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Abstract

Generating realistic building layouts for automatic
building design has been studied in both the com-
puter vision and architecture domains. Traditional ap-
proaches from the architecture domain, which are based
on optimization techniques or heuristic design guide-
lines, can synthesize desirable layouts, but usually re-
quire post-processing and involve human interaction
in the design pipeline, making them costly and time-
consuming. The advent of deep generative models has
significantly improved the fidelity and diversity of the
generated architecture layouts, reducing the workload
by designers and making the process much more effi-
cient. In this paper, we conduct a comprehensive re-
view of three major research topics of architecture lay-
out design and generation: floorplan layout generation,
scene layout synthesis, and generation of some other for-
mats of building layouts. For each topic, we present an
overview of the leading paradigms, categorized either by
research domains (architecture or machine learning) or
by user input conditions or constraints. We then intro-
duce the commonly-adopted benchmark datasets that
are used to verify the effectiveness of the methods, as
well as the corresponding evaluation metrics. Finally,
we identify the well-solved problems and limitations of
existing approaches, then propose new perspectives as
promising directions for future research in this impor-
tant research area. A project associated with this sur-
vey to maintain the resources is available at awesome-
building-layout-generation.

Keywords: Computer-aided design, building layout,
machine learning, deep generative models.

1. Introduction

Architecture design is important to ensure buildings and
living spaces can fulfill their intended functions and re-
quires careful consideration of layout, circulation, integra-
tion of amenities and furniture, as well as visual appearance.
A well-designed residential house or community can pro-
vide a comfortable, salubrious and appealing environment
for people to live in. However, the complete workflow of

designers and architects usually involve handcrafted config-
urations from specific domains and multi-round refinement
according to users’ feedback, which makes this task time
consuming and expensive.

The advancement in image generation techniques [46,
65, 6, 166, 54] has inspired designers and researchers to
rethink the workflow of architectural design. How to em-
ploy advanced machine learning techniques as assistance
for computer-aided architectual design has captured atten-
tion and efforts from both architects and machine learning
researchers. In the area of computer-aided building lay-
out design, there are two mainstream research directions.
The first one, residential floorplan layout generation, aims
to synthesize diverse and realistic residential house layouts
based on various types of user input to meet specific require-
ments. The second one, scene layout synthesis, endeavors
to generate complete scenes including furniture objects that
have desired semantic and spatial attributes such as object
category, location, size and orientation. In addition to these
two main topics, there are also other emerging topics such
as block-plan generation, volumetric building design, roof
synthesis, among others. Please refer to Fig. 1 for several
representative building layouts used in computer-aided de-
sign.

Different from natural image synthesis, the problem of
building layout generation has its distinct characteristics.
First, the layout design process typically involves user inter-
actions and constraints. A designer can specify the spatial
connectivity, dimensions of rooms or furniture, according
to customer needs, preferences, and building budget. This
requires the layout generation model to have the ability to
condition on user inputs as constraints, other than merely
perform generation in an unconditional way. Second, unlike
natural images which can be captured from arbitrary loca-
tions and viewpoints with irregular distributions, building
layouts usually encapsulate notable structural regularities.
For instance, the surrounding walls usually hold orthogo-
nality (also known as Manhattan-world assumption [23])
for most buildings, and the walls are typically axis-aligned.
For building designs, two apartments facing each other on
the same floor often have similar or symmetric residential
layouts. These regularities can serve as distribution priors
which can be leveraged to alleviate the challenges associ-
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Floorplan Layouts Scene Furniture Layouts Other Types of Building Layouts
Figure 1. The diverse building layout types used in mainstream computer-aided architectural design methods. The floorplan and scene fur-
niture layouts are the two most common types of layouts. Moreover, there exist other types including roofs, building volumes, community
or urban-level layout, etc.

ated with data sparsity, model complexity and parameter
estimation.

Last but not least, in natural image generation, a model
with pixel-level encoding and decoding is usually expected
to form an entire image, whereas in building layout genera-
tion, a set of vectors can usually appropriately represent the
house or furniture layout. A rendering process which fills
color into the generated vectorized boundary is followed for
the purpose of displaying and visualization. These afore-
mentioned key differences motivate researchers to develop
diverse but distinctive design pipelines to address the layout
generation problem.

Considering the importance of computer-aided layout
generation for building design, it is worthwhile to have a
comprehensive survey to review existing methods and pro-
vide perspectives to inspire future research directions. A
couple of related survey papers have been published. We-
ber et al. [145] gives a survey on automated floorplan gen-
eration paradigms, which are categorized into bottom-up,
top-down methods from the architecture domain and ref-
erential methods from other domains especially machine
learning (ML). However, the scope of this survey is lim-
ited on architectural floorplan generation, rather than have
a broader discussion on other types of building layout de-
signs. Ritchie et al. [109] gives a comprehensive review
of neurosymbolic models used in computer graphics. The
paper focuses on a survey of representations for diverse ge-
ometric symbols and primitives, such as 2D or 3D shapes,
materials and texture, in the architectural design area and
beyond.

These existing surveys either focus on a single topic (e.g.
[145]) or cover topics that are too broad to be categorized
as computer-aided layout generation (such as [109]). To
the best of our knowledge, there is no prior work that com-
prehensively provides a comprehensive introduction and
overview on methods for computer-aided architecture de-
sign, specifically.

In this paper, we aim to conduct a comprehensive review
of methods for computer-aided layout generation for build-
ing design. The layouts are not limited to floor plans, but
also include scene layouts, building-level and site-level lay-
outs.

On each topic of interest, we first try to generally in-
troduce the problem to handle, and formulate the task in
a mathematical way. We then present existing approaches
that could be categorized by various perspectives. We also
summarize associated benchmark datasets used by current
works as well as widely-adopted evaluation metrics to as-
sess solutions for completing the task. At the end of the pa-
per, we provide a summary of current research focuses and
trends in this area, and present several perspectives related
to addressing open challenges and initiating new research
directions.

This survey paper is organized as follows: In Sec. 2,
we give a brief introduction to the preliminaries of main-
stream deep generative models from the machine learning
and computer vision domains, which usually serve as the
fundamental frameworks used by state-of-the-art (SOTA)
data-driven layout synthesis works. In Sec. 3, we formulate
the task of residential floorplan generation, review method-
ologies as grouped by research domains or different for-
mats of user input, then summarize widely-used datasets
and evaluation metrics. In Sec. 4, we introduce the prob-
lem of scene layout synthesis and review the mainstream
paradigms for tackling the problem, benchmarks datasets
and evaluation protocols. In Sec. 5, we review existing
works for solving other problems related to building lay-
out design such as building-level layout generation and site-
level layout generation. In each section, we discuss the ad-
vantages and limitations of existing works, as well as the
remaining challenges. Finally, in Sec. 6, we present new
perspectives that hopefully can inspire future research di-
rections and outstanding works in this important area.



2. Preliminaries of Deep Generative Models

Figure 2. The typical workflow of different representative deep
generative models, including GANs, VAES, Autoregressive Mod-
els and Diffusion Models (DMs).

Recent advancements in layout generation primarily
leverage deep generative models, a class of techniques that
employ deep neural networks to model the distribution of
training samples [15]. We now present some commonly
used deep generative modeling methods, such as genera-
tive adversarial networks (GANs), variational autoencoders
(VAEs), autoregressive models, and the latest diffusion
models (DMs). The typical workflow for each of these
methods is intuitively illustrated in Fig. 2.

2.1. Generative Adversarial Networks

A typical Generative Adversarial Network (GAN) [46]
comprises two sub-networks: a discriminator network dis-
tinguishing between real and generated images, and a gen-
erator network creating images to deceive the discriminator.
Specifically, with the input being a noise vector z ∼ pZ(z),
the generator learns a differentiable mapping function G(z)
from noise space Z to data space X . The discriminator,
D(x), is trained to output a single scalar indicating the prob-
ability that x originates from real data rather than from the
generator. The discriminator D is trained to maximize the
probability of real data x and minimize the probability of
fake data generated by the generator G. And G is trained
to minimize log(1−D(G(z))), thus maximizing D(G(z))
when D is fixed. The overall training objective function can
be defined as:

min
G

max
D

Ex∼pX (x)[logD(x)]+Ez∼pZ(z)[log(1−D(G(z)))] .

(1)
The training of GANs is widely recognized as challeng-

ing due to their inherent adversarial nature [6]. As the dis-
criminator becomes more effective, the gradients conveyed
to the generator diminish; conversely, when the discrimina-
tor performs poorly, the generator does not receive informa-
tive gradients. Another issue is mode collapse, where one
network becomes trapped in a bad local minimum, resulting
in the learning of only a limited subset of the data distribu-
tion. To address these problems, many other loss functions
have been proposed. One notable example is WGAN [7],

which utilizes the Wasserstein distance to measure the dif-
ference between distributions. The training objective func-
tion of WGAN is defined as:

min
G

max
D

Ex∼pX (x)[D(x)]− Ez∼pZ(z)[D(G(z))] . (2)

Note that unlike the original GAN model Eq. (1), where
the discriminator D serves as a binary classifier, in WGAN,
D is employed to approximate the Wasserstein distance,
which is a regression task. Consequently, the sigmoid func-
tion, usually present in the last layer of D, is omitted in
WGAN. WGAN also uses weight clipping as a strategy to
enable network training with the approximated Wasserstein
distance.

2.2. Variational Autoencoders

Consider a latent-based model pθ(x|z) with a prior
pθ(z) and a posterior pθ(z|x). As the direct computation
of pθ(x) =

∫
z
pθ(x|z)pθ(z)dz is not tractable, to max-

imize the data likelihood pθ(x), one can leverage varia-
tional inference [65] to establish a tractable lower bound on
pθ(x). This can be achieved by introducing an approxima-
tion of the true intractable posterior, denoted as qϕ(z|x) =
argminqDKL(qϕ(z|x)||pθ(z|x)). In particular, variational
autoencoders employ a feed-forward inference network to
approximate qϕ(z|x), enabling scalability to large datasets
[65, 108]. From the definition of KL divergence [25], we
have:

DKL(qϕ(z|x)||pθ(z|x)) = Eqϕ(z|x)

[
log

qϕ(z|x)
pθ(z|x)

]
. (3)

Thus we can get:

log pθ(x) = DKL(qϕ(z|x)||pθ(z|x))− Eqϕ(z|x)[log qϕ(z|x)]
+ Eqϕ(z|x)[log pθ(z, x)]

≥ − Eqϕ(z|x)[log qϕ(z|x)] + Eqϕ(z|x)[log pθ(z, x)]

= − Eqϕ(z|x)[log qϕ(z|x)] + Eqϕ(z|x)[log pθ(z)]

+ Eqϕ(z|x)[log pθ(x|z)]
= −DKL(qϕ(z|x)||pθ(z)) + Eqϕ(z|x)[log pθ(x|z)]
≡ L(θ, ϕ;x) ,

(4)

where L is known as the evidence lower bound (ELBO)
[137]. Hence, maximizing the data likelihood estimation
can be attained by maximizing the ELBO L in Eq. 4. To
optimize this bound with respect to parameters θ and ϕ,
gradients need to be back-propagated through the stochas-
tic sampling process z ∼ qϕ(z|x). This can be achieved by
reparameterizing z to move the sampling operation to an in-
put layer. Specifically, when z ∼ qϕ(z|x) = N (z;µ, σ2I),
we can sample z by first sampling ϵ ∼ N (0, I), and then
computing z = µ+ σ · ϵ.



2.3. Autoregressive Models

Based on the chain rule of probability, autoregressive
models [13] generate the variables in an iterative manner.
Suppose the variable to be generated can be decomposed
as x = x1, x2, ..., xn, the probability of generating such a
sequence can be represented as:

p(x) = p(x1, x2, ..., xn) =

n∏
i=1

p(xi|x1, x2, ..., xi−1). (5)

In practice, to make the optimization process easier for the
network, the negative log-likelihood −ln p(x) is minimized
during training, which is essentially equal to maximizing
the original probability p(x):

−ln p(x) = −
n∑

i=1

ln p(xi|x1, x2, ..., xi−1). (6)

The common network architectures of autoregressive
models include masked MLPs [68], recurrent neural net-
works (RNNs) such as LSTMs [55] and GRUs [22], causal
convolutions [20] and masked self-attention-based Trans-
formers [136].

Autoregressive models are natural choices when the
modalities for generation can be represented as ordered se-
quences, such as text or audio. For other modalities such
as images, one would need to find a way to transform data
in the original modalities into sequence representations. A
common limitation of autoregressive models is that when
the sequence turns longer, the computational cost increases
drastically, leading to much slower generation for the later
time steps of the sequence. On layout generation problems,
since layouts can be typically represented as vectorized se-
quences, autoregressive models, known for their effective-
ness in this representation capacity on sequential data, are
widely adopted to model the generation process. We will
discuss the details of such works in the next sections.

2.4. Diffusion Models

Diffusion models (DMs) [54, 123, 125] are probabilistic
models designed to learn a data distribution. DMs typically
consist of a forward process and a reverse process. Given
a sample from the data distribution x0 ∼ q(x0), the DM
forward process produces a Markov chain x1, . . . , xT by
gradually adding Gaussian noise to x0 based on a variance
schedule β1, . . . , βT , that is:

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI) , (7)

where variances βt are constants. If βt are small, the pos-
terior q(xt−1|xt) can be well approximated by diagonal
Gaussian [93, 123]. Furthermore, when the T of the chain
is large enough, xT can be well approximated by standard

Gaussian distribution N (0, I). These suggest that the true
posterior q(xt−1|xt) can be estimated by pθ(xt−1|xt) de-
fined as [94]:

pθ(xt−1|xt) = N (xt−1;µθ(xt),Σθ(xt)) . (8)

The DM reverse process (also known as sampling) then
generates samples x0 ∼ pθ(x0) by initiating a Markov
chain with Gaussian noise xT ∼ N (0, I) and progressively
decreasing noise in the chain of xT−1, xT−2, . . . , x0 us-
ing the learnt pθ(xt−1|xt). To learn pθ(xt−1|xt), Gaussian
noise ϵ is added to x0 to generate samples xt ∼ q(xt|x0),
then a model ϵθ is trained to predict ϵ using the following
mean-squared error loss:

LDM = Et∼U(1,T ),x0∼q(x0),ϵ∼N (0,I)[||ϵ− ϵθ(xt, t)||2] ,
(9)

where time step t is uniformly sampled from {1, . . . , T}.
Then µθ(xt) and Σθ(xt) in Eq. (8) can be derived from
ϵθ(xt, t) to model pθ(xt−1|xt) [54, 94]. The denoising
model ϵθ is typically implemented using a time-conditioned
U-Net [113] with residual blocks [50] and self-attention lay-
ers [136]. Sinusoidal position embedding [136] is also usu-
ally used to specify the time step t to ϵθ.

3. Residential Floorplan Layout Generation

In this section, we start with the task of interior floorplan
layout generation, which is a representative layout format
among all types of building layouts. In terms of method-
ology, we categorize the approaches of the generation task
into two groups: traditional optimization-based approaches
from the architectural domain, and data-driven learning-
based approaches from the domains of machine learning
and computer-aided design. We review methods that are
recently proposed in each group. We also provide a sum-
mary of publicly-available benchmark datasets and widely-
adopted evaluation protocols for the task. The section ends
with a comparative analysis of competing methods for the
task.

3.1. Task formulation

A floorplan contains both room elements as well as con-
nection elements such as doors and windows. For simplic-
ity, and unless specified otherwise, the remainder of this
survey paper will use the term ‘room’ to refer to all these
elements, without distinguishing between ‘room’ and ‘con-
nection’. Because of the geometric attributes of real-world
room layouts, the vertices of a room R are usually repre-
sented as a polygonal vector which consists of a group of
self-looped corner coordinates:

R = {rxi
, ryi

}ni=1 (10)

where rxi
and ryi

are the x and y coordinates of the i-th
corner of the room R, and n is the total number of room



Figure 3. A generic learning-based floorplan generation pipeline with user input. We show two major user input conditions, residential
boundary and bubble diagram–commonly used in current studies. Methods using rasterized representation aim to generate a set of room
masks then perform post-processing and integrate the outputs into a vectorized floorplan. For vectorized methods, the outcomes can be
directly integrated into a floorplan. The icons of the boundary input and the final generation are referred from the diagrams used in RPLAN.

corners. Please note that n can be different for each room.
Stacking all the rooms together as a sequence, the entire
floorplan L for a residential house can be represented as:

L = {Rj}Nj=1. (11)

where N is the number of rooms. N can be different for
each floorplan sample.

Please note that typical floorplan layouts satisfy the
Manhattan-world constraint, i.e., their boundaries are axis
aligned. Some recent study [119] has overcome such lim-
itation and proposed a general representation where non-
Manhattan layouts can also be synthesized. The generation
process is typically constrained by some specified user in-
put or conditions such as house boundary F , and bubble
diagram G (which is a graph indicating the room types and
their connectivity relationships). More recently, a floorplan
restoration task is proposed [56], which aims to complete
and recover the entire floorplan L, from a partial recon-
struction outcome Lp. Thus, without loss of generality, the
generation process, which takes some of the conditions as
input, can be formulated as:

L = M(F,G,Lp), (12)

where M denotes the floorplan generative model.

3.2. Traditional Methods from Architectural Domain

Traditional floorplan generation methods from the archi-
tecture design domain are typically categorized as either
bottom-up or top-down approaches [30], each with their
own strengths and weaknesses. We introduce some repre-
sentative works for each type in this subsection.

Bottom-up methods Building designs are usually con-
strained by specified spatial requirements, such as room
dimensions and mutual adjacency. Therefore, bottom-up
paradigms tend to become a natural choice for mapping spa-
tial relations or bubble diagrams. Conceptually, a group of
predefined building components are aggregated into a larger
assembly following specific regulations and constraints.
Rosenman et al. [114] design a single floorplan generation
pipeline that maximizes cross ventilation and minimizes the
weighted sum of room distances. [8] describes how to ap-
ply topological and geometric objectives to house design
within proper boundaries. Merrell et al. [84] showcases
how to accommodate complex input room sequences into
a suitable residential layout through a Bayesian network
on multi-floor buildings. Beyond spatial constraints, Yi et
al. [159] propose designing 3D house layouts based on op-
timal environmental performance. Guo et al. [47] design
a multi-agent topology-finding system and an evolution-
ary optimization process to first generate topology-satisfied
layouts and then achieve predefined architectural criteria.
GPLAN [121] employs graph-theoretical and optimization
techniques to facilitate the generation of dimensioned floor-
plan layouts.

Top-down methods Top-down methods are inspired by
predefined building massing from urban-scale considera-
tions, with strong constraints on the envelope in real-world
architectural design. As a result, subdivision, fitting, shape
packing, and iterative agent-based methods have been pro-
posed and employed to automate design problems across
various architectural scales. Top-down methods take a
massing or boundary as input and a set of entities as targets



Table 1. Learning-based floorplan generation methods with their floorplan representation, the types of user input, utilized benchmark
datasets and publishing venue.

Methods Representation Framework User Input Benchmark Datasets Publishing Press
Wu et al. Rasterized CNNs House Boundary RPLAN SIGGRAPH Asia 2019
Graph2Plan Rasterized CNNs, GNNs House Boundary, Bubble Diagram RPLAN SIGGRAPH 2020
HouseGAN Rasterized GANs Bubble Diagram RPLAN, LIFULL ECCV 2020
HouseGAN++ Rasterized GANs Bubble Diagram RPLAN ICCV 2021
Para et al. Vectorized Transformers Unconditioned RPLAN, LIFULL ICCV 2021
iPLAN Rasterized GANs, CNNs House Boundary RPLAN, LIFULL CVPR 2022
Liu et al. Vectorized GNNs, Transformers Bubble Diagram RPLAN ECCV 2022
Upadhyayet al. Rasterized Conv-MPNs, CNNs House Boundary, Bubble Diagram RPLAN ICMEW 2022
FloorplanGAN Vectorized GANs Room types and areas RPLAN Automation in Construction 2022
HouseDiffusion Vectorized Diffusion Models Bubble Diagram RPLAN CVPR 2023
Tang et al. Rasterized GANs Bubble Diagram LIFULL CVPR 2023
Zheng et al. Vectorized GNNs Bubble Diagram RPLAN Automation in Construction 2023
Aalaei et al. Rasterized Conv-MPNs, GANs Bubble Diagram RPLAN Automation in Construction 2023
Hosseini et al. Rasterized CNNs, Transformers Partial Floorplan RPLAN and a new restoration dataset BMVC 2023
WallPlan Vectorized CNNs House Boundary RPLAN ACM Transactions on Graphics (TOG) 2022
MaskPlan Vectorized Masked Autoencoders, Transformers House Boundary and Partial Attributes RPLAN CVPR 2024
Hu et al. Vectorized Transformers, Diffusion Models House Boundary, Bubble Diagram RPLAN Arxiv 2024

for insertion. The input is then subdivided based on geo-
metric constraints to assign spaces. Compared to bottom-
up methods, which require a specified optimization process
to ensure boundary constraints, top-down methods naturally
conform to this condition by subdividing and transforming
directly from the global boundary. Medjdoub et al. [82] de-
sign a subdivision pipeline for single floorplan generation,
considering adjacency and room scale constraints. Banerjee
et al. [11] propose a computational model for creative de-
sign, highlighting practicality, originality, and support for
interactive user input. [32] presents a mid-scale floorplan
layout generation approach by optimizing with respect to
human crowd properties, including mobility, accessibility,
and coziness, using agent-based crowd simulation. For a
more extensive review of traditional methods proposed in
the architectural domain, please refer to [30].

Figure 4. HouseGAN is a representative floorplan generation ap-
proach using the rasterized representation. It first parses the input
bubble diagram, then generates the room masks separately with a
generator and discriminator architecture. The separately generated
rooms are subsequently integrated together and post-processed to
finalize the floorplan design.

Figure 5. A tree-structured diagram to illustrate the categorization
of different approaches and representative methods.

3.3. Data-Driven Learning-based Methods

In this subsection, we review learning-based approaches
for computer-aided layout generation proposed in the ma-
chine learning and computer-aided design domains. We
group the methods based on the utilized representation for-
mat and the user input conditions. A generic pipeline of
the methods with user-input is demonstrated in Fig. 3, and
a tree-structured diagram on how we categorize approaches
is shown in Fig. 5.

3.3.1 Methods Categorized by Layout Representation
Format

We focus on floorplan layouts and first categorize the deep
generative methods by how they represent floorplans dur-
ing generation. In general, there are two groups of meth-
ods, those using a rasterized representation and those using
a vectorized representation. Methods using the rasterized
representation [57, 91, 92, 134] treat the rooms or walls of
the floorplan as rasterized masks, then composite the rooms
into a floorplan image. Methods using the vectorized repre-
sentation [97, 77, 80, 119] represent the room coordinates
as quantized vectors, enabling a more straightforward and
efficient representation of a floorplan layout.



Methods using Rasterized Representation. The most
straightforward way to represent floorplans is to treat them
similarly to natural images. Each room is represented as
a rasterized mask, and the image pixels are the genera-
tion targets. RPLAN [149] and Graph2Plan [57] adopt
convolutional neural networks (CNNs) and graph neural
networks (GNNs) to generate graph-constrained rasterized
floorplans, which are then converted into floorplan vec-
tors via post-processing. Leveraging GAN-based models,
HouseGAN [91] (shown in Fig. 4) learns to generate a list
of rasterized masks for rooms using a bubble diagram as in-
put. HouseGAN++[92] extends HouseGAN by introducing
a GT-conditioning training scheme and a set of test-time op-
timization strategies. iPLAN[48] proposes a human-in-the-
loop system that enables human experts and the deep learn-
ing framework to co-evolve a sketchy layout into the final
floorplan design, generating segmented room masks in the
process. Upadhyay et al. [134] take both bubble diagrams
and input boundaries as conditions and process them by dif-
ferent feature embedding networks. The bubble diagram
embeddings and boundary features are then aggregated via
a cascaded alignment network to generate the final floor-
plan layout. Tang et al. [130] propose a graph transformer
architecture coupled with GANs to generate floorplans in
an adversarial procedure. For these methods, handcrafted
post-processing strategies are usually adopted to convert
the masks into vectors as the final representation. Aalaei
et al. [1] utilize a Conv-MPN network to parse the bub-
ble diagram and a GAN architecture to generate rasterized
floorplans. The generation proceeds iteratively until the ge-
ometrical and topological constraints are approximately sat-
isfied, after which the final output is transformed into a vec-
torized format.

Figure 6. Liu et al.represents the floorplan samples as vectors and
presents an end-to-end vectorized floorplan generation pipeline. In
the first stage, the GCN and Transformer-based network takes the
parsed bubble diagram embeddings as input and generates a draft
floorplan sequence in an auto-regressive manner. In the second
stage, the draft floorplan is passed to another Transformer network
to achieve panoptic refinement for the synthesized floorplan.

Methods using Vectorized Representation. Instead of
representing rooms as rasterized segments, methods using
the vectorized representation [97, 77, 119] encode room co-
ordinates as 1-D vectors. By utilizing 1-D vectors, this rep-
resentation allows for improved generation efficiency while

preserving the topological and geometric integrity of the
layout. Para et al. [97] use an autoregressive Transformer
model primarily for unconditioned floorplan layout gener-
ation. Liu et al. [77] propose a two-stage vectorized floor-
plan generation framework conditioned on bubble diagram
input. The first stage generates a draft floorplan in an au-
toregressive manner, and the second stage refines the draft
floorplan with panoptic refinement (see Fig. 6). Floorplan-
GAN [80] takes the room types and their relative occupancy
area as input, then extracts room type and geometric embed-
dings from these conditions. A GAN-based architecture is
then used for floorplan generation, consisting of a vector
generator, a differentiable renderer, and a CNN-based dis-
criminator. More recently, HouseDiffusion [119] employs
diffusion models [54, 124] to represent and generate floor-
plan vectors. The framework is trained through a diffusing-
then-denoising process, and during inference, the final gen-
erated floorplan is iteratively denoised from Gaussian noise,
conditioned on the input bubble diagram. A significant con-
tribution of their work is breaking the Manhattan-layout as-
sumption commonly adopted in existing works [97, 77], al-
lowing their proposed diffusion model to generate diverse
non-Manhattan floorplans. Zheng et al. [173] first parse a
dual graph structure from the given bubble diagram, then
apply a hybrid GNN along with a topology and geometry-
driven optimization approach to generate room coordinates.
MaskPlan [165] employs a Masked Autoencoder architec-
ture to generate a blend of graph-based and image-based
layout attributes, conditioning on partial input formats from
users. Compared to rasterized representation, vectorized
representation is a more desirable choice in recent stud-
ies. Representing rooms with varying sizes using 1D vec-
tors (as described using the format in Sec. 3.1) significantly
enhances generation efficiency and improves the ability to
preserve correct floorplan topology and geometry. Con-
straints can be naturally integrated within the vectorized
format. For example, the number of rooms in a gener-
ated layout can be controlled by specifying the length of
the vectors, ensuring compliance with design specifications
while maintaining structural consistency. Moreover, vector-
ized coordinates inherently support axis-aligned properties
more effectively than rasterized formats, ensuring precise
spatial alignment. Vectorized representation also enables
end-to-end optimization explicitly on the graphic vectors,
eliminating the need for post-processing steps to transform
rasterized masks into vectors.

3.3.2 Methods Categorized by User Input Conditions

Floorplan design is typically a conditional generation prob-
lem that takes various conditions from users or designers
as constraints. In this subsection, we discuss the com-
mon user input conditions and categorize them into two



mainstream formats: residential boundary constraints and
bubble-diagram-based constraints. We then introduce the
deep generative methods associated with each respective
category.

Methods Conditioned on Residential Boundary Con-
straints. Since residential houses are often not indepen-
dent and share common building primitives, and because
design budget is an important factor, the residential bound-
ary is a common input constraint for floorplan synthesis,
specified by either designers or users. In RPLAN [149],
a CNN network takes the rasterized house boundary as in-
put and predicts room types, locations, and rasterized walls.
Graph2Plan [57] takes the boundary image along with the
retrieved room graph from users as input, then encodes this
information through Graph Neural Networks (GNN [117])
and CNN networks. iPLAN [48] takes the apartment
boundary and room types as conditions, and learns to lo-
cate and segment the rooms into rasterized masks that con-
form to the boundary. WallPlan [126] takes the boundary as
input, initializes a network to learn window locations, and
then passes the window-conditioned house boundary into
parallel branches to learn wall graphs and room semantics.
Most recently, Hu et al. [58] proposes a transformer-based
diffusion model for wall junction generation and wall seg-
ment prediction, with a focus on enforcing the geometric
attributes from structured graphs.

Methods Conditioned on Bubble Diagram Constraints.
Another line of work [91, 92, 77, 119] uses another com-
mon input format known as the bubble diagram, which in-
cludes room types and graph connectivities, as input con-
straints. For room types, they are either encoded as one-hot
vectors in rasterized methods [91, 92] or quantized as to-
kens and encoded through learnable embeddings in vector-
ized representations [77]. Message passing networks [45]
or GNNs [117, 66] are employed in [91, 92, 77, 134] to
encode the element connectivity between different rooms.
Tang et al. [130] designs a graph-constrained transformer
framework to learn graph-based relations from the input
bubble diagrams. HouseDiffusion [119] encodes the graph-
constrained room relationship via performing graph-aware
attention on the embedded room coordinates using the given
bubble diagram. Zheng et al. [173] also leverages the bub-
ble diagram input to parse the dual graph representation to
guide the optimization stage. Aalaei et al. [1] uses Conv-
MPN [164] to exploit topology information from the input
bubble diagram and yields floorplans through a GAN archi-
tecture.

3.4. Benchmark datasets

RPLAN [149] RPLAN is the first large-scale densely an-
notated floorplan dataset with over 80K real residential

buildings, which is widely adopted in ML-based floorplan
generation works. It provides comprehensive vectorized
graphics of room types, boundaries, dimensions, and con-
nectivity information.

LIFULL [74] LIFULL HOME is a large-scale database
containing millions of real floorplan samples with corre-
sponding room type labels. The bubble diagram can be
retrieved if needed through a floorplan vectorization [76]
process.

Structured3D [172] Structured3D is a photo-realistic
dataset with diverse 3D structure annotations, satisfying a
range of 3D modeling problems. It provides scene infor-
mation from both holistic views such as floorplans and 3D
meshes, and primitives such as junctions, lines and planes.
Floorplans are annotated by room types and dimensions
over 3,500 scenes.

Zillow [24] The Zillow Indoor Dataset (ZInD) is a large-
scale real indoor dataset with over 70k panoramas and
unfurnished houses. Compared to other benchmarks, it
provides more diverse data following real-world distribu-
tion, containing both Manhattan and non-Manhattan lay-
outs. The floorplans are annotated with room semantics and
dimensions over 2,500 scenes.

CubiCasa5k [62] Cubicasa5K is a floorplan dataset con-
taining 5,000 sampled residential floorplans. A unique fea-
ture of this dataset is that it provides furniture object-level
vectorized layouts, enabling more fine-grained intelligent
design for both room and furniture layouts.

ProcTHOR-10k [26] PROCTHOR is a framework for
procedural generation of Embodied AI environments.
PROCTHOR produces a large and diverse set of floorplans,
followed by a large asset library of 108 object types and
1633 fully interactable instances that are used to automati-
cally populate each floorplan.

DStruct2Design [81] In the DStruct2Design paper, the
authors merge existing datasets, including RPLAN and
ProcTHOR, and apply post-processing to format them for
compatibility with language-based generative models. This
enables language-guided floorplan generation that can spec-
ify both geometric structures and the absolute dimensions of
rooms.

3.5. Evaluation metrics and experimental comparison

In this section, we introduce common evaluation metrics
for conditioned floorplan generation. Tab. 2 illustrates the



Table 2. Quantitative comparison on SOTA bubble-diagram-constrained floorplan generative methods. The numbers (5, 6, 7, 8) or ‘mixed’
refer to the room number of the floorplans used in the testing split.

Methods Diversity ↓ Compatibility ↓ Inference Memory (GB) ↓ Latency (FPS) ↑
Mixed 5 6 7 8 Mixed 5 6 7 8 8 8

HouseGAN++ 17.9/0.2 19.9/0.3 15.4/0.1 14.0/0.2 18.9/0.5 2.7/0.1 1.7/0.0 2.1/0.0 3.1/0.1 3.6/0.1 1.6 2.83
PanopticRefine 16.3/0.4 18.9/0.5 16.9/0.5 14.5/0.3 16.5/0.5 2.5/0.1 1.3/0.0 1.9/0.0 3.4/0.0 5.0/0.0 1.27 4.22
HouseDiffusion 10.5/0.2 11.2/0.2 10.3/0.2 10.4/0.2 9.5/0.1 2.0/0.0 1.5/0.0 1.2/0.0 1.7/0.0 2.5/0.0 1.9 1.34

evaluation metrics used in representative vectorized meth-
ods, including diversity and compatibility. Additionally, re-
alism measures the generation quality by user engagement
and ranking on different methods, which is another impor-
tant metric.

Realism Realism is one of the most important metrics in
generation tasks, as it evaluates user perception of the gen-
erated floorplans. A common practice is to invite a group of
participants—either professional architects or amateurs—to
provide scores or rankings for the outcomes of various gen-
eration methods, given the same set of sampled constraints.
The average score or ranking is then calculated to assess the
quality of the generation.

Diversity and Quality The Fréchet Inception Distance
(FID)[53] is a widely used metric for assessing the qual-
ity of generated images by comparing their distribution to
that of real images. It calculates the Fréchet distance be-
tween the feature representations of generated and real im-
ages, which are extracted using a pre-trained Inception net-
work, measuring differences in both the mean and covari-
ance. Lower FID scores indicate that the generated images
are closer to the real images in terms of visual fidelity. In
the context of floorplan generation, the entire test set of gen-
erated floorplans and their corresponding real counterparts
are considered for FID computation. As a result, the FID
score can also indirectly account for diversity, as low di-
versity in generated images may lead to a poor match with
the real image distribution. For direct measurement of di-
versity in generated images, metrics such as Precision and
Recall for Distributions (PRD)[116, 67] and Intra-FID (i.e.,
FID between generated images and real images within each
class) [88] can be used.

Compatibility Compatibility with input graphs is as-
sessed using Graph Edit Distance (GED) [2], a metric that
evaluates whether the generated floorplan maintains the cor-
rect connectivity relationships specified by the input graph.
GED measures the total number of connectivity errors in
the placement of interior doors within rooms, or front doors
with respect to rooms and outdoor areas, in a generated
floorplan.

Boundary Intersection-over-Union (IOU) For methods
that use residential boundaries as constraints, the Intersec-
tion over Union (IoU) score between the generated room
boundary and the ground truth is used as a quantitative met-
ric to measure the overlap. A higher IoU score indicates
better alignment of the generated house boundary with the
input boundary.

3.6. Discussions

We provide an overview of the existing methods, floor-
plan representations, frameworks used, supported user in-
puts, benchmark datasets, and the publication venues for
learning-based floorplan generation methods in Tab. 1.

For the floorplan generation methods conditioned on
bubble diagrams, we list the quantitative outcomes for cur-
rent SOTA learning-based methods in Tab. 2. One can see
that, GAN-based methods using the rasterized representa-
tion fall behind in terms of both diversity and compatibil-
ity compared with the vectorized approaches. The multi-
stage GNN and transformer framework [77] strikes a better
balance between generative fidelity and computational cost.
HouseDiffusion [119] achieves SOTA generation quality by
leveraging iterative optimization via a well-designed de-
noising process. To further demonstrate the generation fi-
delity of HouseDiffusion, we run their model using their re-
leased code1, and showcase some representative generated
sampled in Fig. 7. The model can represent the rooms as
complex polygons (illustrated by the living rooms) and most
of the rooms preserve spatial relationships consistent with
the specification in the bubble diagram. For the samples
of the top 2 rows, the model has demonstrated the ability
to handle the complex input bubble diagrams and succeed
in generating visually appealing floorplans. However, the
samples in the last 2 rows display noticeable issues, includ-
ing artifacts in spatial arrangement. The interior doors are
sometimes incorrectly arranged inside the rooms (the left
sample in the 3rd and 4th rows). The generated rooms occa-
sionally exhibit unusual wall boundaries that do not appear
in real floorplans (the right sample in the 3rd row). More-
over, the overall spatial arrangement of the rooms is not al-
ways optimal, with occasional unnecessary overlap between
rooms (the right sample in the 4th row).

As demonstrated above, there exist non-negligible is-
sues or limitations for current SOTA deep generative mod-

1HouseDiffusion - https://github.com/aminshabani/house diffusion

https://github.com/aminshabani/house_diffusion


Input Bubble Diagram Generated Floorplan Input Bubble Diagram Generated Floorplan
Figure 7. The generated floorplans from a state-of-the-art generative model HouseDiffusion [?]. We got the results from the most challeng-
ing setting on 8-room generation during inference, while the model is trained on the remaining data splits with other room numbers. The
top two rows show satisfactory outcomes whereas the last two rows exist noticeable issues.

els. First, the incorrect arrangement of elements and the
presence of generated artifacts should be addressed by en-
hancing the model’s generative capacity. Additionally, the
model should better capture correct spatial and geometric
inter-room relationships during generation. Second, the
supported user input formats are limited. In addition to
boundaries and bubble diagrams, common options for user
interaction and customization include text, room sketches,
and audio instructions. A generation framework capable of
incorporating diverse input modalities would offer greater
flexibility and be more suitable for industry-level products
and applications.

4. Scene Layout Generation

We take a step further into the interior layout genera-
tion problem after establishing the floorplan wall bound-
aries. The placement of diverse furniture categories based
on the synthesized floorplans is another crucial aspect of
indoor layout design. In this section, we introduce and for-

mulate the task of indoor scene synthesis. We further cat-
egorize data-driven methods into graph-based approaches
and sequential generation techniques. Finally, we present
the publicly available benchmark datasets used in this field,
common evaluation metrics for this task, and discussion and
quantitative comparison of scene layout generation meth-
ods. A generic methodological framework is shown in
Fig. 8.

4.1. Task formulation

Conditioned by some given user input constraints, i.e.,
the room boundary F or scene graph G, the room cate-
gory (e.g. bedroom, living room) C, and sometimes some
input text instructions T or given incomplete object layouts
Lp, scene synthesis aims to generate or complete the en-
tire scene layout sequence L = {Oi}Ni=1, ensuring correct
furniture arrangement and functionality for daily activities.
More specifically, a furniture object Oi is parameterized as
a 3D bounding box with parameterized location ti, orienta-



Table 3. Indoor scene synthesis methods categorized by the type of user input, designed framework and utilized benchmark datasets and
publishing press.

Methods Framework User Input Benchmark Datasets Publishing Press
Wang et al. CNNs Input Partial Scene SUNCG TOG 2018
PlanIT Graph-based CNNs Room Boundary SUNCG TOG 2019
GRAINS Graph-based VAE Unconditioned SUNCG TOG 2019
SceneGraphNet Message Passing Networks, GRU Unconditioned SUNCG ICCV 2019
Ritchie et al. CNNs Room Boundary SUNCG CVPR 2019
3D-SLN Graph-based VAE Scene Graph SUNCG CVPR 2020
SG-VAE Grammar VAE Unconditioned SUNCG ECCV 2020
Zhang et al. Feed-forward Network Unconditioned SUNCG TOG 2020
SceneHGN Hierarchical graph-based VAE Room Boundary 3D-FRONT TPAMI 2021
ATISS Transformers Room Boundary 3D-FRONT NeurIPS 2021
Depth-GAN GANs Unconditioned Structured3D, Matterport3D ICCV 2021
Yang et al. Bayesian Networks Scene Graphs 3D-FRONT, SUNCG ICCV 2021
Graph-to-3D Graph-based VAE Scene Graphs 3DSSG ICCV 2021
Sceneformer Transformers Room Boundary SUNCG 3DV 2021
LayoutEnhancer Transformers Layout Subsets 3D-FRONT SIGGRAPH Asia 2022
DiffuScene Diffusion Models Room Boundary 3D-FRONT Arxiv 2023
COFS Transformers Layout Subsets 3D-FRONT SIGGRAPH 2023
LEGO-Net Transformers Messy State Layout 3D FRONT CVPR 2023
CC3D Neural Radiance Fields, StyleGAN 2D Floorplan 3D FRONT, KITTI 360 ICCV 2023
LayoutGPT LLMs Texts 3D-FRONT NeurIPS 2023
CommonScenes GCNs, Diffusion Models Scene Graphs, Texts SG-FRONT (3D-FRONT) NeurIPS 2023
PhyScene Diffusion Models Room boundary 3D-FRONT, 3D-FUTURE CVPR 2024
LTS3D Diffusion Models Unconditioned 3D-FRONT Arxiv 2024
Forest2Seq Transformers Room boundary 3D-FRONT ECCV 2024

Figure 8. A generic scene synthesis framework with different types of user input. The generative model takes a room boundary or a scene
graph as input condition, then generates a group of parameterized furniture object attributes. For retrieval based methods, the learned shape
attributes are used for a shape retrieval stage to get object meshes. For end-to-end approaches, the shape meshes are parsed from a learned
shape decoder. The icons of furniture object layouts are referred from DiffuScene.

tion ri, dimensional size si, categorical type ci and a shape
latent code fi. Denote the designed generative model as M ,
the generation process can be formulated as:

L = {Oi}Ni=1 = {ti, ri, si, ci, fi}Ni=1 = M(F,G,C, T, Lp).
(13)

Then, a shape retrieval process is typically employed to ob-
tain the textured object mesh from the database that best
matches the generated attributes, integrating them into the
final scene layout.

4.2. Methods

4.2.1 Optimization-based Methods

Traditional scene modeling and synthesis works usually ad-
dress this problem as an optimization process. Merrell et
al. [85] identifies a set of design guidelines for house lay-
out design and represents the scene distribution as a density
function, then employs the Markov chain Monte Carlo sam-
pler (MCMC) to get optimized outcome while respecting
user input as layout constraints. Yeh et al. [158] formulates



the open-world layout synthesize problem as a open uni-
verse probability distribution sampling process constrained
by factor graphs and proposes a reversible jump MCMC
method to represent and and solve the optimization prob-
lem. Yu et al. [162] first extracts spatial and hierarchi-
cal relationship of the objects and obtains an plausible ini-
tialization. Then the furniture arrangements are refined
through a simulated annealing optimization stage. More-
over, Zhang et al. [168] proposes a system that iteratively
adds patterns with respect to constraints formulated by com-
mercial design rules by employing optimization procedures.
A group of works first parse structural scene graphs from
natural languages [34, 17, 16] or sketches [151] as con-
straints, then synthesize the scene layouts by querying and
matching the database with the learned spatial knowledge.
Zhang et al. [167] optimizes the layout with learned room
geometry and object distribution priors, partitioning the in-
put objects into disjoint groups, followed by layout opti-
mization using position-based dynamics (PBD) based on
the Hausdorff metric. Some works [39, 35, 61] manage to
model the distribution of human activities and incorporate
such contexts into the scene layout generation process. Al-
though having shown desirable fidelity under certain scenar-
ios, these methods are driven by the prior knowledge of the
scene distribution and regularized by hand-crafted guide-
lines. As a result, generation diversity is generally infe-
rior to that of recent deep generative model-based methods,
which will be discussed in the next subsection.

Figure 9. ATISS serves as a representative indoor scene synthesis
pipeline. The top-down view residential boundary is passed into a
layout encoder to extract boundary feature F . Different attributes
of the furniture objects c, t, r and s are encoded by a structure en-
coder to learn respective embeddings regardless of the object se-
quence order. Then a transformer encoder processes these learned
embeddings and output the refined embeddings. Then separate
attribute extractors are designed for decoding the distributions of
these attributes. During inference, the object attributes are sam-
pled from the learned distributions.

4.2.2 Learning-based Methods

We categorize the methods of data-driven scene layout
synthesis into feed-forward approaches and autoregressive-
model-based approaches. Feed-forward methods are usu-
ally designed as graph-based networks, treating the furni-
ture objects together with the floor boundary as a scene

graph or other structural representation to exploit their con-
textual relationship, or seek to learn a powerful scene rep-
resentation with a simple yet effective feed-forward gen-
erative network. Autoregressive-based methods regard the
target objects as an ordered or unordered sequence, and gen-
erate the objects in an iterative manner, taking the previous
generation as the context of the next step.

Graph-based methods The objects in a scene are not in-
dependent but interleave with each other, indicating rich
spatial relationships and context information. To this end,
graph-based methods [140, 79, 70, 102, 169, 175, 153]
are proposed to solve the scene synthesis problems, which
aim to first represent the scene layout as an abstracted
graph, then exploit scene contexts and inter-object relation-
ships via the built graph. The generated layout are natu-
rally conformed to the relationships suggested in the scene
graph. PlanIT [140] proposes to first extract a scene graph
trained by a deep generative model, then employs another
image-based reasoning model to iteratively insert objects
into the scene. GRAINS [70] formulates the scene as a hi-
erarchical graph, then employs a recursive VAE on learn-
ing object group encoding and generation decoding. 3D-
SLN et al. [79] proposes a variational generative model to
synthesize layout from scene graphs based on GCNs and
VAE. SG-VAE [102] represents the scene as a tree structure
and leverages grammar-based auto-encoder to learn the co-
occurrence and appearance attributes of the scene. Depth-
GAN [154] introduces a GAN-based framework to learn a
3D scene representation for scene synthesis through pro-
jection supervision from a set of 2.5D semantic-segmented
depth images. Zhang et al. [169] proposes a hybrid rep-
resentaion which capture information from both 3D ob-
ject and image-based representation with a feed-forward
generative model. SceneGraphNet [175] designs a deep
and dense message passing network on extracting struc-
tural and spatial relationships, to obtain a probability dis-
tribution among object categories given a query location.
Yang et al. [153] proposes a Bayesian optimization frame-
work which first generates over-complete sets of attributes
then employs a pruning stage to filter out the infeasible pre-
dictions based on consistency constraints of the attributes.
SceneHGN [41] employs a recursive VAE network to learn
the scene layout hierarchy from room to object and partial
object level. Most recently, DiffuScene [131] first builds
a complete 3D scene graph to encode the spatial context
then represents and generates the object attributes with a
diffusion network [54]. Different from prior work which
generates object attributes then apply a database retrieval
process to obtain textured object mesh which heavily re-
stricts the generation capacity, Graph-to-3D [27] proposes
a GCN-based VAE architecture to learn to directly gener-
ate object 3D meshes given the scene graph as input with



an end-to-end framework. To better handle the biased gen-
eration results due to the object category imbalance in the
training set, FairScene [150] exploits unbiased object inter-
actions with a causal reasoning framework which achieves
fair scene synthesis by calibrating the long-tailed category
distribution.

Sequential generation methods Graph-based methods
need to build scene graphs based on prior knowledge as
prerequisites. Contrastively, auto-regressive models do not
require such prior knowledge, and directly treat the objects
as an ordered or unordered sequence, generating the target
furniture in an iterative manner. Wang et al. [141] proposes
to first parse the top-down view input partial scene and get
a scene representation. Then separate CNNs are utilized to
predict object attributes and determine whether to continue
to insert objects, to complete the scene layout generation.
Ritchie et al. [110] encodes the top-down view of the scene
with a CNN and predicts the attributes of the objects in a
sequential manner. Sceneformer [144] introduces a set of
transformers [136] to learn different targets separately and
autoregressively insert objects to the scene in a pre-defined
order. ATISS [100] (shown in Fig. 9) takes the house bound-
ary layout as input constraint, and employs a transformer ar-
chitecture as attribute encoder as well as separate attribute
decoders to learn order-invariant sequential generation over
furniture objects. In addition to auto-regressive generation,
a set of work [69, 98] regard the objects as a sequence but
synthesize all of the objects at a time via feed-forward net-
works. COFS [98] devises an order-invariant autoregressive
transformer to perform cross-attention over the entire con-
ditioning input, such that the generation can be conditioned
with fine-grained input. LayoutEnhancer [69] accounts for
ergonomic qualities as expert knowledge into the generation
process to tackle the challenges induced by imperfect train-
ing data. RoomDesigner [171] proposes to leverage anchor
latents to encode the piece-wise geometric representation of
furniture, then conduct scene generation sequentially with a
transformer network. CommonScenes [163] (Fig. 11) con-
structs a new dataset dubbed SG-FRONT on top of 3D-
FRONT providing conditional scene graphs, and proposes
to encapsure inter-object relationship and local shape cues
with a diffusion model, and employs a diffusion model to
generate the 3D scene layout with diverse shapes in an
end-to-end manner without any database retrieval stage or
category-level decoders. Forest2Seq [128] derives ordering
information from the layout sets and designs a transformer
to generate realistic 3D scenes in an autoregressive manner.
GLTScene [71] incorporates the interior design principles
with learning techniques and adopts a global-to-local strat-
egy for this task, by designing two transformer networks to
learn the global and local priors, respectively.

Other methods Except for the above two mainstream
paradigms, some methods build their framework upon some
recent innovations such as neural radiance field [86] to
achieve 3D-aware generation, or leverage the generation
ability of LLMs [95] as a prior. CC3D [9] takes the 2D
furnitured floorplan as the input constraint and aims to gen-
erate 3D scene layout. It proposes to leverage a neural radi-
ance field to lift the 2D features into 3D, and use the Style-
GAN [63] architecture as the generator and discriminator
to synthesize the layouts. LEGO-Net [146], inspired by
the workflow of diffusion models, aims to refine a messy
scene layout into a cleaner, more organized one. It devises
a denoising transformer architecture to gradually transform
the original messy state to a clean state. Most recently,
leveraging the rise of large language models (LLMs), Lay-
outGPT [33] proposes a LLM-based training-free layout
generation framework. It first prepares well-constructed
text prompts such as Cascading Style Sheets (CSS) for-
mats and specified task instructions, then generates desir-
able image or scene layouts through LLMs like GPTs [95],
and has shown comparable or more superior generative fi-
delity compared with the existing SOTAs trained on a par-
ticular dataset. Other than these, Physcene [155] proposes a
diffusion-based framework to generate indoor scene layouts
imposing constraints such as object collision, room layout,
and object reachability, integrating embodied AI environ-
ment into the scene synthesis task. LT3SD [83] introduces
a latent tree representation coupling the diffusion models to
generate complex 3D scene geometry. FuncScene [87] pro-
poses a VAE network which leverages function groups as
an intermediate representation to connect the local scenes
and the global structure, aiming to achieve a coarse-to-fine
indoor scene synthesis.

Figure 10. 3D-FRONT provides a large-scale interior house layout
database with versatile house and room layouts, as well as intricate
furniture CAD models.

4.3. Benchmark Datasets

3D-FRONT 3D-FRONT [37] (as shown in Fig. 10) is a
large-scale indoor scene and object layout dataset contain-



Table 4. Quantitative comparison on retrieval-based deep scene layout generative methods. The numerical results are referred from the
latest method DiffuScene.

Methods Bedroom Dining Room Living Room
FID (↓) KID (↓) SCA (↑) CKL (↓) FID (↓) KID (↓) SCA (↑) CKL (↓) FID (↓) KID (↓) SCA (↑) CKL (↓)

DepthGAN 40.15 18.54 96.04 5.04 81.13 50.63 98.59 9.72 88.10 63.81 97.85 7.95
Sync2Gen 31.07 11.21 82.97 2.24 46.05 8.74 88.02 4.96 48.45 12.31 84.57 7.52
Sync2Gen∗ 33.59 13.78 87.11 2.67 48.79 12.01 91.43 5.03 47.14 11.42 86.71 1.60
ATISS 18.60 1.72 61.71 0.78 38.66 5.62 71.34 0.64 40.83 5.18 72.66 0.69
DiffuScene 17.21 0.70 52.15 0.35 32.60 0.72 55.50 0.22 36.18 0.88 57.81 0.21

Table 5. Quantitative comparison on scene synthesis methods which take scene graphs as input. The numerical results are referred from a
latest method CommonScenes.

Methods Shape Representation Bedroom Living Room Dining Room All
FID (↓) KID (↓) FID (↓) KID (↓) FID (↓) KID (↓) FID (↓) KID (↓)

3D-SLN Retrieval 57.90 3.85 77.82 3.65 69.13 6.23 44.77 3.32
Progressive Retrieval 58.01 7.36 79.84 4.24 71.35 6.21 46.36 4.57
Graph-to-Box Retrieval 54.61 2.93 78.53 3.32 67.80 6.30 43.51 3.07
Graph-to-3D DeepSDF 63.72 17.02 82.96 11.07 72.51 12.74 50.29 7.96
Layout+txt2shape SDFusion 68.08 18.64 85.38 10.04 64.02 5.08 50.58 8.33
CommonScenes rel2shape 57.68 6.59 80.99 6.39 65.71 5.47 45.70 3.84

ing diverse room categories and high-quality textured 3D
models with different styles. The layout designs are sourced
from professional creations while the furniture texture and
styles are managed by a recommend system to ensure con-
sistent and expert designs. This dataset is widely adopted
as a benchmark for indoor scene or texture synthesis appli-
cations.

3D-FUTURE 3D-FUTURE [38] complements 3D-
FRONT by providing high-quality 3D shapes, informative
textures and attributes. Additionally, 3D-FRONT fill the
blank of the large-scale and accurate 2D-3D alignment
between realistic image and 3D objects by rendering over
20K photo-realistic images across diverse scenes. This
enables its promising applications on serving as bench-
marks onto tasks such as high-quality 3D shape generation,
reconstruction and retrieval.

3DSSG 3DSSG [139] is a large scale 3D dataset built on
top of 3RScan [138] with semantic scene graph annotations,
containing spatial relations between objects, classes and
other attributes. In total it contains 363k graph-image pairs,
which are rendered from 3D scene graphs. This dataset en-
ables large-scale training on scene layout synthesis condi-
tioned on scene graphs.

SG-FRONT SG-FRONT [163] is a dataset created
in CommonScenes [163] and is developed from 3D-
FRONT [37] dataset. It aims to encourage future explo-
ration on conditional scene synthesis on scene graphs. To
this end, it offers a set of well-annotated scene graph la-
bels grouped into three categories: spatial/proximity, sup-

port, and style. SG-FRONT covers 15 relationship types
densely annotating scenes. More details can be found in the
original paper.

Figure 11. CommonScenes is one of the SOTA indoor scene lay-
out generation pipelines. It leverages the CLIP-enhanced GCN
feature encoder to process the scene graph constraints, a GCN de-
coder to synthesize layouts, and a diffusion model to decode the
object mesh. In this method, the furniture meshes are generated
with an end-to-end framework without any database or shape code
retrieval stage.

4.4. Evaluation Metrics

As shown in Tab. 4 and Tab. 5, the commonly-used eval-
uation metrics in mainstream approaches on leading bench-
marks include FID, KID, SCA and CKL, assessing fidelity,
diversity, and adherence to graph constraints.

Fidelity and diversity. Generation fidelity and diversity
are common standards for image synthesis tasks. The gen-
erated 3D scene layout is first projected as images from
multiple bird-eye views, then the generation quality is mea-
sured by the Fréchet Inception Distance (FID) [53] and Ker-
nel Inception Distance [14] between the synthesized lay-



out and the real ones. Besides, the KL divergence [3] be-
tween the object category distributions of the generated and
groundtruth furniture serves as another quantitative metric.
Moreover, scene classification accuracy (SCA) is used to
measure whether the synthesized layouts is good enough to
be indistinguishable from real scenes.

Graph constraint metrics. For the methods which take
scene graphs as input constraints, object pair-wise accuracy
on the assigned constraints are evaluated to achieve con-
sistency with the input constraints. The constraints con-
tain three categories: spatial/proximity (e.g., left/right, big-
ger/smaller), support (e.g., close by, above), and semantic
or style level relationships (e.g., same material as, same cat-
egory as), etc. More details can be referred to from [163].

4.5. Discussions

We list the learning-based scene layout synthesis meth-
ods, their frameworks, enabled user inputs, benchmark
datasets, and publishing venues in Tab. 3. It can be observed
that autoregressive transformers, which represent the scene
as a sequence, and graph-based generators, which repre-
sent the scene as a graph, are two mainstream frameworks
for learning object attributes. More recently, researchers
have also explored the potential of large language mod-
els (LLMs) and diffusion models to facilitate scene layout
generation. A key limitation of current methods is scal-
ability. Most focus solely on single-room layout genera-
tion, rather than house-level generation involving multiple
rooms. The relationships between rooms may provide ad-
ditional spatial and semantic cues for object arrangement.
Another limitation is that most methods involve a separate
retrieval stage to obtain object meshes from the database
after learning object attributes. While this ensures plausi-
ble object shapes, it significantly limits generation diversity.
Although some works [27, 163] propose generating object
layouts and meshes in an end-to-end manner, the resulting
meshes still exhibit noticeable artifacts or unavoidable colli-
sions between objects. Optimizing layout attributes and de-
coding high-fidelity shapes more effectively in a fully end-
to-end pipeline remains an open area for further exploration.

5. Other Building Layout Design and Synthe-
sis

Sections 3 and 4 primarily focus on the generation and
synthesis processes of apartment-level (or flat-level) lay-
outs. In contrast, this section provides an overview of lay-
out generation in a broader architectural context, extending
from individual buildings to site-level considerations such
as blocks or parcels in communities. Due to the distinct
objectives associated with these tasks, there is a lack of
shared or unified benchmark datasets and evaluation pro-
tocols. Consequently, this section does not delve into the

specifics of datasets and evaluations. Interested readers are
encouraged to consult relevant works for more detailed in-
formation.

5.1. Building-level layout generation

We begin by expanding the task scope from individ-
ual apartments to entire buildings. This expansion encom-
passes the comprehensive planning of multiple apartments,
staircases, elevators, and other public amenities across en-
tire floors. Simultaneously, we must address the holis-
tic arrangement of elements within multi-story buildings.
This extended scope introduces unique challenges, such as
generating roofs [107, 103], shear walls [73, 78, 170], fa-
cades [42], and volumetric representation [18, 4].

To address this complex domain, we synthesize rele-
vant literature, categorizing it into non-learning-based and
learning-based methodologies. This approach allows us to
gather information and methods from diverse sources, lead-
ing to a deeper understanding of the complexities of design-
ing entire building structures.

Figure 12. FrankenGAN is a framework for generating building
layouts using GANs. It involves three steps: generating texture
and label maps for facades and roofs, enhancing texture resolution
with dedicated chains, and creating 3D details for roofs, windows,
and facades based on the generated maps.

5.1.1 Non-learning-based methods

Müller et al. [89] introduced CGA shape grammar to create
visually appealing and detailed building shells with consis-
tent mass models in computer-generated architecture. Fol-
lowing that, Schwarz and Müller [118] introduced CGA++
to procedurally model architecture, providing an integrated
and versatile solution that builds upon the CGA shape.
Bao et al. [12] first located and represented good layouts
as portal graph, then used this portal graph and local shape
grammars to explore more building layouts. Rodrigues et
al. [111] introduced a way to handle different levels us-
ing a mix of evolutionary techniques, where stairs and el-
evators adapt and interact with other spaces in the search
process. Bahrehmand et al. [10] shared a tool that helps
designers create personalized layouts based on guidelines
and user preferences, with key features including address-
ing subjective design aspects and using a genetic algorithm



Figure 13. GlobalMapper is a representative method for site-level layout generation. It uses a VAE framework with a CNN encoder to
transform arbitrary block shapes into a binary mask in latent space, allowing for the conditional generation of large urban layouts.

for better quality layouts. Wu et al. [148] proposed a struc-
tured approach to create indoor spaces using a mixed inte-
ger quadratic programming (MIQP) method, applicable to
various building sizes like homes, offices, malls, and su-
permarkets. Gan [40] introduced a graph data model us-
ing Building Information Modeling (BIM) to represent key
features in modular buildings. Isaac et al. [59] proposed
a graph-based approach for offsite preassembly with clus-
tering algorithm on BIM tool data, and providing a com-
puter program for automated application in large and com-
plex projects. Sharafi et al. [120] proposed a Unified Ma-
trix Method for efficiently finding the optimal spatial de-
sign of multi-story modular buildings in early design stages.
Fan et al. [30] design a two-stage genetic algorithm (GA) to
automatically generate modular high-rise residential build-
ings (MHRBs). Gerber et al. [42] investigated using multi-
agent systems (MAS) in architectural design to enhance and
partially automate the design process.

5.1.2 Learning-based methods

Advanced techniques in deep generative models have made
scalable, building-level layout generation possible. Mer-
rell et al. [84] presented a Bayesian network method for
automatically creating detailed multi-story building layouts
based on high-level requirements. Ghannad and Lee [43]
suggested a method to automatically create and set up a
modular building design using GAN and building infor-
mation modeling (BIM) technologies. They later [44] in-
troduced a framework using Coupled GAN (CoGAN) for
automating the generation of modular housing designs.
Wang et al. [142] made a dataset of building layouts and
graphs, propose a mix of methods for diverse graph match-
ing, and create a neural network with U-Net and spatial at-
tention for effective building region segmentation. Franken-
GAN [64] addressed the challenge of realistically detailing
mass models by employing latent style vectors through syn-
chronized GANs guided by exemplar style images, with
the pipeline shown in Fig. 12. Du et al. [28] proposed
a 3D building fabrication method using a multi-properties
GAN chain for complex architectural structures. Building-
GAN [18] utilized a volumetric representation for build-
ings and proposes a graph-conditioned GAN framework to
generate building layouts. Alam et al. [4] treated the vol-

umetric building design as a sequential problem and cre-
ates a sequential volumetric design dataset. Latent repre-
sentation learning is utilized to tackle the auto-completion
and reconstruction of design sequences. Vitruvio [132]
introduced a conditional generation framework based on
sketch and context for single-view building mesh recon-
struction. Fu et al. [36] proposed a GAN-based approach
(FrameGAN) for automating the layout design of compo-
nents in steel frame-brace structures. Liao et al. [73] sug-
gested using a GAN-based method to quickly and intelli-
gently design shear walls by learning from existing design
documents. Zhao et al. [170] introduced an approach to de-
sign layouts for reinforced concrete structures using deep
neural networks, incorporating building space and element
attributes as input, and generating new designs based on
learned principles. Lu et al. [78] introduced StructGAN-
PHY, a physics-boosted GAN for intelligent generative de-
sign in structural engineering, leveraging a surrogate model
for physical performance assessment. Roof-GAN [103]
produced a structured roof model as a graph, assessing
the primitive geometry, inter-primitive, primitive geometry
on building roofs, and generates structural roof primitives
based on GANs. Ren et al. [107] proposed a roof graph
representation which encodes roof topology and employs
auto-regressive models to synthesis roof structures.

5.2. Site-level layout generation

We then expand the scope of layout generation tasks
from single-building configurations to include multiple
buildings. Following [142], we refer to this specific chal-
lenge as site-level layout generation, involving the place-
ment of buildings within a designated block or parcel of
land. While existing works predominantly target urban
planning, limited research specifically addresses rural build-
ing layouts [29]. We organize the pertinent literature into
two categories: non-learning-based methods and learning-
based methods. In terms of benchmark, Reco [21] has cre-
ated and maintained the first large-scale open-source dataset
for residential community layout planning, covering 37,646
residential communities and 598,728 buildings across 60
cities.



5.2.1 Non-learning-based methods

Parish and Müller et al. [99] proposed a city modeling sys-
tem using L-systems, which processes input maps to gener-
ate roads, divide land into lots, and create building geome-
tries. Aliaga et al. [5] presented a system that uses real-
world urban data and synthesis algorithms to interactively
generate realistic urban layouts with both structural and vi-
sual components. Vanegas et al. [135] introduced a tech-
nique for user-guided creation of city parcels in urban mod-
eling, involving the subdivision of city block interiors based
on specified attributes and style parameters. Lipp et al. [75]
proposed a method for interactive city layout modeling,
combining procedural and manual modeling. Emilien et
al. [29] proposed a method for creating village layouts on
diverse terrains, utilizing a hybrid settlement/road genera-
tion process with dynamic interest maps and an anisotropic
conquest process. Peng et al. [101] presented a solution
for covering a domain with deformable templates, ensur-
ing no overlap by considering constraints and permissible
deformations. Yang et al. [156] offered a framework for
generating quality street networks and parcel layouts using
hierarchical domain splitting for urban planning and vir-
tual environments. Wang et al. [143] employed a digital
description framework and generative grammar to exam-
ine the morphological complexity of block forms. Nagy et
al. [90] demonstrated how Generative Design optimizes a
residential neighborhood project, showcasing its potential
in solving complex urban design challenges with conflict-
ing stakeholder demands. Sung and Jeong et al. [129] pre-
sented an efficient approach to organizing multiple build-
ings on a site using the C# script component in Rhino3d
and Grasshopper, offering rapid, real-time results without
complex computations.

5.2.2 Learning-based methods

Feng et al. [32] introduced a random forest-based method
for designing mid-scale layouts in areas like shopping
malls, optimizing paths and sites based on crowd flow met-
rics: mobility, accessibility, and coziness. Liang et al. [72]
employed Generative Latent Optimization (GLO) and ad-
versarial training to develop a model for effortless gen-
eration and placement of buildings on a designated map.
Shen et al. [122] employed GANs to automatically gen-
erate urban design plans, predicting building details based
on city conditions. Fedorova [31] explored using GANs
to design urban blocks, employing a flexible model that
learns from the existing city context rather than explic-
itly defining parameters. BlockPlanner [152] introduced a
vectorized block-plan representation and employs a graph-
constrained VAE to decode different geometric attributes.
Ying et al. [161, 160] proposed an intelligent method us-
ing genetic algorithms and CNNs to optimize high-density

residential building layouts considering local wind condi-
tions. Quan [105] presented Urban-GAN, a user-friendly
urban design system enabling individuals with minimal de-
sign expertise to select, generate, and make design deci-
sions based on urban form cases. Jiang et al. [60] presented
ESGAN, a GAN-based model for automated building lay-
out generation, incorporating a conditional vector to meet
project requirements in different design scenarios. Sun et
al. [127] explored machine learning preferences in residen-
tial site plan layouts (RSPL) using the Pix2pix model, aim-
ing to enhance applications in residential and urban plan-
ning development. GlobalMapper [51] represented city
block layouts as graphs, encoding building layouts into a
shape-independent canonical representation. As shown in
Fig. 13, it also enables conditional generation on realistic
urban layouts for arbitrary road networks.

Recently, He and Aliaga [52] have proposed a graph-
based masked autoencoder (GMAE) that uses a canoni-
cal graph representation to generate large-scale, context-
sensitive urban layouts with high realism and semantic
consistency. Similarly, Unlu et al. [133] have introduced
GroundUp, a human-centered AI tool that enables architects
to easily convert 2D sketches into 3D city massing mod-
els by integrating a sketch-to-depth prediction network with
a diffusion model. ControlCity [174] introduced a multi-
modal diffusion model that combines text, metadata, road
networks, and imagery to accurately generate urban build-
ing footprint data from Volunteer Geographic Information
(VGI). UrbanEvolver [104] introduced a deep generative
model for function-aware urban layout regeneration. The
model generates roads and building layouts for target re-
gions, considering land use types and surrounding contexts.
It employs function-layout adaptive blocks and a compre-
hensive loss system.

6. Summary and Discussion

6.1. Summary on existing methods

In the literature on mainstream methodologies in
computer-aided architectural design, it has been recognized
that learning-based generation significantly transforms and
enhances the traditional paradigm, which has been charac-
terized by manually intensive, multi-round workflows for
designers. Training on large-scale, high-quality benchmark
datasets enables generation networks to learn desired lay-
out distributions, even with adaptive user input or manually
imposed constraints. The evolution of backbone neural net-
works from CNNs to Transformers, along with deep gener-
ative models such as GANs, VAEs, and Diffusion Models,
has further improved generation performance across archi-
tectural design tasks. Another important shift in method
design is the adoption of vectorized representations for lay-
outs due to their flexibility and accuracy in depicting layout



geometry. These learning-based generative paradigms of-
fer greater flexibility, diversity, and completeness compared
to traditional methods. However, significant limitations re-
main in these end-to-end synthesis pipelines, as discussed
in the previous sections.

Figure 14. LayoutGPT achieves training-free layout-to-image or
indoor scene layout generation using LLMs. With intricate text
prompts and instructions (i.e., converting the text inputs to CSS
formats), it has demonstrated comparable or better generation fi-
delity with the SOTA methods trained on a specific dataset.

6.2. Discussion on open problems and new perspectives

Future research could focus on multi-modal input sup-
port to accommodate diverse customer requirements. In
floorplan generation, existing studies [149, 91] have ex-
plored user inputs such as house boundaries and bubble di-
agrams. In scene synthesis, current research emphasizes
graph-conditioned [27, 163, 9], text-conditioned genera-
tion [131], room boundary constraints [100], and partial
layout completion [100, 98, 131]. Inspired by recent ad-
vancements in multi-modal, image-level foundational gen-
erative models [112, 115], a promising direction is to de-
velop a unified foundational floorplan generative model that
accommodates various input formats (e.g., text or audio in-
structions, bubble diagrams, layout sketches), enabling the
model to learn more powerful representations through the
integration of multi-modal inputs. Moreover, reinforcement
learning (RL) techniques can be applied to incorporate em-
bodied AI into the layout generation process, allowing for
better capture of user interactions and specifications.

Another potential direction is to leverage the capabili-
ties of large language models (LLMs) to assist the archi-
tectural design workflow. Recent advancements in combin-
ing LLMs with visual understanding [96, 157, 147] have
inspired the community to explore how to fully utilize the
potential of LLMs, such as ChatGPT, in supporting diverse
downstream computer vision tasks. LayoutGPT [33] (as
shown in Fig. 14) has demonstrated the remarkable effi-
cacy of using LLMs (e.g., GPT-3.5 or GPT-4) for layout-to-
image generation or indoor scene layouts. However, many
state-of-the-art LLMs are proprietary and accessible only
via paid APIs, limiting their broader adoption for handling
large-scale data inputs. Furthermore, although LLMs are

trained on extensive internet data to achieve superior zero-
shot generative capabilities, they may not directly address
the specialized needs of particular user inputs or tasks. As
such, their output should be considered a preliminary re-
sult requiring further refinement. Furthermore, the gener-
ated layouts are generally limited to regular shapes, such as
bounding boxes, which do not always align with the com-
plex, often polygonal or non-Manhattan room layouts found
in real-world floor plans. Further exploration is needed to
adapt the broad applicability of LLMs to more specialized
downstream tasks, such as floorplan generation and scene
layout synthesis, using data from diverse environments with
varied styles.

A shared limitation among most existing layout genera-
tive models is that they are trained and tested on a single
dataset, severely limiting the generalizability of a model
across different environments, object categories, scales,
and styles. One potential solution is to construct large-
scale benchmark datasets with more diverse data samples
to enhance the model’s representation capacity and achieve
desirable fidelity across varied data distributions. An-
other strategy to address dataset limitations is to employ
self-supervised pre-training approaches, such as contrastive
learning [19, 49] or large foundation models [106, 95, 112],
to encapsulate a general embedded representation, which
can then be fine-tuned for specific downstream tasks or
datasets.

7. Conclusions

In this review paper, we first provide an overview of
the current progress in computer-aided architectural design,
categorizing the relevant topics into three major areas. For
each category, we thoroughly examine methods from both
the traditional architectural domain and learning-based gen-
erative approaches. We also discuss the advantages and
current bottlenecks related to data, settings, and methods.
Furthermore, we identify existing open problems and pro-
pose new perspectives for the research community, with a
focus on leveraging powerful techniques such as founda-
tional generative models and LLMs. We hope this survey
encourages the community to reassess the needs and limi-
tations of real-world applications, inspiring more valuable
and insightful research in the field.
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Automation in construction, 76:45–58, 2017. 15, 16

[43] P. Ghannad and Y.-C. Lee. Developing an advanced auto-
mated modular housing design system using deep learning
and building information modeling (bim). In Computing in
Civil Engineering, pages 587–595. 2021. 16

[44] P. Ghannad and Y.-C. Lee. Automated modular housing
design using a module configuration algorithm and a cou-
pled generative adversarial network (cogan). Automation in
construction, 139:104234, 2022. 16

[45] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and
G. E. Dahl. Neural message passing for quantum chem-
istry. In International conference on machine learning,
pages 1263–1272, 2017. 8

[46] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio.
Generative adversarial nets. Advances in neural informa-
tion processing systems, 27, 2014. 1, 3

[47] Z. Guo and B. Li. Evolutionary approach for spatial ar-
chitecture layout design enhanced by an agent-based topol-
ogy finding system. Frontiers of Architectural Research,
6(1):53–62, 2017. 5

[48] F. He, Y. Huang, and H. Wang. iplan: interactive and pro-
cedural layout planning. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition,
pages 7793–7802, 2022. 7, 8

[49] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick. Momentum
contrast for unsupervised visual representation learning. In
Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 9729–9738, 2020. 18

[50] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
770–778, 2016. 4

[51] L. He and D. Aliaga. Globalmapper: Arbitrary-shaped ur-
ban layout generation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 454–
464, 2023. 17

[52] L. He and D. Aliaga. Coho: Context-sensitive city-scale
hierarchical urban layout generation. In Proceedings of the
European Conference on Computer Vision (ECCV), 2024.
17

[53] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and
S. Hochreiter. Gans trained by a two time-scale update rule
converge to a local nash equilibrium. Advances in neural
information processing systems, 30, 2017. 9, 14

[54] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion proba-
bilistic models. Advances in neural information processing
systems, 33:6840–6851, 2020. 1, 4, 7, 12

[55] S. Hochreiter and J. Schmidhuber. Long short-term mem-
ory. Neural Computation, 9(8):1735–1780, 1997. 4

[56] S. Hosseini and Y. Furukawa. Floorplan restoration by
structure hallucinating transformer cascades. 5

[57] R. Hu, Z. Huang, Y. Tang, O. Van Kaick, H. Zhang, and
H. Huang. Graph2plan: Learning floorplan generation from
layout graphs. ACM Transactions on Graphics (TOG),
39(4):118–1, 2020. 6, 7, 8

[58] S. Hu, W. Wu, Y. Wang, B. Xu, and L. Zheng. Advanc-
ing architectural floorplan design with geometry-enhanced
graph diffusion. arXiv preprint arXiv:2408.16258, 2024. 8

[59] S. Isaac, T. Bock, and Y. Stoliar. A methodology for the
optimal modularization of building design. Automation in
construction, 65:116–124, 2016. 16

[60] F. Jiang, J. Ma, C. J. Webster, X. Li, and V. J. Gan. Building
layout generation using site-embedded gan model. Automa-
tion in Construction, 151:104888, 2023. 17

[61] Y. Jiang, M. Lim, and A. Saxena. Learning object arrange-
ments in 3d scenes using human context. arXiv preprint
arXiv:1206.6462, 2012. 12

[62] A. Kalervo, J. Ylioinas, M. Häikiö, A. Karhu, and J. Kan-
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