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Abstract

Three-dimensional object detection based on purely
image data is a significant challenge in the field of com-
puter vision. The core issue lies in how to accurately per-
form epipolar geometry matching across multiple views
to obtain latant geometric priors. Existing methods
establish correspondences along epipolar line features
in voxel space through multiple layers of convolution.
However, this step is often arranged in the later stages
of the network, which limits the overall performance. To
address this challenge, we introduce a novel framework
that integrates geometric epipolar constraint, which we
refer to as ImVoxelENet. We start from the back-
projection of pixel-wise features and design an attention
mechanism that captures the relationship between for-
ward and backward features along the ray across mul-
tiple views. This approach enables the early establish-
ment of geometric correspondences and structural con-
nections between epiploar lines. On the multi-view de-
tection dataset ScanNetV2, extensive comparative and
ablation experiments demonstrate that our proposed
network achieves a 1.1% improvement in mAP, high-
lighting its effectiveness in enhancing 3D object detec-
tion performance.

Keywords: 3D Object Detection, Multi-view Geometry,
Transformer, Attention, Deep Learning

1. Introduction

3D object detection plays a crucial role in indoor scene
understanding and is fundamental for a wide range of ap-
plications [23, 53, 1], such as robotics, augmented reality,
and autonomous systems. Accurate 3D detection enables
machines to perceive and interact with their environment
more effectively, which is essential for tasks like naviga-
tion, manipulation, and scene reconstruction. For instance,
in robotics [53], precise 3D detection allows for safe and ef-
ficient movement within dynamic environments. As indoor
environments [24] are typically dense with objects and di-
verse in structure, a robust 3D detection system offers the
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Figure 1. Difference on utilization of epipolar geometry in multi-
view detection. In previous methods, as shown on the left, the rela-
tionships between distant voxels on the same epipolar line rely on
multiple convolutions in voxel space to expand the receptive field.
In contrast, as depicted in the right image, our method establishes
the earlier front-to-back relationships along the same ray, followed
by convolutions. The red and periwinkle colors respectively map
the feature along a single epipolar line. For simplification, we rep-
resent the 3D convolution block by a 2D top-down view.

potential to revolutionize how technology interfaces with
real-world scenarios. While recent advances have shown
promise in this field, especially with the integration of deep
learning and multi-view approaches, achieving reliable and
efficient 3D detection remains an area of active research.
To address these issues, there is a growing need for inno-
vative approaches that can efficiently fuse multi-view data
and enhance 3D object detection performance in indoor en-
vironments [20, 46].

In indoor scenes [11, 33, 56, 45, 16, 50], multi-view 3D



object detection has emerged as a promising approach to ac-
curately infer the 3D structure of objects by leveraging mul-
tiple 2D images captured from different viewpoints. The
general strategy [22, 57] involves projecting 2D features
from these images into a shared 3D space, allowing for the
reconstruction of object shapes, positions, and orientations.
This process typically includes stages such as feature ex-
traction, multi-view aggregation, and 3D bounding box pre-
diction. By integrating information from multiple perspec-
tives, multi-view 3D detection can potentially overcome
limitations faced by single-view methods [7, 47], such as
occlusion, scale variation, and ambiguities in depth percep-
tion. Despite its potential, multi-view 3D object detection
presents several challenges. One of the primary difficulties
is the accurate alignment and fusion of multi-view informa-
tion due to inconsistencies in appearance caused by varia-
tions in lighting [2], occlusion [25], and texture [ 14]. Indoor
environments are particularly challenging because they of-
ten feature densely cluttered scenes with complex object ar-
rangements [3, 49] and overlapping structures, making it
harder to establish reliable correspondences between dif-
ferent views. Another challenge is the inherent noise and
variability introduced by factors such as camera calibra-
tion errors and occlusions, which can affect the precision
of the back-projection process when mapping 2D image
features to a 3D space. A critical technical aspect of ad-
dressing these challenges is developing effective methods
for handling the epipolar geometry between views to en-
sure accurate matching and fusion. Techniques such as
epipolar line sampling and attention-based feature aggre-
gation have shown promise in capturing long-range depen-
dencies and establishing geometric correspondences across
multiple views [41]. Additionally, learning-based methods
that incorporate geometric priors, attention mechanisms, or
ray-based sampling approaches have been developed to en-
hance the network’s ability to infer 3D spatial relationships
from 2D data. However, designing architectures capable
of robustly capturing these multi-view relationships while
maintaining computational efficiency remains an open re-
search problem. As such, the development of more ad-
vanced methods for feature alignment, aggregation, and 3D
spatial understanding is crucial for pushing the boundaries
of multi-view 3D object detection in indoor settings.

Current multi-view 3D object detection methods exhibit
limitations in handling epipolar matching effectively [29].
Specifically, they rely on multi-layer 3D convolutions to
capture the relationships along the same ray, as shown in
(a) of Fig. 1, which often occurs at later stages of the net-
work. This delayed integration means that the network can-
not establish the crucial geometric correspondences early
on, resulting in suboptimal performance in capturing fine-
grained spatial details. As a consequence, the ability to ac-
curately interpret the front-to-back connections along each

ray is hindered, which reduces the network’s overall effi-
ciency and effectiveness in achieving precise 3D object de-
tection. Addressing this shortcoming is key to enhancing
the performance of multi-view 3D detection in complex in-
door environments.

Through our analysis, we identify that establishing a
more precise matching logic for the epipolar relationship
is the key challenge in this task. To enhance this relation-
ship, we propose the ImVoxelENet method. Traditional
approaches rely on late-stage 3D convolution modules with
larger receptive fields to achieve global feature fusion, fol-
lowed by classification and localization of features within
voxels, as shown in (a) of Fig. 1. Inspired by the transformer
architecture, we posit that leveraging an attention mecha-
nism to capture the geometric relationships along the ray
can facilitate earlier realization of spatial relationships com-
pared to existing methods, as illustrated in (b) of Fig. 1. By
establishing epipolar matching relationships through this
mechanism, the network can more effectively harness ge-
ometric cues, enabling implicit spatial awareness and en-
hancing the understanding of spatial features throughout the
network.

Specifically, we design the ImVoxelENet structure based
on the ImVoxelNet [3 1] framework. First, we introduce an
indexing mechanism for the rays within the original back-
projection operation. We map the correspondence between
each pixel in the multi-view image sequence and the voxel
space. We then record the indices of these feature rays and
select a few intersecting voxels along each ray. Next, we
proceed to construct the complete 3D voxel feature space.
All pixels from the entire image sequence are projected into
the voxel space according to the camera’s intrinsic and ex-
trinsic parameters. The intersecting points of different rays
within the voxels are fused using a feature-level numerical
averaging approach. Subsequently, we develop a epipolar-
based transformer structure. Using the previously estab-
lished indices, we input the nearest and farthest voxel points
along each ray to obtain updated voxel features. These up-
dated features are then added as residuals to the original 3D
voxel space. Finally, we apply subsequent 3D convolutional
neck layers and detection heads to produce the final 3D ob-
ject detection results.

Our contributions can be summarized in the following
three aspects:

* We design a novel network framework, ImVoxelENet
, for multi-view 3D object detection using only image
data. This approach does not require any 3D geometric
priors or supervision, yet it achieves significant perfor-
mance improvements.

e We introduce a new ray-based transformer structure
that implements a long-range attention mechanism
along the ray before applying 3D convolutions. This



enhances the network’s ability to perceive spatial
structures, improving its overall understanding of the
3D environment.

* We conduct extensive experiments, including com-
parative studies with existing methods and ablation
studies on our approach, which convincingly demon-
strate the effectiveness and superiority of the proposed
method.

2. Related Work
2.1. Point-based 3d object detection

Point clouds are inherently three-dimensional, making it
seem intuitive to use a 3D convolutional network for de-
tection. Zhang et al. [52] propose Fully Sparse TRans-
former (FSTR) for efficient LIDAR-based 3D object detec-
tion, combining state-of-the-art sparse backbones and dy-
namic queries, achieving superior performance on nuScenes
and Argoverse2 benchmarks. Chen et al. [5] introduce Fo-
calFormer3D, utilizing Hard Instance Probing (HIP) to re-
duce false negatives in 3D detection, improving recall and
outperforming benchmarks in detection and tracking tasks
across LiDAR and multi-modal datasets. Real-Aug [13]
presents a synthesis-based LiDAR augmentation method
addressing unrealistic scan patterns in existing approaches,
achieving state-of-the-art performance on nuScenes by pri-
oritizing realistic LIDAR data generation and employing a
real-synthesis training strategy.

However, these approaches demand extensive computa-
tional resources, leading to slow inference times, particu-
larly for large outdoor scenes. Recent outdoor detection
methods [44, 15] mitigate this issue by projecting the 3D
point cloud onto the bird’s-eye view (BEV) plane, signif-
icantly reducing runtime. A common technique in point
cloud processing involves subdividing the point cloud into
voxels. The projection onto the BEV plane implies that all
voxels within a vertical column are encoded into a fixed-
length feature map. This resulting pseudo-image can then
be processed by a 2D object detection network to generate
final predictions.

For indoor object detection, methods typically generate
object proposals for each point in the point cloud. However,
since many indoor objects are not convex, the geometric
center of an object may not lie within the object itself (e.g.,
the center of a table or chair may be between its legs). As a
result, proposals based solely on a single center point can be
inaccurate. To address this, indoor detection methods rely
on deep Hough voting to generate more reliable proposals
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2.2. RGB-based 3d object detection

To address the challenges of 3D object detection in out-
door environments, particularly in BEV (Bird’s Eye View)

autonomous driving scenarios, the computer vision commu-
nity has developed a wide range of strategies and methods
for effective object detection.

Far3D[ 2] propose a sparse query-based framework for
efficient long-range 3D object detection from surround-
view images, using 2D priors, perspective-aware aggrega-
tion, and range-modulated denoising, achieving state-of-
the-art results on the Argoverse 2 dataset. The paper|[ 8] in-
troduce Ray Denoising, a plug-and-play module for multi-
view 3D object detection that improves depth estimation ac-
curacy by sampling along camera rays to create hard nega-
tive examples. It achieves a 1.9% mAP gain over the state-
of-the-art on the NuScenes dataset, demonstrating strong
generalization capabilities. [58] introduces Historical Ob-
ject Prediction (HoP) for multi-view 3D detection, leverag-
ing temporal information by generating pseudo Bird’s-Eye
View (BEV) features from historical timestamps. HoP im-
proves BEV feature learning and achieves 68.5% NDS and
62.4% mAP on nuScenes, outperforming existing 3D detec-
tors. Wang et al. present StreamPETR[38], a long-sequence
modeling framework for multi-view 3D object detection.
Utilizing an object-centric temporal mechanism, it achieves
67.6% NDS and 65.3% AMOTA on nuScenes, compara-
ble to LiDAR-based methods. The lightweight version out-
performs SOLOFusion by 2.3% mAP and is 1.8x faster in
FPS. VCD[17] is a framework enhancing camera-only 3D
object detection by leveraging an apprentice-friendly multi-
modal expert model (VCD-E) and a fine-grained distilla-
tion module. VCD-A achieves state-of-the-art performance
on nuScenes with a 63.1% NDS score. SparseBEV[19]
presents a fully sparse 3D object detector that outperforms
dense counterparts by enhancing adaptability in BEV and
image space. It achieves state-of-the-art performance with
67.5 NDS on nuScenes and maintains real-time inference
at 23.5 FPS. SparseAD[51] takes up with a sparse query-
centric paradigm for end-to-end autonomous driving. It
handles detection, tracking, and online mapping without
dense BEV representation, achieving state-of-the-art full-
task performance on the nuScenes dataset and reducing the
gap with single-task methods. PolarBEVDet[48] is a multi-
view 3D object detector using polar BEV representation in-
stead of Cartesian BEV, tailored with a polar-view trans-
former, temporal fusion module, and detection head. It
achieves superior performance on the nuScenes dataset, ef-
fectively handling view symmetry and image distribution.
In VideoBEV[&], Han et al. propose a long-term recurrent
fusion strategy for camera-based BEV 3D perception. It
effectively combines rich long-term information with an ef-
ficient fusion pipeline, achieving strong results on nuScenes
with 55.4% mAP in object detection, outperforming exist-
ing methods. [43] introduces CAPE, a novel method using
Camera view Position Embedding for multi-view 3D object
detection. CAPE operates under local camera-view coor-



dinates, enhancing 3D detection. It achieves state-of-the-
art performance (61.0% NDS, 52.5% mAP) on nuScenes
among LiDAR-free methods.

For indoor scenarios, ImVoxelNet [3 1] stands out as one
of the most representative and effective methods for 3D ob-
ject detection. ImVoxelNet is a prominent method for 3D
object detection in indoor scenes. It utilizes multi-view
images to project 2D features into a 3D voxel space, en-
abling the network to effectively capture spatial relation-
ships. By constructing a 3D voxel grid from 2D image fea-
tures, ImVoxelNet can perform efficient 3D convolutions,
leading to accurate 3D object localization and detection.
This voxel-based approach [39] allows the model to rep-
resent the 3D structure of indoor environments effectively,
making it a strong performer in complex indoor detection
tasks. Total3DUnderstanding[24, 11], takes a comprehen-
sive approach to indoor scene understanding by simultane-
ously tackling 3D object detection, layout estimation, and
shape reconstruction. Zhang et al. [50] propose an image-
based local structured implicit network to enhance object
shape estimation. Additionally, they refine the 3D object
pose and scene layout through a novel implicit scene graph
neural network, which leverages implicit local object fea-
tures. Stekovic et al. [32] performs joint selection and op-
timization of proposals from a generated pool, aiming to
minimize the objective term. In the initial application in-
volving floor plan reconstruction from point clouds, this ap-
proach selects and refines room proposals represented as 2D
polygons, optimizing based on an objective function that
combines fitness as predicted by a deep network with reg-
ularization terms on room shapes. Wang et al. [35] intro-
duce a novel augmented reality (AR) solution tailored for
tele-meeting applications. This approach integrates neu-
ral networks with simultaneous localization and mapping
(SLAM) techniques to attain comprehensive scene under-
standing and user localization solely from RGB images.

3. Motivation

Inputs and goals. Our method takes as input a collection
of images I,, € RW >3 each with intrinsic and extrinsic
camera parameters and arbitrary resolution, where ¢ repre-
sents the n-th image in a set of N images. In this paper,
we focus on multi-view scenarios where T° > 1. The ob-
jective is to predict multiple 3D object bounding boxes us-
ing our proposed ImVoxelENet network framework. Each
bounding box is parameterized as (z,y, z, w, h,l, ), where
(z,y, z) represents the spatial coordinates of the center of
the 3D bounding box, and w, h, [ denote its width, height,
and length, respectively.

Advantage of Multi-view 3D Detection We conducted
an extensive review of existing image-based 3D object de-
tection methods within scene understanding [22, 31, 12, 24,

] and compared them with several prominent point cloud-
based approaches [48, 15, 44], leading to the formulation of
the research motivation for this paper.

Specifically, point cloud-based methods inherently in-
corporate explicit 3D spatial information in their input data.
This type of data allows these methods to bypass the pro-
cess of reconstructing the 3D spatial structure from images
or other sources, which also helps avoid errors that might
arise during such reconstruction. As a result, these methods
tend to yield more accurate and reliable outcomes. Some
approaches, although not utilizing point cloud data as in-
put, explicitly reconstruct the geometric relationships be-
tween multiple views. They then perform detection based
on the reconstructed point cloud. These methods often use
3D point cloud data as a supervisory constraint for the net-
work, facilitating the learning of geometric shapes.

In contrast, the method proposed in our research directly
uses 2D RGB images as input and conducts 3D object de-
tection within the 2D image space. While this design in-
creases the complexity of the network’s learning process, it
significantly reduces the constraints on the input data, as it
does not rely on point cloud data. This not only makes the
method more flexible in terms of data requirements but also
allows for easier expansion to larger-scale training datasets.
Consequently, our approach aims to strike a balance be-
tween performance and data accessibility, offering a practi-
cal solution for 3D object detection in scenarios where point
cloud data is unavailable or difficult to obtain.

In our proposal, although introducing additional chal-
lenges in terms of learning and inference, has the potential
to scale more effectively with larger datasets, providing a
promising direction for future research and development in
the field of 3D object detection.

Post-Perception by Convolution. To further improve the
learning performance of our network, we explore related
methods that utilize only RGB images. Through this in-
vestigation, image-based approaches commonly leverage
epipolar geometry as implicit geometric cues, as illustrated
in (a) of Fig. 2. Specifically, these methods typically map
each image into a predefined 3D voxel grid using the intrin-
sic and extrinsic parameters of the camera [22, 31]. How-
ever, a frequent challenge with single-view images is the
absence of depth information[42, 34]. As a result, multiple
possible intersection points along the same ray in the voxel
grid are often assigned identical features from a single pixel.

This situation leads to redundancy, as several voxels
along the same ray may correspond to the same feature,
which introduces the need for additional validation and the
elimination of erroneous points. This objective is usu-
ally achieved by analyzing the correspondences from other
viewpoints. In essence, multiple images are used to estab-
lish correspondence for specific points across different per-



View V;

a. Back-projection & 3D Volume

_________ o
il ’ Al i | i | o)
e IR T fF----- 1 @
A

I 1 ! 1 goe ! [ =

1 1 I T R ! o
1 r_l‘l-l—-'_T‘f:‘ .Ir:l ! 1 tTl : ! S
, ! [ B i ) PR b 1,’ T
______ Le—="To [ o)

)

o

Eﬁl ! F=»> >
izj": © Wy, | -3

pesH uondeiag

Epipolar Perception

c. Earlier-Epipolar-Perception & Updating Volume

Figure 2. Illustration of Our Motivation: (a)The back-projection and construction of 3D feature voxels are general operations in research-

ings [22,

], visualizing three possible matching epipolar lines and point features from three different viewpoints. (b)In existing ap-

proaches, multiple convolution layers are required to connect the features along the epipolar line within a larger receptive field. In contrast,
our method (c), establishes these connections earlier through a specific architecture.

spectives, which helps to disambiguate the 3D location of
features along the ray.

However, this matching process typically involves long-
range relationships, as the corresponding points along a ray
may be distributed at different depths. As shown in (b) in
Fig.2 and Fig. 1, these methods often apply convolution
operations after projecting the images into 3D space, but
the effectiveness of this approach is constrained by the re-
ceptive field of the convolutional kernels. Since the recep-
tive field grows incrementally with the network’s depth, the
model can only capture global correspondences at higher
layers of the network. This limitation inherently restricts the
ability to match long-range correspondences along the ray
early in the process, thus impacting the overall efficiency
and accuracy of the object detection process.

By addressing these challenges and understanding the
limitations imposed by convolutional operations in these
image-based methods, our research aims to propose im-
provements that can enhance the ability of the network to
capture and utilize these long-range correspondences more
effectively, potentially leading to more accurate 3D object
detection from RGB images.

Earlier Perception by Transformer. To improve this
process, we are supposed to develop strategies to address
the long-range correspondences along the ray in both for-
ward and backward directions [37, 54]. The logic be-
hind this approach is straightforward: we propose an ad-
ditional residual path alongside the conventional convolu-
tion logic used in neighboring spatial regions. As atten-
tion mechanisms have achieved remarkable success across
various domains, significantly boosting performance, which
is well-suited for situations requiring the establishment of

feature relationships along rays with indeterminate lengths
and voxel positions in 3D space. By incorporating atten-
tion mechanisms, we aim to enhance the learning capacity
of the network by an earlier perception as illustrated in (c)
of Fig. 2.

Specifically, we designed an attention-based module that
utilizes a cross-attention mechanism to match and learn fea-
tures associated with multiple voxel locations correspond-
ing to the same pixel across different images. Importantly,
rather than relying on the features of a single pixel’s ray
from a single image, we leverage the voxel features ob-
tained from the projection of multiple images. This choice
stems from the observation that feature correspondences de-
rived solely from the front-to-back relationships in a single
image are often meaningless; they do not reveal significant
feature variations and offer no basis for selecting the cor-
rect spatial positions. The cross-attention mechanism can
better discern feature differences and establish meaningful
correspondences between voxels across different perspec-
tives. This approach enhances the model’s ability to filter
out erroneous points and focus on relevant spatial relation-
ships, ultimately improving the accuracy and robustness of
the 3D object detection process. Furthermore, the residual
path helps maintain gradient flow during training, allowing
the model to effectively capture both local and global fea-
ture interactions without being constrained by the limited
receptive field of standard convolutions.

In summary, this novel attention-based approach is de-
signed to address the inherent challenges of long-range fea-
ture matching in 3D voxel space, providing a more power-
ful and flexible method for learning geometric relationships
from multiple images. We believe this integration of at-
tention mechanisms will significantly enhance the overall
performance of our 3D object detection system.
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the original voxel space with the refined features. Finally, we apply a detection head to perform the 3D object detection task.

4. Method

In this section, we provide a detailed introduction to the
proposed ImVoxelENet network model and methodology.
The workflow of our network is illustrated in Fig. 3. In the
following sections, we will formalize and define the task
inputs, outputs, and specific scenarios by mathematical for-
mulations in Section. 4.1. Starting from feature extraction,
we propose a back-projection method oriented towards ray
sampling, which will be elaborated on in Section 4.2. Then,
in Section. 4.3, we will explain how ray-level sampling and
indexing are performed and how attention mechanisms are
used to establish long-range spatial-ray connections in Sec-
tion. 4.4. Finally we index and update the original voxel
features, leading to the final 3D object detection with corre-
sponding losses to train our ImVoxelENet .

4.1. Back-projection

We follow [31, 22] to set our back-projection steps.

Let I; € RW>*HX3 represents the t-th image from a se-
quence of 7" images. In this literature, we focus on the situ-
ation containing more than 5 images to detect 3d objects in
each scene. In accordance with the methodology proposed
by Murez et al. [22], we initiate our process by extracting
two-dimensional (2D) features from each input image by a
pre-trained 2D backbone. This extraction yields four dis-
tinct feature maps, which are characterized by their dimen-

i W H W, H w ., H
SIVVOHS. I_IT X Y X Co, g X g X 2C0, i6 X 16 X 400, and
35 X 35 X 8cp. These feature maps are subsequently ag-

gregated through the utilization of a Feature Pyramid Net-
work (FPN), resulting in a unified tensor F; with dimen-
w % X ¢p. It is important to note that ¢y and c;

sions T X

are parameters specific to the backbone network, with their
exact values detailed in the implementation section.

The 2D feature representations F} for the ¢-th input are
then transformed into a three-dimensional (3D) voxel space,
denoted as V; € RN«xNyxN=xc1  The orientation of this
3D volume is defined such that the z-axis is oriented per-
pendicularly to the ground plane, while the z-axis points
forward, and the y-axis is orthogonal to both the z- and
z-axes. We empirically estimate the spatial boundaries
along all three axes as Zmin, Tmax, Ymins Ymaxs Zmins Zmax
followed [55, 15, 22]. With a predetermined voxel size
s, the relationship between the number of voxels and the
spatial extent can be expressed as N;S = Zmax — Tmins
NyS = Ymax — Ymin, and N5 = Zmax — Zmin-

A pinhole camera model serves as the basis for estab-
lishing the correspondence between 2D coordinates (u, v)
within the feature map F; and 3D coordinates (z,y, z)
within the voxel volume V;:

’ Lo 0 ¢

[]:HO}IOKRty,

v z
0 0 1 .

where K and R; denote the intrinsic and extrinsic matri-
ces, respectively, and II represents the perspective projec-
tion. Following the projection of 2D features into 3D space,
all voxels lying along a given camera ray inherit the same
set of features. Additionally, a binary mask M, sharing the
same dimensions as V}, is constructed to indicate whether a
voxel lies within the frustum of the camera. For an individ-



ual image I, the mask M, is defined as:

1, ifo<u<¥ando<v<i
0, otherwise.

Mt(xayaz) - {

4.2. 3D Volume Construction

Subsequently, the 2D feature map F; is projected onto
the 3D voxel grid V; for all valid voxels, according to:

F if M, =1
Vt(x,y,z) _ t(uav)? 1 t(a.jayaz)
0, otherwise.
The final step involves aggregating the binary masks
My, ..., M, to form a composite mask M, computed as:

M(x,y,z) — ZtMt(I7yaz)7 if ZtMt(I7yaz) >0
1, otherwise.
Ultimately, the 3D voxel volume V is synthesized by av-
eraging the projected features across the valid voxels in the
individual volumes V7, ..., V4, following the formula:

1
V= M;Mtvt.

4.3. Ray Sampling

The above steps in last section follow the standard pro-
cedures established by ImVoxelNet [3 1] and AtlasNet [22],
maintaining a nearly identical structural framework. Next,
we implement an independent ray sampling mechanism,
which is divided into two components, as illustrated in the
Fig. 4. The first component involves random selection based
on pixel weights for each image, while the second com-
ponent focuses on front-and-back sampling along the pro-
jected rays. Below, we will elaborate on the rationale be-
hind this design, detailing the mechanisms involved and
outlining the logical framework for the practical implemen-
tation.

In the first module, our design objective is to sample the
number of rays. Since the purpose of extracting rays and
their features is to utilize them in the subsequent Epipolar-
Transformer stage, it is necessary to impose a certain limit
on their quantity. This limitation helps conserve GPU mem-
ory, allowing the network to train more stably. To achieve
this, we first utilize the effective mask mentioned in the pre-
vious chapter to perform element-wise multiplication with
the image and its features, identifying points in a single
photo that can be mapped to the voxel space. We then ex-
tract all valid pixels from all images in the current scene.
From this pool of valid pixels, we randomly select a spec-
ified number n, to serve as the ray samples for the cur-
rent scene, thereby controlling the overall number of rays
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Figure 4. Ray sampling strategy of our proposed ImVoxelENet .
In the left figure, we illustrate our ray sampling strategy to se-
lect specific number of rays in one image. In the right figure, we
demonstrate the strategy to sample feature along a ray.

in the scene.In our approach, we select rays that intersect
with more than two points within the 3D voxel space.

In the second module, our objective is to sample voxel
features along the already selected rays. After constructing
the 3D voxels, we utilize the ray indices obtained from the
first step and choose n,. rays that have multiple intersections
with the voxels, specifically selecting those rays that have
two or more intersection points. For these selected rays,
we sample the features along the ray direction by choos-
ing the two outermost voxel features as the sampling result.
As illustrated in (b) of Fig. 4, there are typically three sce-
narios for this process. In the first scenario r;, where the
ray intersects with exactly two voxel points, we directly se-
lect these two points. In the second scenario 7, if the ray
intersects with only one voxel, we disregard this ray. In
the third scenario r;, where the ray intersects with multi-
ple voxel points, we select the first and the last voxel points
along the ray. It is important to note that the voxel fea-
tures we select have already undergone multi-view fusion,
meaning they incorporate features from all available views.
The rationale for this step is that, after fusing multi-view 2D
image features, the sampled pixels and rays can effectively
capture the corresponding pixel-level feature relationships,
thereby establishing accurate epipolar geometric correspon-
dences and achieving implicit 3D representation within the
voxel space. The reason for selecting only the first and the
last points along the ray is that features that are spatially



close to each other on the same ray might be influenced by
noise or random variations during the image capture pro-
cess, potentially representing similar spatial positions. By
focusing on points that are farther apart, we allow the origi-
nal 3D convolution in the subsequent stages of the network
to establish necessary connections. Additionally, by utiliz-
ing the transformer structure, we can establish these spatial
relationships earlier in the process.

As a summary of this section, our method effectively
builds connections between geometric features within the
3D voxel space through ray sampling and along-ray sam-
pling. This approach enhances the network’s ability to per-
ceive spatial relationships, ultimately improving its overall
performance in 3D object detection tasks.

4.4. Epipolar-Transformer

Next, for the features that have been obtained through
sampling and indexing, representing potential geometric re-
lationships, we aim to establish connections between these
features to evaluate the correspondence between the two po-
sitions along the ray. This involves determining whether
these two points share meaningful spatial or geometric re-
lationships that can contribute to a more accurate 3D repre-
sentation.

To achieve this, we employ an attention-based mecha-
nism, so-called the Epipolar-Transformer structure, which
is specifically designed to model these relationships. By
inputting the features from the two sampled positions (the
frontmost and rearmost voxel points along the ray), the net-
work learns to capture and reinforce the inherent spatial de-
pendencies between them. This process allows the network
to identify consistent patterns, structures, and correspon-
dences, thereby facilitating a more accurate representation
of the 3D space and enhancing the overall detection perfor-
mance.

As shown in (c) of Fig. 4, we employ this specific
transformer structure, which we refer to as the Epipolar-
Transformer. After the sampling process, the input to this
module consists of the voxel position’s positional embed-
ding combined with the voxel features at the two positions
along the ray. These features are obtained by projecting
the 2D image features from multiple images onto the voxel
space, where overlapping pixels from different images con-
tribute to the same voxel feature. The final feature is rep-
resented as the average of all these overlapping 2D image
features at each voxel location.

Within the Epipolar-Transformer structure, we design an
encoding block centered around a cross-attention mecha-
nism. This encoding block captures the relationships be-
tween the sampled features effectively. We stack a total of
L such blocks in sequence, allowing the transformer to iter-
atively refine the representation until the final output is ob-
tained. This design enables the network to comprehensively

establish connections between the sampled ray features, en-
hancing its capability to understand complex spatial and ge-
ometric relationships within the 3D space.

5. Experiments
5.1. Experiment Settings

Implement Details Our ImVoxelENet is implemented
with PyTorch and MMDetection[4] on Linux workstation
armed with Intel E5S-2640v4 cpu and 4 Nvidia GTX1080ti
graphics cards with 11GB memory. We train our neural
network on dataset for 12 epochs using the AdamW opti-
mizer as what have been set in [31]. The initial learning
rate is set to 10~%, and it is reduced by a decay factor of 0.1
on the 8th and 11st epoch respectively. We ensure that all
other experimental settings closely align with those estab-
lished for ImVoxelNet baseline. This approach allows for a
consistent and fair comparison, minimizing variability and
ensuring that any observed differences in performance are
attributable to the specific methods being evaluated rather
than discrepancies in experimental configurations.

Dataset We evaluate the proposed method on the indoor
real scene dataset ScanNet [6]. The dataset is a rich re-
source for 3D semantic understanding, providing dense 3D
reconstructions of indoor scenes along with corresponding
RGB-D video sequences. The validation set of ScanNet
serves as a robust benchmark for assessing the performance
of 3D detection methods, particularly in complex and clut-
tered environments. This comprehensive dataset comprises
1513 scans that cover over 700 unique indoor scenes. The
dataset is divided into a training split, which includes 1201
scans, and a validation split, consisting of 312 scans. Over-
all, ScanNet contains over 2.5 million images, each accom-
panied by corresponding depth maps and camera poses. Ad-
ditionally, the dataset provides reconstructed point clouds
with 3D semantic annotations, making it an invaluable re-
source for 3D object detection and semantic understanding.
For the evaluation, we follow the standard protocol estab-
lished in VoteNet [27]. Specifically, we estimate 3D bound-
ing boxes from the semantic point clouds. The resulting
object bounding boxes are axis-aligned, meaning that we
do not predict the rotation angle for objects in the ScanNet
dataset. This simplification aligns with the common prac-
tice in indoor 3D detection, where the primary focus is on
the spatial extent and location of objects rather than their
orientation.

Metrics We evaluate the comparative methods using the
Mean Average Precision (mAP) metric, which serves as
a comprehensive measure of detection performance. The
mAP metric assesses the average precision across various
Intersection over Union (IoU) thresholds, typically ranging



from 0.25 to 0.50 in the context of 3D object detection tasks.
This range ensures a balanced evaluation of the model’s
ability to accurately localize objects at different levels of
overlap, providing a more robust and reliable assessment
of detection performance across varying degrees of spatial
alignment.

5.2. Comparison and Analyse

In Table. 1, we present a comprehensive comparison of
our method against other approaches, providing a detailed
breakdown of the Average Precision (AP) results across
18 categories within the ScanNetV2 dataset. Additionally,
we calculate the mean Average Precision (mAP) at an IoU
threshold of 0.25. It is important to note that the methods in
the first section of Table 1 utilize 3D point clouds as input to
the network, with the final results annotated directly on the
3D point cloud data. In contrast, the second section of the
table compares methods that exclusively employ RGB im-
ages as input, offering a distinct point of comparison against
our approach.

From the results presented in the Table. 1, it can be illus-
trated that our algorithm outperforms earlier point cloud-
based methods by more than 10% in terms of mAP. How-
ever, when compared to more advanced point cloud-based
algorithms, our approach still exhibits certain limitations.
We attribute this to the lack of depth and other three-
dimensional geometric information in pure RGB images.
As a result, the network is required to implicitly learn
the 3D spatial structure and perform epipolar matching to
achieve accurate 3D object detection.

Compared to the baseline ImVoxelNet, the performance
improvement of our approach stems from the early intro-
duction of epipolar-based foreground-background feature
perception modules before the 3D neck CNN module. This
strategy enables the model to establish long-range spatial
relationships earlier in the process, allowing the network to
capture global spatial information more effectively. As a re-
sult, this early spatial awareness contributes to the enhanced
performance of our network.

We also visualize the comparison in Fig. 5 and Fig. 6.
To better illustarte the comparison, we zoom the output of
prediction and gt in Fig. 5. In Fig. 6, we randomly select
a scene with multiply images as input, and we illustrate the
outcome.

5.3. Ablation study

To validate the effectiveness of our ImVoxelENet net-
work structure and the correctness of the integration of its
various modules, we conduct comprehensive ablation ex-
periments. All experiments are performed on the Scan-
NetV2 [6] dataset, using the ImVoxelNet [3 1] architecture
as the baseline network for comparison.

Analysis on number of views. We preprocess the orig-
inal ScanNet dataset following the default settings of the
ImVoxelNet and MMDetection3D frameworks. For each
scene, we sample 300 images as multi-view inputs. We train
one scene per GPU, and during the training phase, 16 im-
ages from each scene are used to update the network param-
eters. In the testing phase, the default experimental setup in-
volves using 50 images from the validation set as the input
for each scene.

To further verify the effectiveness of our proposed
framework in establishing robust spatial geometric priors,
we conducted additional tests using different numbers of
viewpoints and compared the results with our baseline. The
specific results are presented in Table. 2. As illustrated, our
proposed algorithm consistently achieves superior perfor-
mance across various numbers of viewpoints, demonstrat-
ing its ability to effectively capture spatial relationships.
This finding substantiates the effectiveness of our approach
in designing and implementing geometric feature connec-
tions based on the front-to-back relationships of rays.

Analysis on number of rays. As described earlier, our
method samples a varying number of rays from each image
and utilizes the features at the intersection points between
these rays and the voxels as geometric cues to capture front-
to-back relationships. We then design the Ray-Transformer
structure to serve as a feature update module, establishing
these relationships before the 3D convolution stage. There-
fore, it is essential to conduct ablation experiments focused
on this module to validate the effectiveness and contribution
of our network’s design.

Due to computational constraints, we randomly select
1,000 rays from all the available rays across all images as
input to the Ray-Transformer in our network design. This
specific number is chosen as a balance between computa-
tional capabilities and performance. Training with a larger
number of rays would require reducing the number of im-
ages used per scene to maintain feasibility, which, in turn,
would decrease the amount of data the network can utilize.
Therefore, in our ablation experiments concerning the num-
ber of rays, we fix the number of images per scene and eval-
uate the impact of varying ray quantities on performance.
As previously discussed in earlier sections, we have already
analyzed the effect of different numbers of viewpoints on
the overall detection performance.

As shown in Table. 3, we present the numerical results
of our tests with varying numbers of rays. Intuitively, our
network achieves the best performance when using 1,000
rays as the sampling quantity, demonstrating that a greater
number of sampled rays leads to improved detection results.
However, we acknowledge that this outcome is currently
limited by the memory capacity of our computational re-
sources.



Table 1. Quantitative result with multi-view RGB inputs is evaluated on the val-set of ScanNet-V2. The first section of the table presents
methods based on point clouds and RGB-D data, while the remaining sections highlight multi-view RGB-only detection approaches.

Methods | cab | bed | chair | sofa | tabl | door | wind | bkshf | pic | cntr | desk | curt | fridg | showr | toil | sink | bath | ofurn | mAP@.25
Seg-Cluster [40] 11.8 | 13,5 | 189 | 146 | 13.8 | 11.1 | 11.5 11.7 00 | 137 | 122 | 124 | 11.2 18.0 195 | 189 | 164 | 12.2 13.4
Mask R-CNN [9] 157 | 154 | 164 | 162 | 149 | 125 | 11.6 | 11.8 | 195 | 13.7 | 144 | 147 | 21.6 18.5 250 | 245|245 | 169 17.1
SGPN [40] 20.7 | 31.5 | 31.6 | 40.6 | 31.9 | 16.6 | 153 13.6 00 | 174 | 141 | 222 | 00 0.0 729 | 524 | 0.0 18.6 222
3D-SIS [10] 12.8 | 63.1 | 66.0 | 46.3 | 269 | 8.0 2.8 23 0.0 69 | 333 | 25 | 104 12.2 745 | 229 | 58.7 7.1 254
3D-SIS (w/RGB) [10] | 19.8 | 69.7 | 66.2 | 71.8 | 36.1 | 30.6 | 109 | 273 0.0 | 10.0 | 469 | 14.1 | 53.8 36.0 87.6 | 43.0 | 843 | 162 40.2
VoteNet [28] 36.3 | 879 | 88.7 | 89.6 | 58.8 | 47.3 | 38.1 | 446 | 7.8 | 56.1 | 71.7 | 47.2 | 454 | 57.1 949 | 547 | 92.1 | 372 58.7
FCAF3D [30] 572 | 87.0 | 95.0 | 923 | 703 | 61.1 | 60.2 | 645 | 299 | 643 | 71.5 | 60.1 | 524 | 83.9 999 | 84.7 | 86.6 | 65.4 71.5
CAGroup3D [36] 60.4 | 93.0 | 953 | 923 | 699 | 679 | 63.6 | 67.3 | 40.7 | 77.0 | 83.9 | 69.4 | 65.7 | 73.0 | 100.0 | 79.7 | 87.0 | 66.1 75.12
ImVoxelNet 28.5 | 844 | 73.1 | 70.1 | 51.9 | 32.2 | 15.0 | 34.2 1.6 | 29.7 | 66.1 | 23.5 | 57.8 43.2 924 | 54.1 | 74.0 | 349 48.1
ours 328 | 839 | 73.2 | 72.0 | 52.5 | 33.5 | 143 | 40.5 19 (478 | 704 | 20.5 | 51.8 39.6 92.6 | 542 | 72.7 | 325 49.2
ImVoxelNet Ours GT ImVoxelNet(Zoomed)  Ours (Zoomed) GT (Zoomed)

W cabinet | dgo(; u destkl sink

bed o cuttain bathtub
= chair bookshelf refrigerator = garbagebin
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table [ counter M toilet

Figure 5. Visual comparison: We compare our ImVoxelENet with the current state-of-the-art method, ImVoxelNet [3 1], on the ScanNet [6]
dataset and visualize a randomly selected image from multiple scenes.
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Figure 6. Additional visual comparisons: We also randomly selected several images from a single scene for visual comparisons, providing

a comprehensive view of the scene.

Analysis on modules. Next, we investigate the impact of
different module parameters and structures on the network’s
performance. We start by examining how varying the num-
ber of attention layers influences the final results. The num-
ber of blocks directly affects the total parameters in our
ImVoxelENet network, which plays a critical role in updat-
ing the voxel grid features. To evaluate this, we adjusted this
hyperparameter, and the results indicate that a 6-layer atten-
tion structure provides optimal performance. As illustrated

in Table. 4, this finding demonstrates the necessity of ade-
quately capturing spatial attention across the front-to-back
geometric space, as it significantly enhances the network’s
ability to reflect the actual 3D detection capabilities.

In the final set of ablation experiments, we designed a
module replacement test. In this experiment, we replaced
the cross-attention module within the Ray-Transformer
structure with a Multi-Layer Perceptron (MLP) module.
During this replacement process, we also performed a re-



Table 2. Ablation results: We compared the detection results using
different numbers of input images. The upper section presents the
results of the baseline method, while the lower section shows the
results of our proposed method.

mAP@0.251 mAP@0.5 1

id | nums of views

1 10 389 16.4
2 20 414 19.2
3 30 44.8 20.9
4 40 47.3 223
5 50 48.1 23.1
1 10 40.2 17.2
2 20 43.0 20.5
3 30 46.6 22.9
4 40 48.9 23.9
5 50 49.2 242

Table 3. Ablation results: We compared the results of our proposed
method under different numbers of rays as input.

mAP@0.251 mAP@0.51

id | nums of rays

1 0 48.1 23.1
2 500 48.3 23.7
3 1000 49.2 242

Table 4. Ablation results: We compared the results of our proposed
method using different numbers of layers.

mAP@0.251 mAP@0.51

id | num of layers

1 2 48.3 23.6
2 4 48.9 24.1
3 6 49.2 242

Table 5. Ablation on different blocks in ray-transformer. We test
the different block by replacing the cross attention(CA) into other
architecture. MLP represent that we replace the CA block with
mlp layers.

id | block type | mAP@0.257 mAP@0.51
1 CA 49.2 242

2 MLP 48.2 22.7

shape operation on the corresponding features to ensure
compatibility with the modified network architecture. The
experimental results, as shown in Table. 5, indicate that
while the MLP module does provide some performance im-
provement, the degree of enhancement is significantly less
than that achieved by the original cross-attention mecha-
nism. This outcome further validates the effectiveness of
our proposed algorithm and network structure, demonstrat-
ing that the cross-attention approach is more adept at cap-
turing the necessary geometric relationships for optimal 3D
object detection.

6. Conclusion

In this paper, we introduce a novel deep learning-based
network framework aimed at enhancing 3D object detection
performance in indoor scenes. We conduct a thorough anal-
ysis of the limitations and challenges of previous methods,
identifying that a key issue in current multi-view object de-
tection algorithms lies in the inaccurate epipolar matching
across different views, which hinders both performance and
efficiency.

To address this problem, we start from the back-
projection stage and redesign the process of establishing
connections between voxel and pixel features. Specifi-
cally, we develop a ray-based sampling method that cap-
tures long-range geometric relationships beyond the origi-
nal voxels by considering the foreground-background rela-
tionships along each ray. Building on this foundation, we
implement an attention mechanism that leverages these re-
lationships, enabling the network to effectively link features
along the ray and thereby enhance its implicit understand-
ing of 3D spatial geometry.

As a result, the proposed network achieves signifi-
cant improvements in detection performance. We further
validate the effectiveness and efficiency of our approach
through comprehensive comparative and ablation studies,
demonstrating its superiority over existing methods.

Limitation However, we also clearly acknowledge that
our proposed network still has certain limitations. While
our approach demonstrates performance improvements in
multi-view detection tasks within indoor scenes, these envi-
ronments typically benefit from stronger structural and cat-
egorical priors. In contrast, outdoor scenes present greater
challenges due to their increased variability and diversity of
object types, which our current network is less equipped to
handle effectively. Addressing this gap will require more
targeted designs and implementations. In future work, we
aim to develop strategies that better adapt to the complexi-
ties of outdoor scenarios, enhancing the robustness and gen-
eralizability of our method.
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