can be parame-
terized as follows.

gtk(λ) = gtk(λ(z + 1)) =
1

2
cm,0 +

M−1∑
m=1

ck,mTm(
λ− λ

λ
)

(11)
where ck,m is the coefficients for reconstructing our wavelet
filter basis.

ck,m =
2

π

∫ π

0

cos(mθ)gtk((λ(cos(θ) + 1)))dθ (12)

In this way, given the form of the wavelet basis func-
tion, i.e., the Mexican hat function, we further utilize the
Chebyshev polynomials to parameterize the wavelet filter
basis functions.

We denote a shifted Chebyshev polynomials Tm(λ) =

Tm(λ−λ
λ

), then the shifted recurrence relation is changed
as follows.

Tm (λ) =
2

λ
(λ− 1)

(
Tm−1 (λ)

)
− Tm−2 (λ) (13)

We first substitute the second linear parameterization
(Eq. 11) into the first linear parameterization (Eq. 6):

wθ =

K∑
k=0

θkgtk (Λ) =

K∑
k=0

θk

(
1

2
cm,0 +

M−1∑
m=1

ck,mTm(Λ)

)
,

(14)
then we substitute Eq. 14 into the spectral convolution

formula (Eq. 1) and obtain our spectral convolution equa-
tion as follows.

f̂ = Φwθ ΦT f =

K∑
k=0

θk

(
1

2
cm,0 +

M−1∑
m=1

ck,mTm(L)

)
f (15)

where L can be computed using the cotangent Laplacian
matrix on mesh or intrinsic Laplacian on point clouds [60].

For fast computing, we combine the shifted Chebyshev
polynomials and the input feature in the recursive computa-
tion as follows.

Tm (L) f =
2

λ
(L− I)

(
Tm−1 (L) f

)
−Tm−2 (L) f (16)

5

6890

n=6890 n=12k n=15kn=8k

Figure 5. The illustration of the robustness of discretization. From
left to right are four different cases of discretization. With the
change of discretization, the receptive fields of the wavelet func-
tions parameterized by the Chebyshev polynomial basis are sim-
ilar, which indicates that our method can maintain robustness to
discretization while improving the inference speed of graph con-
volution.

The use of twice linear parameterization in spectral fil-
ters enables acceleration of computation while maintain-
ing robustness to discretization or sampling. Furthermore,
the performance gains of L2-GNN stem from the princi-
pled synergy of spectral localization and multi-scale fea-
ture learning. Specifically, our architecture incorporates
Chebyshev polynomial-based wavelet approximation from
ChebyGCN [12], while integrating the multi-scale convolu-
tion paradigm from MGCN [15]. As shown in Fig. 5 our
filters achieve the same receptive field in four different dis-
cretizations. This is a property that ChebyGCN’s spectral
filters with one linear parameterization lack.

3.4. Graph Convolution Layer and Network Architecture

To avoid unnecessary calculation, we uniformly sample
wavelet scales for each graph convolutional layer. Consid-
ering high-dimensional input feature F ∈ RN×C and fea-
ture dimension transformations, we propose the following
L2-GCONV layer as follows.

F̂ = Norm

ELU

∑
k∈Sk

(
1

2
cm,0 +

M−1∑
m=1

ck,mTm(L)

)
F Θk

(17)

where Θk ∈ RC×D is the parameter to be learned, F̂ ∈
RN×D is the output feature, and M is set to 50.

We use the proposed convolutional layer L2-GCONV to
construct our L2-GNN. In addition to the first layer, we
use five L2-GCONV layers with 128-dimensional input and
output features, followed by a multilayer perceptron with 96
output dimensions. We use an activation function ELU for
each layer, which has been normalized by the batch norm
layer. In addition, we choose 16 wavelet scales in our con-
volutional layer, which is discussed in Sec. 4.4. We use the
cross-entropy loss as our training loss function for corre-
spondence, classification, and segmentation tasks.

3.5. Discussion

SpectralCNN employs convolution operations in the
graph frequency domain, however, it compromises the

Table 1. Quantitative comparison results of shape correspondence
on FAUST dataset. We show the average geodesic error ×100,
which are computed on all test pairs of 20 × 19 shapes with differ-
ent resolutions. The best result of each measurement is marked in
bold font.

Method Input Object Resolution
7k 8k 15k

SplineCNN [13] 1 Mesh 27.21 59.01 51.71
ACSCNN [58] 1 Mesh 0.06 58.87 53.06

FC [5] XYZ Mesh 1.80 53.41 50.04
DiffusionNet [6] XYZ Mesh 2.18 6.42 7.28

Multimodal-DFM [51] XYZ Mesh 0.51 0.68 0.70
DiffusionNet [6] WEDS Mesh 1.79 6.33 12.42
ChebyGCN [12] WEDS Mesh 10.88 53.62 57.12

MGCN [15] WEDS Mesh 1.14 2.13 6.29
L2-GNN WEDS Mesh 0.06 0.12 0.29

Table 2. Quantitative comparison results of time performance
where we perform the dense correspondence on the FAUST
dataset. The pre-training and training times are the running times
on the CPU and GPU with default parameters for each method, re-
spectively. Only methods that demonstrate robustness to different
resolutions are tested.

Method Pre-processing(s) Training(s) Total(s)
DiffusionNet [6] 657.15 2257.67 2914.82

MGCN [15] 3268.19 12213.25 15481.44
Multimodal-DFM [51] 1387.47 3713.33 5100.80

L2-GNN 192.37 2095.13 2287.50

preservation of local features and incurs significant com-
putational complexity. While ChebyGCN achieves faster
convolution by parameterizing spectral filters with Cheby-
shev polynomials, it lacks robustness across different mesh
discretizations. SplineCNN also maintains impressive train-
ing efficiency but its robustness diminishes when subjected
to changes in resolution. ACSCNN applies anisotropic
Chebyshev polynomial kernels, delivering strong perfor-
mance in shape correspondence tasks. FC presents a sur-
face convolution operator that enables robust and descrip-
tive convolutions on surfaces. Nevertheless, neither of
them maintains robustness when applied to varying reso-
lutions. The central issue with graph convolution methods
lies in developing filter representation that remain robust
across different discretizations. We also focus on achiev-
ing high accuracy and maintaining low computational com-
plexity. MGCN leads to high computational demands and
low speed, although it maintains robustness when dealing
with different resolutions. DiffusionNet is fast and robust to
variant resolutions, but its accuracy needs to be improved.
At the same time, multimodal-DFM boosts accuracy and
maintains robustness to resolution changes. However, mul-
timodal information negatively impacts processing speed.
In conclusion, a reliable network that effectively balances

6

high accuracy, robustness to resolution and low computa-
tional complexity has yet to be developed.

In our network, we incorporate twice linear parameteri-
zation to approximate the spectral filter, effectively balanc-
ing performance, robustness to variant resolutions, and ef-
ficiency. First, the wavelet filter basis functions serve as
the foundation of the first linear parameterization, boosting
information aggregation by increasing the receptive field
without sacrificing locality while providing robustness to
variations in mesh discretization and point cloud sampling.
Second, with the Chebyshev polynomial basis functions
from the second parameterization, we can significantly re-
duce convolutional complexity. Since we are fitting the
wavelet function using the polynomials, the robustness is
maintained. To sum up, L2-GNN provides a fresh solution
for 3D deep learning challenges (accuracy, robustness to
variant resolutions, and computation complexity), excelling
in handling both meshes and point clouds and achieving
high performance in tasks like shape correspondence, clas-
sification, and segmentation.

4. Experimental Results

In this section, our L2-GNN blocks provide a plug-
and-play framework for different 3D discretization data
(mesh and point clouds) and tasks (correspondence, clas-
sification, and segmentation). Therefore, we first describe
the implementation details of the experiments for different
tasks. Then, we provide quantitative and visual compar-
isons with state-of-the-art methods. Finally, we perform
ablation experiments to validate the effectiveness of our L2-
GNN blocks. Our results are obtained using a Core (TM)
i9-10900 CPU and a RAM16.0 GB computer. Offline train-
ing is conducted on NVIDIA GeForce GTX RTX (24GB
memory) GPU.

Table 3. Quantitative comparison results of the mesh classification
on SHREC11 dataset.

Method Input Object Accuracy
MeshCNN [3] XYZ Mesh 97.50%

Laplacian2Mesh [40] 39D Mesh 99.50%
FC [5] XYZ Mesh 96.67%

DiffusionNet [6] XYZ Mesh 99.60%
DiffusionNet [6] WEDS Mesh 99.50%
ChebyGCN [12] WEDS Mesh 92.33%

MGCN [15] WEDS Mesh 99.25%
L2-GNN WEDS Mesh 99.67%

4.1. Implementation Details

In this chapter, we describe in detail the experimental
procedures and datasets used in the study. To illustrate

Table 4. Quantitative comparison results of the part segmentation
on the SHAPESEG part dataset. The accuracy calculation is based
on ”hard” ground-truth labels.

Method Input Object Accuracy
MeshCNN [3] XYZ Mesh 89.65%

Laplacian2Mesh [40] 39D Mesh 88.57%
FC [5] XYZ Mesh 91.43%

DiffusionNet [6] XYZ Mesh 91.21%
DiffusionNet [6] WEDS Mesh 90.17%
ChebyGCN [12] WEDS Mesh 84.33%

MGCN [15] WEDS Mesh 89.25%
L2-GNN WEDS Mesh 91.55%

the hyperparameter configurations in the various experi-
ments, we provide settings for two specific datasets. For
the FAUST [61] dataset, we set the learning rate for soft-
max and hard loss to 0.0005, with weight decay values of
1e-4 and 5e-5 for softmax and hard loss, respectively. In
contrast, for the SHREC11 [62] dataset, we used a slightly
higher learning rate of 0.01 for softmax, while the learning
rate for hard loss remained at 0.0005. The weight decay
values for both softmax and hard loss were kept the same at
1e-4 and 5e-5, respectively.

4.1.1 Correspondence

FAUST [61] dataset consists of 100 watertight meshes, in-
cluding 10 different poses for 10 different subjects with
ground-truth corresponding tags. Meanwhile, we use the
80 shapes of the 7k mesh dataset for training and select the
last 20 shapes on the 7k, 8k, and 15k resolutions to test the
performance. Furthermore, we utilize the nearest neighbor
search with the L2 distance in the feature space to find the
corresponding point in the test pair of source-target shapes.
Finally, we use the average geodesic error of all test shapes
to measure the correspondence performance.

4.1.2 Classification

SHREC-11 [62] dataset has 30 categories which have 20
shapes. Similar to other competitors, we only select 10
samples per class for training and the results are the aver-
age accuracy of the last 10 epochs of the experiment.

4.1.3 Segmentation

SHAPESEG [63] part dataset contains 381 training shapes
from SCAPE [64], FAUST [61], MIT [65], Adobe Fuse
[66], and 18 test shapes from SHREC07 [67]. For this task,
each point in the 3D shape is classified into one of several
predefined component category labels, and the human body

7

Source

N=7K

N=8K

N=15K

MGCN FC DiffusionNet Ours

Figure 6. For a selected model, we visualize the feature map ex-
tracted by different methods on different resolutions, and the N is
the number of vertices. The color distribution closer to the Source
means a better correspondence result.

is segmented into 8 parts. Finally, we follow the official
train/validation/test split scheme of SHAPESEG for our ex-
periments and use the average accuracy (ACC) to evaluate
our segmentation performance.

On the other hand, we choose the Shapenet part dataset
for the part segmentation task of point clouds. This dataset
contains 16 object categories and we selected 6 of them for
the experiment. Furthermore, we followed the official train-
ing/validation/testing split scheme of the Shapenet dataset
[68]

4.2. Mesh

4.2.1 Mesh Correspondence

We first apply our L2-GNN network to the Faust dataset
to evaluate the learning performance of shapes correspon-
dence.

For a more intuitive display of the mesh correspon-
dence, we first visualize the correspondence result of FC,
MGCN, DiffusionNet, and ours through color transmission,
as shown in Fig. 6. Each method has satisfactory results on
7k data since we train them on this resolution. Furthermore,
our result is the most consistent with different resolutions
when testing on 8k and 15k data, while other methods have
clear errors.

Table 1 reports the quantitative comparison results of
mesh correspondence on the FAUST dataset. Compared
with the SOTA methods, our L2-GNN achieves the best
results of the average geodesic error among different res-
olutions (7k, 8k, and 15k). Among them, ChebyGCN em-
ploys one linear parameterization approach, where its con-
volution operation is closely tied to data discretization and
resolution, which limits its robustness. Furthermore, our re-
sults have the smallest error between different resolutions
compared to other methods, which is a clear advantage and
demonstrates our excellent generalization for the various

Table 5. Quantitative comparison results of point cloud correspon-
dence on FAUST dataset. The calculation of average geodesic er-
ror is the same as shape correspondence.

Method Input Object Resolution
7k 8k 15k

SplineCNN [13] 1 PointCloud 31.65 53.28 56.94
ChebyGCN [12] WEDS PointCloud 21.88 49.37 55.32
ACSCNN [58] 1 PointCloud 5.83 44.26 45.71

FC [5] XYZ PointCloud 9.78 57.51 55.44
DiffusionNet [6] XYZ PointCloud 4.17 11.59 15.01

Multimodal-DFM [51] XYZ PointCloud 0.51 0.73 0.76
DiffusionNet [6] WEDS PointCloud 5.89 10.56 16.89

MGCN [15] WEDS PointCloud 11.34 15.27 16.61
L2-GNN WEDS PointCloud 0.06 0.14 0.31

degrees of discrete 3D data.
Finally, we compare the time consumption of the corre-

sponding task with the SOTA methods robust to varying res-
olutions on the FAUST dataset. Generally, a GCN network
can be divided into data processing and training. Therefore,
we count the pre-training, training, and total time separately
in Table 2.

We can observe that the pre-processing time of FC is
large because the method needs to calculate geodesic dis-
tances. DiffusionNet is a good competitor in terms of time.
Their pre-processing time is higher than ours due to the
calculation of eigenvector matrices and eigenvalues ma-
trices. Multimodal-DFM ranks as the second most time-
consuming method, primarily due to its incorporation of
multimodal data. Furthermore, MGCN is the most time-
consuming since its complex computation for eigenvector
and eigenvalues in pre-processing and the wavelet matrix
multiplication for each epoch in training. Our method re-
quires only a brief pre-computation step, which is more
efficient and does not significantly impact overall perfor-
mance. As a result, our method is significantly faster than
other methods due to our efficient spectral filter.

4.2.2 Mesh Classification

Here, we conduct mesh classification comparison on
SHREC-11 [62] dataset as shown in Table 3. Due to the
small scale of the classification task, we first randomly se-
lect 8 out of 32 scales for filters and utilize two L2-GNNOV
layers to construct our classification network. Then we train
60 epochs and converge quickly at 30 epochs. Nonetheless,
our L2-GNN achieves competitive results compared to the
current SOTA networks (such as MeshCNN, FC, Diffusion-
Net, etc.).

4.2.3 Mesh Segmentation

Finally, we extended our L2-GNN model to the part seg-
mentation task on the SHAPESEG [63] dataset. Different

8

Table 6. Quantitative comparison results of the point cloud classi-
fication on SHREC11 dataset.

Method Input Object Accuracy
PointNet++ [8] XYZ PointCloud 90.25%

DGCNN [9] XYZ PointCloud 95.67%
Pointnext [10] XYZ PointCloud 99.25%

DiffusionNet [6] XYZ PointCloud 99.67%
DiffusionNet [6] WEDS PointCloud 99.25%
ChebyGCN [12] WEDS PointCloud 90.12%

MGCN [15] WEDS PointCloud 96.25%
L2-GNN WEDS PointCloud 99.67%

Table 7. Quantitative comparison results of the part segmentation
on the ShapeNet part dataset. We show averaged accuracy in %
and select six representative objects to compare with five different
network structures.

Earphone Pistol Table Car Guitar Skateboard Average
#Shapes 55 239 4423 740 628 121

PointNet++ [8] 80.63 70.24 79.21 72.71 74.52 85.88 77.20
DGCNN [9] 87.20 91.86 88.15 89.25 95.20 94.22 90.98

Pointnext [10] 87.68 92.02 87.28 90.24 94.24 94.95 91.07
DiffusionNet-XYZ [6] 86.50 91.45 88.55 87.59 92.56 92.55 89.87

DiffusionNet-WEDS [6] 86.55 91.95 87.65 90.10 93.38 91.79 90.23
ChebyGCN [12] 80.23 85.67 80.17 87.19 79.25 88.35 84.46

MGCN [15] 82.23 89.52 87.01 85.25 85.16 90.26 86.57
L2-GNN 88.20 92.78 87.26 90.75 94.12 94.64 91.29

from the classification structure, we randomly select 16 fil-
ters in 32 different scales and use two FMGCONV layers
after a two-layer MLP. After that, we use two shared full-
connection layers (64, 64) to transform the features. Table 4
reports the evaluation results compared to Laplacian2Mesh,
DiffusionNet, and other methods. We also achieve SOTA
segmentation results and a 2.3% improvement over our
baseline MGCN while maintaining fast training. Further-
more, we visualize the human segmentation results of FC,
MGCN, DiffusionNet, and ours, as shown in Fig. 7. Our
method achieves the most satisfactory segmentation results,
such as the thigh in various human poses.

4.3. Point Cloud

4.3.1 Point Cloud Correspondence

For the correspondence task of the point cloud, we only use
the coordinate information in the FAUST dataset and cal-
culate the Laplacian matrix by the existing robust-laplacian
function. Meanwhile, we also use the comparison methods
in mesh correspondence for point clouds. Table 5 reports
the overall comparison results. Our network also achieves
state-of-the-art results at different resolutions of the point
cloud.

FC Ours GTMGCNDiffusionNet

Figure 7. Visualization comparisons of mesh segmentation on hu-
man between our method and state-of-the-art methods.

4.3.2 Point Cloud Classification

Similarly, we use the coordinate information of the
SHREC11 dataset for the point cloud classification. We fur-
ther select some point cloud classification methods such as
PointNet++, DGCNN, and Pointnext to expand the com-
parison. The comparison results are shown in the Table
6. Our L2-GNN achieves competitive classification results,
which are consistent with the mesh classification and fur-
ther demonstrate the performance of our network in han-
dling different types of 3D data. In addition, SHREC11 has
some sharp shapes and few points, which leads to the fail-
ure of generating the Laplacian matrix on the point cloud
data. Therefore, we increase the n-neighbors parameter of
the intrinsic Laplacian function. From the result, we can ob-
serve our L2-GNN and DiffusionNet achieve the best per-
formance in the task point cloud classification.

4.3.3 Point Cloud Segmentation

Here, we conduct the point cloud segmentation on the
Shapenet part dataset while our network structure is simi-

9

Table 8. Ablation experiment of the filter numbers on the network
model of the corresponding task.

K 24 16 8 4

MGCN error 0.923 1.146 1.379 2.425
timer(s) 22168.13 15481.44 8975.34 6060.17

L2-GNN error 0.052 0.061 0.271 1.178
timer(s) 2645.53 2287.50 1927.48 1650.49

lar to our mesh segmentation structure. Then, we compared
different point cloud segmentation methods, and Table 7 re-
ports the quantitative results. We achieve SOTA results in
some shapes, achieved competitive in others, and attained
the best outcomes in terms of average accuracy. Further-
more, we visualized some point cloud segmentation results
as shown in Fig. 8 while our results are closer to GT, espe-
cially in some details.

4.4. Ablation Study

We introduce a novel method for approximating spectral
filters through a twice-linear parameterization approach.
We first parameterize the spectral filters using wavelet filter
basis functions, and then further parameterize these wavelet
basis functions using Chebyshev polynomial basis func-
tions. If the first parameterization is omitted, our ablation
study compares the approach with spectral methods like
ChebyGCN [12]. On the other hand, if the second param-
eterization is omitted, the comparison in the ablation study
is made with MGCN [15].In the experimental section, we
provide comparisons that help validate the contribution of
each component to the overall performance of L2-GNN.

We conducted the following three ablation experiments
to demonstrate the robustness of our method. First, we se-
lect multiple wavelet filters with different scales to capture
low-frequency and high-frequency features for comparison
with MGCN. Then, we added two additional levels of noise
to the dataset to compare with other methods. Moreover, we
compare the performance results of multiple methods on the
inputs of WEDS and XYZ. Finally, we further explored the
learnable coefficients for the basis functions.

Filter numbers. We conduct an ablation experiment of
the filter numbers on our correspondence network model.
Meanwhile, MGCN is the baseline of our network and we
choose it for performance reference.

As shown in Table 4.3.2, we select four different num-
bers of filters from 32 scales for training to compare their
training time and performance on the FAUST dataset. We
can observe that the performance of our L2-GNN and
MGCN improves with the K increases. However, the train-
ing time of MGCN grows squarely with K increasing,
since their additional calculation of multiple wavelet filter
wavelet basis on each shape. Meanwhile, the training time
of our L2-GNN increases linearly with K due to the twice

Pistol

GT

Skateboard Car

PointNet++

Ours

DGCNN

DiffusionNet

MGCN

Figure 8. Visualization comparisons of point cloud segmentation
on diverse objects between our method and state-of-the-art meth-
ods.

Table 9. Ablation experiment of different noise data on the net-
work model of the corresponding task. Each method are employed
with optimal configurations.

Method No-noise 0.2% 0.3%
SplineCNN [13] 27.21 28.33 28.46
ACSCNN [58] 0.06 2.98 3.40

FC [5] 1.80 1.45 2.56
Diffusionnet [6] 2.18 3.25 5.43
ChebyGCN [12] 10.88 14.57 13.48

MGCN [15] 1.14 3.45 4.27
L2-GNN 0.06 0.45 0.83

Table 10. Ablation experiment of different input features on the
network model of the corresponding task

Method WEDS XYZ
Diffusionnet [6] 1.79 2.18
ChebyGCN [12] 10.62 10.88

MGCN [15] 1.14 3.25
L2-GNN 0.06 0,09

linear parameterization. Finally, we select K=16 as the de-
fault filter number in our L2-GNN to achieve the balance
between performance and training time.

Noise Data. Furthermore, we introduce random Gaus-
sian noise to the mesh vertices for the 7K mesh correspon-
dence task. Specifically, we add noise with a standard devi-
ation of 0.2% and 0.3% of the length of the bounding box
diagonal. As demonstrated in Table 9, our L2-GNN consis-

10

tently outperforms state-of-the-art (SOTA) methods, further
validating the robustness of our proposed L2-GNN. The re-
sults show that our model is not only effective in handling
clean data but also showcases its superiority in maintaining
high performance even in the presence of noise.

Different Input. Moreover, we chose to compare the ef-
fects of inputting XYZ and WEDS on the mesh dataset. For
mesh, in addition to the vertex coordinate information, the
connectivity information within the mesh is crucial. WEDS
incorporates not only the coordinate information P but also
the connectivity information. As shown in Table 10, in the
case of a mesh, using WEDS as input yields better results
compared to directly inputting vertex coordinate informa-
tion. Therefore, for mesh data, we chose to use WEDS as
the input. It is worth noting that even when using coordinate
information as input, our method still outperforms other ap-
proaches.

5. Conclusions

In this paper, we propose the L2-GNN, which uses
twice linear parameterization to approximate the spectral
filter of the graph neural network. We achieve both perfor-
mance and discretization robustness goals simultaneously
through the following two aspects. On the one hand, we use
wavelet filter basis functions to parameterize the spectral fil-
ter, which allows the network to capture both low-frequency
and high-frequency information thus further improving its
performance. On the other hand, we use the Chebyshev
polynomial basis functions to parameterize the wavelet fil-
ter basis functions, which reduces the computational com-
plexity of graph convolution while maintaining the robust-
ness of different discretizations and samplings. Our L2-
GNN exhibits strong adaptability to both meshes and point
clouds and demonstrates impressive performance on tasks
such as shape correspondence, classification, and segmen-
tation. One limitation of our method is that it still requires
pre-computing the coefficients for approximating wavelet
filter basis functions with Chebyshev basis functions. We
consider exploring alternative basis functions in the spec-
tral domain that may offer improved performance compared
to the current wavelet filter basis functions. One promis-
ing way is using learnable basis functions, which have the
potential to capture complex relationships within the data.
Although initial attempts to replace wavelet basis functions
with learnable ones did not yield satisfactory results in the
supplemental materials, further research is needed to bet-
ter understand the challenges and opportunities of this ap-
proach.

Acknowledgements

This work was supported by the National Key
R&D Program of China (2022ZD0160804) and
the National Natural Science Foundation of China

(62202076, 52238003, 62306297, and 62206137).

References

[1] Jonathan Masci, Davide Boscaini, Michael Bronstein,
and Pierre Vandergheynst. Geodesic convolutional
neural networks on riemannian manifolds. In Proceed-
ings of the IEEE international conference on computer
vision workshops, pages 37–45, 2015. 1, 2

[2] Davide Boscaini, Jonathan Masci, Emanuele Rodolà,
and Michael Bronstein. Learning shape correspon-
dence with anisotropic convolutional neural networks.
Advances in neural information processing systems,
29, 2016. 1, 2

[3] Rana Hanocka, Amir Hertz, Noa Fish, Raja Giryes,
Shachar Fleishman, and Daniel Cohen-Or. Meshcnn:
a network with an edge. ACM Transactions on Graph-
ics (TOG), 38(4):1–12, 2019. 1, 2, 7

[4] Nicolas Donati, Abhishek Sharma, and Maks Ovs-
janikov. Deep geometric functional maps: Robust fea-
ture learning for shape correspondence. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 8592–8601, 2020. 1

[5] Thomas W Mitchel, Vladimir G Kim, and Michael
Kazhdan. Field convolutions for surface cnns. In Pro-
ceedings of the IEEE/CVF International Conference
on Computer Vision, pages 10001–10011, 2021. 1, 2,
3, 6, 7, 8, 10

[6] Nicholas Sharp, Souhaib Attaiki, Keenan Crane, and
Maks Ovsjanikov. Diffusionnet: Discretization agnos-
tic learning on surfaces. ACM Transactions on Graph-
ics (TOG), 41(3):1–16, 2022. 1, 3, 6, 7, 8, 9, 10

[7] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J
Guibas. Pointnet: Deep learning on point sets for
3d classification and segmentation. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 652–660, 2017. 1, 3

[8] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learn-
ing on point sets in a metric space. Advances in neural
information processing systems, 30, 2017. 1, 3, 9

[9] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon. Dy-
namic graph cnn for learning on point clouds. Acm
Transactions On Graphics (tog), 38(5):1–12, 2019. 1,
3, 9

11

[10] Guocheng Qian, Yuchen Li, Houwen Peng, Jinjie Mai,
Hasan Hammoud, Mohamed Elhoseiny, and Bernard
Ghanem. Pointnext: Revisiting pointnet++ with im-
proved training and scaling strategies. Advances in
Neural Information Processing Systems, 35:23192–
23204, 2022. 1, 3, 9

[11] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and
Yann LeCun. Spectral networks and locally connected
networks on graphs. arXiv preprint arXiv:1312.6203,
2013. 1, 3

[12] Michaël Defferrard, Xavier Bresson, and Pierre Van-
dergheynst. Convolutional neural networks on graphs
with fast localized spectral filtering. Advances in neu-
ral information processing systems, 29, 2016. 1, 3, 4,
5, 6, 7, 8, 9, 10

[13] Matthias Fey, Jan Eric Lenssen, Frank Weichert, and
Heinrich Müller. Splinecnn: Fast geometric deep
learning with continuous b-spline kernels. In Proceed-
ings of the IEEE conference on computer vision and
pattern recognition, pages 869–877, 2018. 1, 2, 3, 6,
8, 10

[14] Bingbing Xu, Huawei Shen, Qi Cao, Yunqi Qiu, and
Xueqi Cheng. Graph wavelet neural network. arXiv
preprint arXiv:1904.07785, 2019. 1, 3

[15] Yiqun Wang, Jing Ren, Dong-Ming Yan, Jianwei Guo,
Xiaopeng Zhang, and Peter Wonka. Mgcn: descriptor
learning using multiscale gcns. ACM Transactions on
Graphics (TOG), 39(4):122–1, 2020. 1, 3, 6, 7, 8, 9,
10

[16] Mohammad Farazi, Wenhui Zhu, Zhangsihao Yang,
and Yalin Wang. Anisotropic multi-scale graph con-
volutional network for dense shape correspondence.
arXiv preprint arXiv:2210.09466, 2022. 1, 3

[17] David K Hammond, Pierre Vandergheynst, and Rémi
Gribonval. Wavelets on graphs via spectral graph the-
ory. Applied and Computational Harmonic Analysis,
30(2):129–150, 2011. 1, 3, 5

[18] Federico Tombari, Samuele Salti, and Luigi Di Ste-
fano. Unique signatures of histograms for local sur-
face description. In Computer Vision–ECCV 2010:
11th European Conference on Computer Vision, Her-
aklion, Crete, Greece, September 5-11, 2010, Pro-
ceedings, Part III 11, pages 356–369. Springer, 2010.
2

[19] Jian Sun, Maks Ovsjanikov, and Leonidas Guibas. A
concise and provably informative multi-scale signa-
ture based on heat diffusion. In Computer graphics

forum, volume 28, pages 1383–1392. Wiley Online
Library, 2009. 2

[20] Hanyu Wang, Jianwei Guo, Dong-Ming Yan, Weize
Quan, and Xiaopeng Zhang. Learning 3d keypoint de-
scriptors for non-rigid shape matching. In Proceed-
ings of the European Conference on Computer Vision
(ECCV), pages 3–19, 2018. 2

[21] Mathieu Aubry, Ulrich Schlickewei, and Daniel Cre-
mers. The wave kernel signature: A quantum me-
chanical approach to shape analysis. In 2011 IEEE in-
ternational conference on computer vision workshops
(ICCV workshops), pages 1626–1633. IEEE, 2011. 2

[22] Yulan Guo, Ferdous Sohel, Mohammed Bennamoun,
Min Lu, and Jianwei Wan. Rotational projection
statistics for 3d local surface description and object
recognition. International journal of computer vision,
105:63–86, 2013. 2

[23] Yiqun Wang, Jianwei Guo, Jun Xiao, and Dong-Ming
Yan. A wavelet energy decomposition signature for
robust non-rigid shape matching. In SIGGRAPH Asia
2019 Posters, pages 1–2. 2019. 2

[24] Yi Ding, Neethu Robinson, Chengxuan Tong, Qiuhao
Zeng, and Cuntai Guan. Lggnet: Learning from local-
global-graph representations for brain–computer in-
terface. IEEE Transactions on Neural Networks and
Learning Systems, 2023. 2

[25] Mianxin Liu, Han Zhang, Feng Shi, and Dinggang
Shen. Hierarchical graph convolutional network built
by multiscale atlases for brain disorder diagnosis us-
ing functional connectivity. IEEE Transactions on
Neural Networks and Learning Systems, 2023. 2

[26] Federico Monti, Davide Boscaini, Jonathan Masci,
Emanuele Rodola, Jan Svoboda, and Michael M Bron-
stein. Geometric deep learning on graphs and man-
ifolds using mixture model cnns. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 5115–5124, 2017. 2

[27] Shuyi Niu, Junxiao Sun, Youyong Kong, and
Huazhong Shu. Gcn2caps: Graph convolutional net-
work to capsule network for wide-field robust graph
learning. In 2022 26th International Conference on
Pattern Recognition (ICPR), pages 2219–2223. IEEE,
2022. 2

[28] Pim De Haan, Maurice Weiler, Taco Cohen, and Max
Welling. Gauge equivariant mesh cnns: Anisotropic
convolutions on geometric graphs. arXiv preprint
arXiv:2003.05425, 2020. 2

12

[29] Wenchong He, Zhe Jiang, Chengming Zhang, and
Arpan Man Sainju. Curvanet: Geometric deep learn-
ing based on directional curvature for 3d shape analy-
sis. In Proceedings of the 26th ACM SIGKDD Inter-
national Conference on Knowledge Discovery & Data
Mining, pages 2214–2224, 2020. 2

[30] Adrien Poulenard and Maks Ovsjanikov. Multi-
directional geodesic neural networks via equivariant
convolution. ACM Transactions on Graphics (TOG),
37(6):1–14, 2018. 2

[31] Chang-Qin Huang, Fan Jiang, Qiong-Hao Huang,
Xi-Zhe Wang, Zhong-Mei Han, and Wei-Yu Huang.
Dual-graph attention convolution network for 3-d
point cloud classification. IEEE Transactions on Neu-
ral Networks and Learning Systems, 2022. 2

[32] Zhangsihao Yang, Or Litany, Tolga Birdal, Srinath
Sridhar, and Leonidas Guibas. Continuous geodesic
convolutions for learning on 3d shapes. In Proceed-
ings of the IEEE/CVF Winter Conference on Applica-
tions of Computer Vision, pages 134–144, 2021. 2

[33] Ruben Wiersma, Elmar Eisemann, and Klaus Hilde-
brandt. Cnns on surfaces using rotation-equivariant
features. ACM Transactions on Graphics (ToG),
39(4):92–1, 2020. 2

[34] Dominique Beaini, Saro Passaro, Vincent Létourneau,
Will Hamilton, Gabriele Corso, and Pietro Liò. Direc-
tional graph networks. In International Conference on
Machine Learning, pages 748–758. PMLR, 2021. 2

[35] Bi’an Du, Xiang Gao, Wei Hu, and Xin Li. Self-
contrastive learning with hard negative sampling for
self-supervised point cloud learning. In Proceedings
of the 29th ACM International Conference on Multi-
media, pages 3133–3142, 2021. 2

[36] Zeyu Cui, Zekun Li, Shu Wu, Xiaoyu Zhang, Qiang
Liu, Liang Wang, and Mengmeng Ai. Dygcn: Ef-
ficient dynamic graph embedding with graph convo-
lutional network. IEEE Transactions on Neural Net-
works and Learning Systems, 2022. 2

[37] Yue Wu, Jiaming Liu, Maoguo Gong, Peiran Gong,
Xiaolong Fan, AK Qin, Qiguang Miao, and Wenping
Ma. Self-supervised intra-modal and cross-modal
contrastive learning for point cloud understanding.
IEEE Transactions on Multimedia, 2023. 2

[38] Xuebin Zheng, Bingxin Zhou, Junbin Gao, Yu Guang
Wang, Pietro Lio, Ming Li, and Guido Montúfar.
How framelets enhance graph neural networks. arXiv
preprint arXiv:2102.06986, 2021. 2

[39] Mengxi Yang, Xuebin Zheng, Jie Yin, and Jun-
bin Gao. Quasi-framelets: Another improve-
ment to graphneural networks. arXiv preprint
arXiv:2201.04728, 2022. 2

[40] Qiujie Dong, Zixiong Wang, Manyi Li, Junjie Gao,
Shuangmin Chen, Zhenyu Shu, Shiqing Xin, Changhe
Tu, and Wenping Wang. Laplacian2mesh: Laplacian-
based mesh understanding. IEEE Transactions on Vi-
sualization and Computer Graphics, 2023. 2, 7

[41] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan
Di, and Baoquan Chen. Pointcnn: Convolution on x-
transformed points. Advances in neural information
processing systems, 31, 2018. 3

[42] Zhongpai Gao, Junchi Yan, Guangtao Zhai, Juyong
Zhang, and Xiaokang Yang. Robust mesh repre-
sentation learning via efficient local structure-aware
anisotropic convolution. IEEE Transactions on Neural
Networks and Learning Systems, 2022. 3

[43] Matan Atzmon, Haggai Maron, and Yaron Lipman.
Point convolutional neural networks by extension op-
erators. arXiv preprint arXiv:1803.10091, 2018. 3

[44] Hugues Thomas, Charles R Qi, Jean-Emmanuel De-
schaud, Beatriz Marcotegui, François Goulette, and
Leonidas J Guibas. Kpconv: Flexible and deformable
convolution for point clouds. In Proceedings of the
IEEE/CVF international conference on computer vi-
sion, pages 6411–6420, 2019. 3

[45] Lukas Bernreiter, Lionel Ott, Roland Siegwart, and
Cesar Cadena. Sphnet: A spherical network for
semantic pointcloud segmentation. arXiv preprint
arXiv:2210.13992, 2022. 3

[46] Adrien Njanko and Danda B Rawat. On the identifi-
cation of isomorphic graphs for graph neural network
using multi-graph approach. In 2022 IEEE 13th An-
nual Information Technology, Electronics and Mobile
Communication Conference (IEMCON), pages 0061–
0066. IEEE, 2022. 3

[47] Jing Yi and Zhenzhong Chen. Multi-modal varia-
tional graph auto-encoder for recommendation sys-
tems. IEEE Transactions on Multimedia, 24:1067–
1079, 2021. 3

[48] Xiang Ling, Lingfei Wu, Saizhuo Wang, Tengfei Ma,
Fangli Xu, Alex X Liu, Chunming Wu, and Shouling
Ji. Multilevel graph matching networks for deep graph
similarity learning. IEEE Transactions on Neural Net-
works and Learning Systems, 2021. 3

13

[49] Mingze Sun, Shiwei Mao, Puhua Jiang, Maks Ovs-
janikov, and Ruqi Huang. Spatially and spectrally
consistent deep functional maps. In Proceedings of
the IEEE/CVF International Conference on Computer
Vision, pages 14497–14507, 2023. 3

[50] Dongliang Cao, Paul Roetzer, and Florian Bernard.
Unsupervised learning of robust spectral shape match-
ing. arXiv preprint arXiv:2304.14419, 2023. 3

[51] Dongliang Cao and Florian Bernard. Self-supervised
learning for multimodal non-rigid 3d shape matching.
In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 17735–
17744, 2023. 3, 6, 8

[52] Bharti Khemani, Shruti Patil, Ketan Kotecha, and
Sudeep Tanwar. A review of graph neural net-
works: concepts, architectures, techniques, chal-
lenges, datasets, applications, and future directions.
Journal of Big Data, 11(1):18, 2024. 3

[53] Yuyol Shin and Yoonjin Yoon. Pgcn: Progressive
graph convolutional networks for spatial–temporal
traffic forecasting. IEEE Transactions on Intelligent
Transportation Systems, 2024. 3

[54] Guan-Qiang Wang, Chi-Zhou Zhang, Ming-Song
Chen, Yong-Cheng Lin, Xian-Hua Tan, Yu-Xin Kang,
Qiu Wang, Wei-Dong Zeng, and Wei-Wei Zhao.
A high-accuracy and lightweight detector based on
a graph convolution network for strip surface de-
fect detection. Advanced Engineering Informatics,
59:102280, 2024. 3

[55] Thomas N Kipf and Max Welling. Semi-supervised
classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016. 3

[56] Petar Veličković, Guillem Cucurull, Arantxa
Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint
arXiv:1710.10903, 2017. 3

[57] Hongyang Gao, Zhengyang Wang, and Shuiwang Ji.
Large-scale learnable graph convolutional networks.
In Proceedings of the 24th ACM SIGKDD interna-
tional conference on knowledge discovery & data min-
ing, pages 1416–1424, 2018. 3

[58] Qinsong Li, Shengjun Liu, Ling Hu, and Xinru Liu.
Shape correspondence using anisotropic chebyshev
spectral cnns. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 14658–14667, 2020. 3, 6, 8, 10

[59] Olaf Ronneberger, Philipp Fischer, and Thomas Brox.
U-net: Convolutional networks for biomedical im-
age segmentation. In Medical Image Computing and
Computer-Assisted Intervention–MICCAI 2015: 18th
International Conference, Munich, Germany, October
5-9, 2015, Proceedings, Part III 18, pages 234–241.
Springer, 2015. 3

[60] Nicholas Sharp and Keenan Crane. A laplacian for
nonmanifold triangle meshes. In Computer Graph-
ics Forum, volume 39, pages 69–80. Wiley Online Li-
brary, 2020. 5

[61] Federica Bogo, Javier Romero, Matthew Loper, and
Michael J Black. Faust: Dataset and evaluation for 3d
mesh registration. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
pages 3794–3801, 2014. 7

[62] Yunhai Wang, Shmulik Asafi, Oliver Van Kaick, Hao
Zhang, Daniel Cohen-Or, and Baoquan Chen. Active
co-analysis of a set of shapes. ACM Transactions on
Graphics (TOG), 31(6):1–10, 2012. 7, 8

[63] Haggai Maron, Meirav Galun, Noam Aigerman, Miri
Trope, Nadav Dym, Ersin Yumer, Vladimir G Kim,
and Yaron Lipman. Convolutional neural networks
on surfaces via seamless toric covers. ACM Trans.
Graph., 36(4):71–1, 2017. 7, 8

[64] Dragomir Anguelov, Praveen Srinivasan, Daphne
Koller, Sebastian Thrun, Jim Rodgers, and James
Davis. Scape: shape completion and animation of
people. In ACM SIGGRAPH 2005 Papers, pages 408–
416. 2005. 7

[65] Daniel Vlasic, Ilya Baran, Wojciech Matusik, and Jo-
van Popović. Articulated mesh animation from multi-
view silhouettes. In ACM SIGGRAPH 2008 papers,
pages 1–9. 2008. 7

[66] Adobe Mixamo. Animate 3d characters for games,
film, and more, 2021. 7

[67] Daniela Giorgi, Silvia Biasotti, and Laura Paraboschi.
Shape retrieval contest 2007: Watertight models track.
SHREC competition, 8(7):7, 2007. 7

[68] Angel X Chang, Thomas Funkhouser, Leonidas
Guibas, Pat Hanrahan, Qixing Huang, Zimo Li, Sil-
vio Savarese, Manolis Savva, Shuran Song, Hao Su,
et al. Shapenet: An information-rich 3d model repos-
itory. arXiv preprint arXiv:1512.03012, 2015. 8

14

