
Efficient and Structure-Aware 3D Reconstruction via

Differentiable Primitive Abstraction

Gaoyang Zhang Yingxi Chen Hanchao Li Xinguo Liu

blurgy@zju.edu.cn 22251126@zju.edu.cn hanson li@zju.edu.cn xinguoliu@zju.edu.cn

State Key Lab of CAD&CG, Zhejiang University

Hangzhou, China

Figure 1: Left: Input multi-view images. Middle: Part-segmented mesh via differentiable primitive abstraction (different colors denote

distinct parts). Right: Final high-fidelity textured mesh after automatic coarse-to-fine refinement.

Abstract

Reconstructing detailed 3D models from multi-view

images often involves a trade-off between efficiency and

fidelity. Existing methods based on volumetric rep-

resentations or dense meshes can be computationally

expensive, while primitive-based methods struggle to

capture fine geometric details. We propose a novel

method that addresses this challenge by combining dif-

ferentiable primitive abstraction with adaptive mesh re-

finement. Our method first abstracts the scene into

a set of cuboid primitives represented by analytical

signed distance functions (SDFs), enabling part separa-

bility. This stage leverages differentiable volume ren-

dering to efficiently optimize the primitives’ poses and

sizes. Subsequently, an automatic coarse-to-fine refine-

ment process, guided by rendering error, restores fine

geometric details. Our approach yields high-quality,

part-separable meshes with manageable complexities,

suitable for applications requiring part manipulation

and efficient rendering. We demonstrate the effective-

ness of our method on the DTU, BlendedMVS, and

Tanks&Temples datasets, achieving a better balance be-

tween mesh complexity and reconstruction fidelity com-

pared to existing techniques.

Keywords: 3D Reconstruction, Differentiable Render-

ing, Mesh Refinement, Neural Surface Reconstruction,

Primitive Abstraction

1. Introduction

Structure-aware reconstruction of 3D scenes has been

one of the most fundamental problems in computer vi-

sion and graphics [26, 36]. In recent years, neural render-

ing [25, 34] has fueled a surge of works that enable high-

fidelity 3D reconstructions [7, 11, 17, 44, 45, 49]. While

these methods have achieved impressive results in captur-

ing intricate details and complex geometries, they often rely

on computationally expensive volumetric representations or

dense meshes. This work tackles the problem of efficiently

reconstructing detailed 3D models from multi-view images

that are both lightweight and inherently part-separable, ad-

dressing the limitations of existing methods regarding com-

putational cost, part awareness, and practical applicability

1

in real-time or resource-constrained scenarios, such as in-

teractive AR/VR applications and robotics.

The core challenge lies in balancing the efficiency of rep-

resentation with the fidelity of the reconstruction. Primitive-

based methods offer efficiency and part separability, but

often struggle to capture fine geometric details due to the

limited expressiveness of simple primitives [27, 46]. Con-

versely, methods based on neural implicit representations,

such as those utilizing signed distance functions (SDFs) [44,

49] or occupancy fields [24], excel at representing complex

shapes, but often suffer from high computational costs due

to their reliance on volumetric rendering or computationally

expensive neural networks. Moreover, these methods typi-

cally lack explicit part segmentation, hindering their appli-

cability in tasks requiring part-based manipulation or anal-

ysis. Our method addresses these challenges by combining

the strengths of primitive-based and neural implicit repre-

sentations. Unlike existing methods that rely on either com-

putationally intensive volumetric representations or explicit

primitive meshes, our approach leverages a novel combina-

tion of analytical implicit primitives representation and an

adaptive mesh refinement scheme. This allows us to bene-

fit from the efficiency and part-awareness of primitives dur-

ing the initial abstraction stage while achieving high-fidelity

through a targeted refinement process that focuses on areas

of high geometric detail.

We propose a two-stage pipeline that first enables part

separability by abstracting the scene into a set of cuboid

primitives represented by analytical SDFs, and subse-

quently refines the resulting mesh explicitly using an adap-

tive, coarse-to-fine strategy. As shown in Fig. 1, this ap-

proach enables efficient capture of the overall structure

while providing the flexibility to refine details where nec-

essary.

We demonstrate the effectiveness of our method

on scenes from DTU [12], BlendedMVS [48], and

Tanks&Temples [15] datasets, achieving a better balance

between mesh size and reconstruction fidelity than previ-

ous methods. Our robust primitives abstraction also extrap-

olates more plausible novel views in unobserved areas, and

enables part-based manipulation of the final reconstruction.

The main technical contributions of this work are:

• A two-stage reconstruction pipeline that achieves both

part separability and preservation of geometric details.

• A differentiable formulation for fitting analytical SDF-

based primitives to a scene represented by multi-view

images, enabling efficient optimization of part-based

representations.

• An automatic coarse-to-fine mesh refinement strategy

that optimally allocates detail, resulting in lightweight

yet accurate meshes.

• We demonstrate improved reconstruction accuracy as

indicated by Chamfer distance with more manageable

mesh complexities, and ability to do view extrapola-

tion and part-based manipulation.

2. Related Work

Our work draws inspiration from research in neural

rendering, implicit scene representations with SDF, and

primitive-based 3D reconstruction.

Neural Rendering. Differentiable rendering techniques

enable the optimization of scene parameters by back-

propagating gradients through the rendering process. Early

work focused on approximating the gradients of discrete

rasterization [14] or using probabilistic contributions of

mesh facets [18]. Later methods explored differentiable

volumetric rendering with exact derivatives for surface in-

tersection [29]. These advances in differentiable rendering

have paved the way for optimizing mesh geometry and other

scene parameters directly from images. Our work leverages

differentiable rendering for efficiently optimizing the poses

and sizes of primitives during the abstraction stage and for

refining vertex positions during the mesh refinement stage.

Neural Implicit Representations for 3D Reconstruction.

Neural rendering techniques, particularly NeRF [25], have

significantly advanced novel view synthesis. However,

NeRF-based methods [3–5] often lack explicit definition of

surface geometry, posing challenges for mesh extraction.

Techniques like marching cubes [21] can extract meshes

from implicit representations like NeRF, but frequently re-

sult in dense meshes with high polygon counts and sub-

optimal detail preservation. NeuS [44] and its concurrent

work [30, 49] proposes to directly learn a signed distance

function (SDF) or occupancy representation using differ-

entiable rendering, achieving high-fidelity reconstructions.

However, they typically rely on computationally expensive

coordinate-based MLPs to predict the field value, and does

not address part separability. Our method adopts the SDF-

based representation, but instead of predicting the SDF with

an MLP, we use a set of analytical primitive SDFs to obtain

the signed distance at arbitrary spatial position, and opti-

mize the poses of the primitives. This approach allows us

to retain the expressiveness of the SDF representation with

drastically reduced computational cost.

Primitive-Based 3D Reconstruction. Reconstructing

scenes with simple geometric primitives like points, seg-

ments, planes, or cuboids and beyond has been studied for

a long time. Points and line segments are often fitted via

multi-view stereo [19, 38, 39]. Plane fitting can be achieved

by estimating planar parameters from depth captures [9],

sparse views [13], or monocular RGB sequences [47].

Another line of works extract solid shapes from inputs

using learning-based methods [40, 43]. Methods based on

primitive shapes offer efficiency and part separability, but

struggle to capture fine geometric details [20,27,33,46,51].

To mitigate this, we opt to marry traditional mesh re-

finement techniques with an automatic coarse-to-fine

refinement strategy enabled by recent neural rendering

methods, adaptively adding details to a primitive-based

initial mesh according to rendering error.

3. Method

Given a set of multi-view RGB images of a target ob-

ject, our goal is to obtain a triangular mesh that is light-

weight, part-separable and enables high-fidelity rendering.

To achieve this, we leverage analytical SDFs of cuboid

primitives to support native part-based mesh export, and de-

vise an automatic coarse-to-fine mesh refinement stage to

restore the delicate geometric details and texture.

We begin with the necessary background knowledge on

differentiable rendering and implicit surface representations

that our work builds upon (Sec. 3.1). We then elaborate on

the two essential stages of our pipeline: (1) differentiable

primitive abstraction (Sec. 3.2) and (2) adaptive mesh re-

finement (Sec. 3.3). These two stages work in tandem to

produce lightweight, part-separable, and high-fidelity 3D

meshes from multi-view images.

Notations. Given a sequence of images I, we denote the

sparse point cloud estimated via SfM as P . Our method

first optimize m cuboid primitives {G1, · · · , Gm} parame-

terized by their respective bounds and pose matrices:

Gi = g(Bi, [Ri,Ti]), (1)

where Bi ∈ R
3 parameterizes the side lengths of the

cuboids in their local coordinate system, and [Ri,Ti] ∈
R

4×3 parameterizes the rigid transformation between the

world coordinate system and their own.

3.1. Preliminary

Our pipeline is enabled by several recent advancements

in differentiable rendering.

Neural Radiance Fields. NeRF [25] models scenes us-

ing volume density and view-dependent emitted radiance at

each spatial location. The NeRF function takes a 5-D in-

put (x,d) = [(x, y, z), (θ, φ)] and outputs a volume density

δ and color (r, g, b), which are then used in differentiable

volume rendering:

C(r) =

∫ tf

tn

T (t)σ(r(t))fc(r(t),d)dt, (2)

where r = o + td is a ray sampled from the input image

collection I, T (t) = exp(−
∫ t

tn
σ(r(s))ds) is the transmit-

tance value at ray position r(t), fc is a function that esti-

mates the emitted radiance at r(t).

Parameterizing SDFs for Volume Rendering. While

NeRFs use volume density for radiance integration along

camera rays, such density is not well-defined for mesh ex-

traction using marching cubes [21]. [50] uses a surface ren-

dering technique that only considers a single surface in-

tersection point for each ray, which can lead to poor local

minima and struggles to reconstruct complex geometry with

self-occlusions or thin structures. Later works explored rep-

resenting scene geometry with neural fields (signed distance

functions [44, 49] and occupancy functions [30]) to exploit

the expressivity of implicit functions for modeling scene

geometry. We adopt the parameterization from Wang et

al. [44] in our method, but theoretically our method should

also be compatible with other SDF-to-density parameteri-

zations.

3.2. Differentiable Primitive Abstraction

Given a collection of RGB images of a central object

from different viewing directions, the goal of this stage is

to extract a set of cuboid primitives that captures the coarse

overall geometry of the underlying object.

Scene Parameterization. We use a composition of

cuboid primitives to represent the scene geometry. Each

cuboid primitive Gi is represented as an analytical signed

distance function parameterized by a bounds vector Bi ∈
R

3 and a rigid transformation [Ri;Ti] ∈ R
4×3. With this

representation, the SDF of any point x ∈ R
3 from the scene

can be trivially computed as the min of the SDF value eval-

uated separately at each primitive:

SDF(x) =
m

min
i=1

SDFGi
(x;Bi,Ri,Ti), (3)

where SDFGi
∈ R is parameterized by the bounds Bi and

pose [Ri,Ti] of the i-th primitive Gi. This parameteriza-

tion is differentiable w.r.t. the primitive bounds Bi and pose

[Ri,Ti]. The scene appearance is modeled separately using

a shallow MLP with a spatial hash grid [28]. The radiance

estimator fc from Eq. (2) in our case can be denoted as

fc(r(t),d,n, SDF(r(t))), (4)

where n is the predicted normal direction at position x, and

can be computed trivially as n = ∇xSDF(x) [10].

The formulation based on analytical primitive SDFs is

inspired by [44], which uses a neural network to predict

a point x’s SDF value. We instead use a combination of

ColorMLP ColorMLP

Figure 2: Overview of the proposed pipeline. (a) The input to the pipeline is a collection of RGB images. Through structure-from-

motion, we obtain camera poses and a sparse point cloud. The point cloud is further cleaned up to remove the outliers for use in the next

step in the pipeline. (b) The configuration of the set of cuboids is initialized and jointly optimized with an appearance model, resulting

in an initial scene representation. (c) The automatic coarse-to-fine mesh refinement procedure restores delicate details overlooked by the

primitives-based representation. (d) The final output is a light-weight, part-separable mesh with textures enabling high-fidelity rendering.

analytical primitive SDFs and optimize their poses, this ap-

proach is much more parameter-efficient and thus faster to

evaluate and optimize. The primitives configuration can

also be exported directly into a triangular mesh with min-

imal polygon facets (e.g. top left of Fig. 2 (c)), avoiding

an unnecessarily excessive amount of triangles caused by

marching cubes [21], which has been adopted by previous

works [17, 25, 49] for extracting geometry.

Primitives Initialization. With the scene parameteriza-

tion, we first need an initialization to facilitate efficient op-

timization. As shown in Fig. 2 (a), the input to our pipeline

is a collection of RGB images. We use an off-the-shelf

structure-from-motion toolkit [38] to obtain the camera pa-

rameters and an initial sparse point cloud P . Subsequently,

the outliers in P are filtered out in two steps: (1) the points

that deviates significantly from the surface points are re-

moved using local point cloud characteristics [37]. (2) the

points that are visible by no more than 50% of the input

views are removed. This results in a refined, outlier-free

point cloud Pin. We initialize a set of primitives within a

regular grid filling the bounding box of Pin. Specifically,

64 (43) cuboid primitives are uniformly distributed within

this bounding box, as visualized in Figure 2 (b). The sub-

sequent optimization process effectively prunes redundant

primitives, as detailed next.

Scene Optimization & Regularization. For a given ray

r sampled from the input images, we render a pixel’s color

value using Eq. (2). The scene representation is supervised

directly with an image reconstruction loss:

Lrender = Er∼I;t∥C(r)− Ĉ(r)∥2. (5)

We also introduce a surface loss term to encourage align-

ment of the primitives with the cleaned point cloud Pin:

Lsurface = Ep∼Pin
|SDF(p)|. (6)

To prevent the optimization process from placing multiple

primitives at the same location, for each pair of primitives

that are overlapping in space are encouraged to shrink with

a novel pruning loss. Formally, we compute between each

pair of primitives the overlapping ratio o(i, j), and define

the pruning loss for the i-th primitive as:

Lprune(i) =

{

∑

Bi, ∃ j s.t. o(i, j) > τ,
∏

Bi <
∏

Bj

0, otherwise
,

(7)

with τ being a predefined overlapping threshold. This loss

shrinks a smaller, enclosed primitive until it disappears, ef-

fectively pruning it. The overall pruning loss for the scene

is summed over all of the m primitives:

Lprune = Ei∼U({1,··· ,m})Lprune(i). (8)

Our scene representation is supervised by minimizing the

combined loss:

L = Lrender + λ1Lsurface + λ2Lprune. (9)

As shown in Fig. 2 (b), we can recover the overall geom-

etry represented as a set of primitives with optimal poses

(top left) and a volumetric scene appearance model (bottom

right) after this optimization stage.

3.3. Automatic CoarsetoFine Mesh Refinement

While the primitives-based geometry has the nice prop-

erty of being part-separable, it overlooks fine geometric

details; on the other hand, the volumetric scene appear-

ance model needs to be evaluated at multiple points of a

ray to compute the color of the corresponding pixel. To

this end, we devise an automatic coarse-to-fine mesh re-

finement method that alternates between vertices refinement

and adaptive mesh detailization, aiming at restoring the fine

geometric details, finally exporting a texture map that en-

ables high-quality rendering of the output mesh.

Vertices Refinement. Geometric detail lies in the precise

arrangement of the vertices. We leverage differentiable ras-

terization [16] to render the mesh and refine vertex posi-

tions with a rendering loss similar to Eq. (5). During ras-

terization, the color of a pixel is determined by querying

the frozen appearance model fc with the rendered point x

on the mesh and the negated triangle normal −ntri as the

viewing direction d:

cpixel = fc(x,−ntri,ntri, 0). (10)

Vertex positions are then optimized to minimize the follow-

ing rendering loss:

L = Epixel∼I∥cpixel − ĉpixel∥2 (11)

Adaptive Mesh Detailization. The initial mesh is inten-

tionally coarse to facilitate efficient refinement. We in-

troduce a novel adaptive mesh detailization scheme that

selectively increases mesh resolution in regions contribut-

ing most significantly to the rendering loss. For each

camera-visible face, we accumulate the rendering error

Eface throughout the optimization process. Every k opti-

mization steps, we sort the Eface values in descending order

and define a subdivision threshold esubdivide as the 90-th per-

centile:

esubdivide = percentile(Eface, 90). (12)

Faces with Eface exceeding this threshold undergo mid-

point subdivision, generating a new mesh with refined ver-

tex positions. This process iterates K times, progressively

refining the mesh until the final output is obtained.

This coarse-to-fine strategy allocates increasing degrees

of freedom to geometrically complex regions, as demon-

strated in Figure 2 (c) (top right). Subdivision is concen-

trated in areas with fine details, such as corners and edges,

while flatter regions retain a lower resolution consistent

with their geometric complexity.

Comparison to Related Work. Our approach shares sim-

ilarities with the work of Tang et al. [42], which refines

a mesh using both subdivision and decimation. However,

their method requires decimation because their initial mesh,

extracted from a density-based representation [25,28], is ex-

cessively dense. In contrast, our method starts with a sim-

plistic mesh, obviating the need for decimation. Another

Table 1: Quantitative comparison of geometric reconstruction

accuracy on the DTU dataset [12]. Chamfer distance (CD) be-

tween reconstructed mesh and ground-truth point cloud are re-

ported. Lower is better. ■ Best results, ■ Second-best results.

Scene NeRF2Mesh [42] DBW [27] Ours

S5 3.04 6.54 2.60

S10 2.51 1.69 1.75

S11 3.33 2.67 1.92

S12 1.83 2.93 1.64

S34 2.97 3.60 1.93

S40 3.06 1.23 1.82

S45 3.23 4.57 2.06

S126 3.28 1.73 1.87

Mean CD 2.90 3.12 1.95

#vertices↓ 137.2k 0.3k 6.1k

#faces↓ 255.9k 0.5k 12.3k

relevant work is Differentiable Blocks World (DBW) [27],

which represents scenes using superquadric meshes. De-

spite the expressive power of superquadrics [2, 31], DBW

faces a trade-off between optimization efficiency and ge-

ometric detail. Our method avoids this trade-off through

adaptive refinement, efficiently allocating resources to com-

plex regions while maintaining overall optimization effi-

ciency. This results in a high-quality final mesh with de-

tailed geometry and a texture map suitable for rendering.

4. Experiments

4.1. Implementation Details

The input to our pipeline is a collection of multi-view

RGB images. We use SAM2 [35] to segment the object of

interest from the first image and propagate to other images,

the whole annotation process takes around 30s for each

scene. The camera poses and initial sparse point cloud are

obtained from the annotated images using COLMAP [38].

In the differentiable primitive abstraction stage, we use a co-

sine warmup with restart learning rate schedule [22], with

3e-3 as the peak learning rate. We use λ1 = 0.1 and

λ2 = 0.07 for the surface loss and pruning loss, respec-

tively. The differentiable primitive abstraction stage is run

for 6,144 steps with 6 learning rate restarts, taking about 3

minutes. The output from this stage is a simplistic mesh

with n× 6× 2 = 12n triangular faces, where n is the num-

ber of remaining (not pruned) cuboid primitives. This mesh

undergoes two iterations of mid-point subdivision, resulting

in 12n× 42 = 192n faces, before it is fed to the subsequent

steps. For the automatic coarse-to-fine mesh refinement

stage, we perform subdivision after every 256 optimization

steps, and stop the refinement process after 10 minutes, re-

Input

Decomposition

(DBW [27])

no output

no output

Decomposition

(Ours)

Rendering (diffuse)

(DBW [27])

no output

no output

Rendering (diffuse)

(NeRF2Mesh [42])

Rendering (diffuse)

(Ours)

Figure 3: Qualitative reconstruction results comparison on the DTU dataset [12]. Decomposed primitives are randomly col-

ored for easier inspection. DBW [27] fails to produce meaningful outputs on in-the-wild data using their recommended parameters.

NeRF2Mesh [42] reconstructions suffer from floaters and holes. Our method obtains clean and meaningful primitive decompositions as

well as high-quality renderings. Please refer to the supplementary material for full reconstruction results.

sulting in ∼40 iterations of subdivision-optimization loops.

In both stages, we use the AdamW [23] optimizer. The main

experiments reported in this paper are run on a single RTX

4090 GPU, but since the peak GPU memory usage is only

8GiB, most commodity hardware can run our pipeline eas-

ily.

4.2. Results

Datasets and Metrics. We evaluate our method on the

DTU MVS dataset [12]. The dataset contains 80 scenes

captured with a 6-axis industrial robot in a controlled in-

door setting, each scene consists of 49 or 64 accurate cam-

era poses, and comes with 3D ground-truth points that are

obtained with a structured light scanner. We evaluate on 8

Input

(3 out of 49 views shown) (a) Init. agnostic (b) Init. FPS (c) w/o Lsurface (d) w/o Lprune (e) Ours

Figure 4: Ablation study of the proposed differentiable primitive abstraction stage. Four optimization timesteps

(0%, 10%, 50%, 100%) are visualized from top to bottom. Primitives are randomly colored for easier inspection. (a), (b) Replacing

our point cloud-based grid initialization with either a point cloud-agnostic one or a more sophisticated FPS-based initialization leads to the

algorithm converging to a suboptimal local-minimum. (c) Removing the surface loss results primitives that are less faithful to the input

scene. (d) Removing the pruning loss causes over-decomposition, where many primitives are placed in the same space. (e) Our full method

converges faster and achieves better results. Please refer to Sec. 4.3 for detailed descriptions. The optimization progress of other scenes is

provided in the supplementary video.

scenes that have different foreground objects and arrange-

ments whose primitive decompositions are relatively intu-

itive. The official method by DTU is used for evaluating

geometric reconstruction accuracy, where the Chamfer dis-

tance is computed between the ground-truth point cloud and

points sampled from the reconstructed mesh. We also report

the number of vertices and faces in the final output mesh as

an indicator of mesh complexity.

Additionally, we select 3 scenes from the

BlendedMVS [48] dataset and 1 scene from the

Tanks&Temples [15] dataset, and a scene captured by

a mobile phone as in-the-wild examples to test our method.

Baselines. We compare our method against two re-

cent baselines closely related to our approach, namely

NeRF2Mesh [42] and DBW [27]. NeRF2Mesh employs

explicit mesh optimization similar to our method, but its in-

put is from a density-based geometric representation, which

can be noisy compared to our primitives based geometric

representation. DBW directly optimizes a set of randomly

initialized superquadric meshes to decompose a scene. We

use the official implementations with recommended settings

provided by the authors [27, 41] in our experiments.

Quantitative Results. Quantitative results on geometric

reconstruction are reported in Tab. 1. As evident in Tab. 1,

our method consistently outperforms the baselines in terms

of Chamfer distance, indicating superior geometric recon-

struction accuracy. On the one hand, although DBW’s out-

put mesh is the simplest according to number of vertices

& faces, its 3D reconstruction accuracy is severely im-

pacted by the over simplification, resulting in a large cham-

fer distance on more complex compared to NeRF2Mesh or

our method. On the other hand, our method controls the

(a) Input. (b) iNGP [28] (c) NeRF2Mesh [42] (d) Ours

Figure 5: View extrapolation. When tested with views far from

training views, our method maintains tight geometry with plausi-

ble extrapolated texture colors in unobserved areas.

mesh complexity at a manageable amount — it reconstructs

meshes with 1-2 orders of magnitude fewer vertices & faces

than NeRF2Mesh, in the meantime achieving the most ac-

curate reconstruction, reaching a better balance between the

efficiency of representation and the fidelity of the recon-

struction.

Qualitative Results. We show the primitive abstractions

and the final rendering results in Fig. 3. The primitive ab-

stractions and the final textured reconstructions on all 13

scenes are provided in the supplementary material. The

primitives decomposed by our method (second and third

columns) are cleaner and more faithful than those of DBW

across different scenes. Qualitative rendering results are

shown in the last three columns of Fig. 3. DBW outputs

overly blurred rendering due to its less faithful geometries,

and fails on the more challenging in-the-wild examples.

NeRF2Mesh’s renderings suffer from holes and floaters due

to its initially density-based geometric representation. In

contrast, our renderings are much more satisfactory. This is

thanks to both the high-quality primitive abstractions from

the first stage, and the automatic coarse-to-fine mesh refine-

ment strategy that focuses on adding intricate details to the

mesh.

View Extrapolation. The primitives-based geometric

representation serves as an implicit regularization, ensuring

a clean reconstruction when the underlying scene is simple.

In Fig. 5, we compare between Instant-NGP (iNGP) [28],

NeRF2Mesh [42], and our method on view extrapolation

performance. Instant-NGP, a NeRF variant focusing on fast

and high-quality novel view synthesis, exhibits bogus ge-

ometry (floaters) [32] and implausible colors when tested

with views far from training views. NeRF2Mesh also suf-

fers from floaters and holes due to its initially poorly de-

fined geometry derived from volume rendering density. In

swap delete duplicate

Figure 6: Part-based manipulation of reconstructed meshes.

The reconstructed mesh is inherently part-based, and can be edited

at ease using 3D modeling software like Blender [6].

contrast, our method obtains a tight geometry with plausi-

ble extrapolated texture colors in areas unobserved during

training.

Part-based Manipulation. Our differentiable primitive

abstraction stage ensures that the resulting mesh is in-

herently part-separable. This enables a variety of down-

stream modeling tasks at the object-level, beyond tradi-

tional vertices/edges/faces-based mesh editing. In Fig. 6,

we showcase three examples of part-based editing opera-

tions: swapping two objects in the scene (left), deleting the

handle of the object by deleting the corresponding decom-

posed part (middle), and duplicating a block two times and

placing the copies below the original (right). Part-based ma-

nipulation offers a more intuitive and efficient way to inter-

act with and modify 3D models, opening up possibilities for

applications like interactive design, virtual prototyping, and

robotic manipulation.

4.3. Ablation Studies

In the following, we conduct controlled experiments on

the DTU dataset [12] to validate various design choices of

our pipeline.

Geometric Priors. Geometric priors are crucial for effi-

cient optimization in the differentiable primitive abstraction

stage. This includes efficient initialization from the outlier-

free SfM point cloud, and using the surface loss to penalize

the implicit field formed by primitives to stick to the geom-

etry. We visualize the optimization dynamics of our primi-

tive abstraction stage with various components removed in

Fig. 4, and provide the optimization progress of all reported

scenes in the supplementary video. A Blender [6] script

used to generate the results for all scenes can be found in

the supplementary material.

Table 2: Ablation study of the losses in the first stage. Removing

either Lsurface or Lprune leads to drop of reconstruction accuracy.

Chamfer distance on the DTU dataset [12] is reported.

DTU Scene S5 S10 S11 S12 S34 S40 S45 S126

w/o Lsurface 2.74 2.12 2.54 1.69 2.08 2.59 2.49 2.40

w/o Lprune 2.92 2.10 1.93 1.79 1.77 2.33 2.32 1.99

Ours 2.60 1.75 1.92 1.64 1.93 1.82 2.06 1.87

We test the effectiveness of the point cloud based grid

initialization by comparing with two alternative primitive

initialization schemes: (1) agnostic initialization places

primitives in a regular grid filling the [−1, 1]3 bounding box

predefined for all scenes, thus agnostic to each scene’s point

cloud; (2) FPS (farthest point sampling) [1, 8] initialization

chooses the center of the initial primitives iteratively from

the estimated point cloud, each time selecting a point that

lies the farthest from all the chosen points, allowing for a

uniform distribution of primitives that has a good coverage

of the input point cloud. As shown in Fig. 4 (a) and (b),

both alternative initialization methods fail to converge to

a satisfying decomposition. The agnostic initialization

places primitives too sparsely, causing the scene representa-

tion quickly falls into a local-minima that is hard to correct

in later optimization steps. We find the FPS initialization

to be unstable and sensitive to the shape of the point cloud.

It places few primitives at locations with few points, how-

ever, the point cloud is estimated by SfM algorithms [38]

and is likely missing parts that are observed by few cam-

eras. We remove the surface loss Lsurface and visualize the

optimization process in Fig. 4 (c). The impact of removing

the surface loss is evident, as its reconstruction accuracy is

reported in Tab. 2. Without it, the set of primitives lacks

explicit geometric constraints and can grow over the actual

bounds to allow for better training-time rendering metrics,

at the cost of a lower geometric reconstruction accuracy.

Pruning Loss. The pruning loss is crucial for our method

to obtain a clean decomposition of the scene. It shrinks

the smaller primitive when two primitives are placed in

the same space. We disable this loss to better understand

the impact it has on our primitive abstraction algorithm.

As shown in Fig. 4 (d), the algorithm is prone to over-

decomposition without Lprune, resulting in less meaningful

decomposed parts. As reported in Tab. 2, the overall recon-

struction accuracy is also reduced.

Coarse-to-Fine Mesh Refinement Strategy. The geom-

etry representation based on analytical SDF of primitives

from our first stage enables both marching cubes [21] based

mesh extraction and analytically accurate mesh export. In

our main experiments, we use the latter to generate a sim-

MC, r = 32

#f = 157k

MC, r = 128

#f = 160k

MC, r = 512

#f = 200k

Ours, auto

#f = 6k

Figure 7: Ablation study of the proposed automatic coarse-to-

fine refinement strategy. Top row: Input to the refinement stage,

extracted by different methods and parameters. Bottom row: Re-

finement result. Increasing marching cubes (MC) resolution r

could increase surface details, but also leads to an excessive num-

ber of faces (#f). Our method eliminates such tradeoff.

plistic mesh as input for the subsequent mesh refinement

stage. This allows us to focus on introducing the missing

details overlooked by the first stage, and naturally provi-

sions our automatic coarse-to-fine refinement strategy. Here

we explore the use of marching cubes for bridging the two

stages, generating a mesh with dense faces that is then re-

fined using differentiable rasterization. Apart from surface

subdivision, we also enable decimation&remeshing as done

in [42] to allow the refinement stage to simplify the mesh.

Qualitative result on S40 from the DTU dataset is shown

in Fig. 7. Using a mesh extracted with marching cubes, the

initial face density is controlled by an extra resolution pa-

rameter r — a lower r leads to a poorly initialized mesh,

limiting the performance of the refinement stage; a larger

r increases the geometric accuracy of the mesh, but also

increases its complexity. Instead, our method initializes the

mesh from an analytical primitives representation, eliminat-

ing the tradeoff between simplicity and geometric accuracy.

5. Limitations and Conclusion

Limitations. While our method demonstrates promising

results with great robustness, there is still room for improve-

ment. For instance, the current cuboid primitives may not

adequately represent highly detailed objects with intricate

curvatures. Future work could explore incorporating more

sophisticated primitive shapes. Additionally, the texture

generation process bakes the scene’s lighting environment

into the texture map. This could be improved by exploring

more advanced techniques, such as material reconstruction

or learned texture representations, to decouple the lighting

information from the texture and enable more realistic and

versatile rendering.

Conclusion. We have presented an efficient pipeline

that reconstructs part-separable and high-quality textured

meshes with a manageable face count from multi-view RGB

images. Our pipeline leverages differentiable volume ren-

dering and analytical primitive SDFs for efficient scene de-

composition and an automatic coarse-to-fine strategy for

detail refinement. The resulting meshes are suitable for a

range of applications where part-based manipulation and ef-

ficient rendering are desired. We believe our method makes

an important step towards efficient and practical, structure-

aware 3D reconstruction from images, and we hope this

work inspires further research in this direction.

6. Acknowledgements

This work is supported by National Natural Science

Foundation of China (No. 62032011).

References

[1] D. Arthur and S. Vassilvitskii. k-means++: the ad-

vantages of careful seeding. In Proceedings of the

eighteenth annual ACM-SIAM symposium on Discrete

algorithms, SODA ’07, pages 1027–1035, USA, Jan.

2007. Society for Industrial and Applied Mathematics.

9

[2] Barr. Superquadrics and Angle-Preserving Transfor-

mations. IEEE Computer Graphics and Applications,

1(1):11–23, Jan. 1981. Conference Name: IEEE Com-

puter Graphics and Applications. 5

[3] J. T. Barron, B. Mildenhall, M. Tancik, P. Hedman,

R. Martin-Brualla, and P. P. Srinivasan. Mip-NeRF:

A Multiscale Representation for Anti-Aliasing Neu-

ral Radiance Fields. In 2021 IEEE/CVF International

Conference on Computer Vision (ICCV), pages 5835–

5844, Montreal, QC, Canada, Oct. 2021. IEEE. 2

[4] J. T. Barron, B. Mildenhall, D. Verbin, P. P. Srini-

vasan, and P. Hedman. Mip-NeRF 360: Unbounded

Anti-Aliased Neural Radiance Fields, Mar. 2022.

arXiv:2111.12077 [cs]. 2

[5] A. Chen, Z. Xu, A. Geiger, J. Yu, and H. Su.

TensoRF: Tensorial Radiance Fields, Nov. 2022.

arXiv:2203.09517 [cs]. 2

[6] B. O. Community. Blender - a 3D modelling and

rendering package. Blender Foundation, Stichting

Blender Foundation, Amsterdam, 2018. 8

[7] P. Dai, J. Xu, W. Xie, X. Liu, H. Wang, and W. Xu.

High-quality Surface Reconstruction using Gaussian

Surfels, Apr. 2024. arXiv:2404.17774 [cs] version: 2.

1

[8] Y. Eldar, M. Lindenbaum, M. Porat, and Y. Zeevi. The

farthest point strategy for progressive image sampling.

IEEE Transactions on Image Processing, 6(9):1305–

1315, Sept. 1997. 9

[9] C. Feng, Y. Taguchi, and V. R. Kamat. Fast plane

extraction in organized point clouds using agglom-

erative hierarchical clustering. In 2014 IEEE In-

ternational Conference on Robotics and Automation

(ICRA), pages 6218–6225, May 2014. ISSN: 1050-

4729. 2

[10] A. Gropp, L. Yariv, N. Haim, M. Atzmon, and Y. Lip-

man. Implicit geometric regularization for learning

shapes. arXiv preprint arXiv:2002.10099, 2020. 3

[11] B. Huang, Z. Yu, A. Chen, A. Geiger, and S. Gao. 2D

Gaussian Splatting for Geometrically Accurate Ra-

diance Fields. In Special Interest Group on Com-

puter Graphics and Interactive Techniques Confer-

ence Conference Papers ’24, pages 1–11, July 2024.

arXiv:2403.17888 [cs]. 1

[12] R. Jensen, A. Dahl, G. Vogiatzis, E. Tola, and

H. Aanæs. Large Scale Multi-view Stereopsis Eval-

uation. In 2014 IEEE Conference on Computer Vision

and Pattern Recognition, pages 406–413, June 2014.

ISSN: 1063-6919. 2, 5, 6, 8, 9

[13] L. Jin, S. Qian, A. Owens, and D. F. Fouhey.

Planar Surface Reconstruction from Sparse Views.

In arXiv:2103.14644 [cs], Mar. 2021. arXiv:

2103.14644. 3

[14] H. Kato, Y. Ushiku, and T. Harada. Neural 3D Mesh

Renderer. arXiv:1711.07566 [cs], Nov. 2017. arXiv:

1711.07566. 2

[15] A. Knapitsch, J. Park, Q.-Y. Zhou, and V. Koltun.

Tanks and temples: benchmarking large-scale scene

reconstruction. ACM Transactions on Graphics,

36(4):1–13, Aug. 2017. 2, 7

[16] S. Laine, J. Hellsten, T. Karras, Y. Seol, J. Lehti-

nen, and T. Aila. Modular primitives for high-

performance differentiable rendering. ACM Transac-

tions on Graphics, 39(6):1–14, Dec. 2020. 5

[17] Z. Li, T. Müller, A. Evans, R. H. Taylor, M. Un-

berath, M.-Y. Liu, and C.-H. Lin. Neuralangelo: High-

Fidelity Neural Surface Reconstruction. pages 8456–

8465, 2023. 1, 4

[18] S. Liu, T. Li, W. Chen, and H. Li. Soft Rasterizer:

A Differentiable Renderer for Image-based 3D Rea-

soning. arXiv:1904.01786 [cs], Apr. 2019. arXiv:

1904.01786. 2

[19] S. Liu, Y. Yu, R. Pautrat, M. Pollefeys, and V. Lars-

son. 3D Line Mapping Revisited, Mar. 2023.

arXiv:2303.17504 [cs]. 2

[20] W. Liu, Y. Wu, S. Ruan, and G. S. Chirikjian. Robust

and Accurate Superquadric Recovery: A Probabilistic

Approach. pages 2676–2685, 2022. 3

[21] W. E. Lorensen and H. E. Cline. Marching cubes:

A high resolution 3D surface construction algorithm.

ACM SIGGRAPH Computer Graphics, 21(4):163–

169, Aug. 1987. 2, 3, 4, 9

[22] I. Loshchilov and F. Hutter. SGDR: Stochastic

Gradient Descent with Warm Restarts, May 2017.

arXiv:1608.03983 [cs, math]. 5

[23] I. Loshchilov and F. Hutter. Decoupled Weight De-

cay Regularization, Jan. 2019. arXiv:1711.05101 [cs,

math]. 6

[24] L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin,

and A. Geiger. Occupancy Networks: Learning 3D

Reconstruction in Function Space. arXiv:1812.03828

[cs], Apr. 2019. arXiv: 1812.03828. 2

[25] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Bar-

ron, R. Ramamoorthi, and R. Ng. NeRF: Represent-

ing Scenes as Neural Radiance Fields for View Syn-

thesis. arXiv:2003.08934 [cs], Aug. 2020. arXiv:

2003.08934. 1, 2, 3, 4, 5

[26] N. Mitra, M. Wand, H. R. Zhang, D. Cohen-Or,

V. Kim, and Q.-X. Huang. Structure-aware shape pro-

cessing. In SIGGRAPH Asia 2013 Courses, SA ’13,

pages 1–20, New York, NY, USA, Nov. 2013. Associ-

ation for Computing Machinery. 1

[27] T. Monnier, J. Austin, A. Kanazawa, A. A. Efros, and

M. Aubry. Differentiable blocks world: Qualitative

3d decomposition by rendering primitives. In A. Oh,

T. Naumann, A. Globerson, K. Saenko, M. Hardt, and

S. Levine, editors, Advances in Neural Information

Processing Systems 36: Annual Conference on Neural

Information Processing Systems 2023, NeurIPS 2023,

New Orleans, LA, USA, December 10 - 16, 2023,

2023. 2, 3, 5, 6, 7

[28] T. Müller, A. Evans, C. Schied, and A. Keller. In-

stant neural graphics primitives with a multiresolution

hash encoding. ACM Transactions on Graphics (ToG),

41(4):1–15, 2022. Publisher: ACM New York, NY,

USA. 3, 5, 8

[29] M. Niemeyer, L. Mescheder, M. Oechsle, and

A. Geiger. Differentiable Volumetric Rendering:

Learning Implicit 3D Representations without 3D Su-

pervision. arXiv:1912.07372 [cs, eess], Mar. 2020.

arXiv: 1912.07372. 2

[30] M. Oechsle, S. Peng, and A. Geiger. UNISURF: Uni-

fying Neural Implicit Surfaces and Radiance Fields for

Multi-View Reconstruction. arXiv:2104.10078 [cs],

Apr. 2021. arXiv: 2104.10078. 2, 3

[31] D. Paschalidou, A. O. Ulusoy, and A. Geiger. Su-

perquadrics Revisited: Learning 3D Shape Parsing

Beyond Cuboids. pages 10344–10353, 2019. 5

[32] J. Philip and V. Deschaintre. Floaters No More:

Radiance Field Gradient Scaling for Improved Near-

Camera Training, June 2023. arXiv:2305.02756 [cs].

8

[33] M. Ramamonjisoa, S. Stekovic, and V. Lepetit. Mon-

teBoxFinder: Detecting and Filtering Primitives to Fit

a Noisy Point Cloud, July 2022. arXiv:2207.14268

[cs]. 3

[34] R. Ramamoorthi. NeRFs: The Search for the Best 3D

Representation, Aug. 2023. arXiv:2308.02751 [cs]. 1

[35] N. Ravi, V. Gabeur, Y.-T. Hu, R. Hu, C. Ryali,

T. Ma, H. Khedr, R. Rädle, C. Rolland, L. Gustafson,

E. Mintun, J. Pan, K. V. Alwala, N. Carion, C.-Y. Wu,

R. Girshick, P. Dollár, and C. Feichtenhofer. SAM 2:

Segment Anything in Images and Videos, Aug. 2024.

arXiv:2408.00714 [cs]. 5

[36] L. G. Roberts. Machine perception of three-

dimensional solids. Thesis, Massachusetts Insti-

tute of Technology, 1963. Accepted: 2005-08-

17T19:45:17Z. 1

[37] R. B. Rusu, Z. C. Marton, N. Blodow, M. Dolha,

and M. Beetz. Towards 3D Point cloud based object

maps for household environments. Robotics and Au-

tonomous Systems, 56(11):927–941, Nov. 2008. 4

[38] J. L. Schonberger and J.-M. Frahm. Structure-from-

Motion Revisited. In 2016 IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), pages

4104–4113, Las Vegas, NV, USA, June 2016. IEEE.

2, 4, 5, 9

[39] J. L. Schönberger, E. Zheng, J.-M. Frahm, and

M. Pollefeys. Pixelwise View Selection for Unstruc-

tured Multi-View Stereo. In B. Leibe, J. Matas,

N. Sebe, and M. Welling, editors, Computer Vision –

ECCV 2016, volume 9907, pages 501–518. Springer

International Publishing, Cham, 2016. Series Title:

Lecture Notes in Computer Science. 2

[40] C.-Y. Sun, Q.-F. Zou, X. Tong, and Y. Liu. Learning

adaptive hierarchical cuboid abstractions of 3D shape

collections. ACM Transactions on Graphics, 38(6):1–

13, Dec. 2019. 3

[41] J. Tang. nerf2mesh: Delicate textured mesh recovery

from nerf via adaptive surface refinement. https:

//github.com/ashawkey/nerf2mesh, 2023.

Accessed 2024-10-07. 7

[42] J. Tang, H. Zhou, X. Chen, T. Hu, E. Ding, J. Wang,

and G. Zeng. Delicate textured mesh recovery from

nerf via adaptive surface refinement. In IEEE/CVF

International Conference on Computer Vision, ICCV

2023, Paris, France, October 1-6, 2023, pages 17693–

17703. IEEE, 2023. 5, 6, 7, 8, 9

https://github.com/ashawkey/nerf2mesh
https://github.com/ashawkey/nerf2mesh

[43] S. Tulsiani, H. Su, L. J. Guibas, A. A. Efros, and

J. Malik. Learning Shape Abstractions by Assembling

Volumetric Primitives. In 2017 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR),

pages 1466–1474, Honolulu, HI, July 2017. IEEE. 3

[44] P. Wang, L. Liu, Y. Liu, C. Theobalt, T. Komura, and

W. Wang. Neus: Learning neural implicit surfaces by

volume rendering for multi-view reconstruction. In

M. Ranzato, A. Beygelzimer, Y. N. Dauphin, P. Liang,

and J. W. Vaughan, editors, Advances in Neural In-

formation Processing Systems 34: Annual Confer-

ence on Neural Information Processing Systems 2021,

NeurIPS 2021, December 6-14, 2021, virtual, pages

27171–27183, 2021. 1, 2, 3

[45] T. Wu, J. Wang, X. Pan, X. Xu, C. Theobalt, Z. Liu,

and D. Lin. Voxurf: Voxel-based Efficient and

Accurate Neural Surface Reconstruction, Apr. 2023.

arXiv:2208.12697 [cs]. 1

[46] Y. Wu, W. Liu, S. Ruan, and G. S. Chirikjian.

Primitive-based Shape Abstraction via Nonparamet-

ric Bayesian Inference, July 2022. arXiv:2203.14714

[cs]. 2, 3

[47] Y. Xie, M. Gadelha, F. Yang, X. Zhou, and H. Jiang.

PlanarRecon: Real-time 3D Plane Detection and Re-

construction from Posed Monocular Videos, June

2022. arXiv:2206.07710 [cs]. 3

[48] Y. Yao, Z. Luo, S. Li, J. Zhang, Y. Ren, L. Zhou,

T. Fang, and L. Quan. BlendedMVS: A Large-Scale

Dataset for Generalized Multi-View Stereo Networks.

In 2020 IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR), pages 1787–1796,

Seattle, WA, USA, June 2020. IEEE. 2, 7

[49] L. Yariv, J. Gu, Y. Kasten, and Y. Lipman. Vol-

ume Rendering of Neural Implicit Surfaces.

arXiv:2106.12052 [cs], June 2021. arXiv:

2106.12052. 1, 2, 3, 4

[50] L. Yariv, Y. Kasten, D. Moran, M. Galun, M. Atzmon,

R. Basri, and Y. Lipman. Multiview Neural Surface

Reconstruction by Disentangling Geometry and Ap-

pearance. arXiv:2003.09852 [cs], Oct. 2020. arXiv:

2003.09852. 2, 3

[51] F. Yu, Y. Qian, X. Zhang, F. Gil-Ureta, B. Jackson,

E. Bennett, and H. Zhang. DPA-Net: Structured

3D Abstraction from Sparse Views via Differentiable

Primitive Assembly, Aug. 2024. arXiv:2404.00875

[cs]. 3

