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Abstract

Graph convolutional networks (GCNs) have be-
come a dominant approach for skeleton-based action
recognition task. Although GCNs have made signifi-
cant progress in modeling skeletons as spatial-temporal
graphs, they often require the stacking of multiple
graph convolution layers to effectively capture long-
distance relationships among nodes. This stacking not
only increases computational burdens but also raises
the risk of oversmoothing, which can lead to the ne-
glect of crucial local action features. To address this
issue, we propose a novel multi-scale adaptive large-
kernel attention graph convolutional network (MSLK-
GCN) to effectively aggregate local and global spatio-
temporal correlations while maintaining the computa-
tional efficiency. The core components of the network
include multi-scale large kernel graph convolution mod-
ule (MLKAGC), multi-channel adaptive graph convo-
lution module (MSGC), and multi-scale temporal self-
attention (MSTC) module. MLKAGC adaptively fo-
cuses on active motion regions by utilizing a large con-
volution kernel and a gating mechanism, effectively cap-
turing long-distance dependencies within the skeleton
sequence. Meanwhile, MSGC dynamically learns the
relationships between different joints by adjusting the
connection weights between nodes. To further enhance
the model’s ability to capture temporal dynamics, the
MSTC module effectively aggregates the temporal in-
formation by integrating ECA with multi-scale convo-
lution. In addition, we use a multi-stream fusion strat-
egy to make full use of different modal skeleton data,
including bone, joint, joint motion, and bone motion.
Exhaustive experiments on three scale-varying datasets
i.e., NTU-60, NTU-120, and NW-UCLA, demonstrate
that our MSLK-GCN can achieves state-of-the-art per-
formance with fewer parameters.
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1. Introduction

Action recognition has emerged as a crucial task in
computer vision, aiming to identify human actions from
videos. It has been widely applied in content-based retrieval
[1], video surveillance [7] and human-computer interaction
[28]. Despite the progress made in RGB-based methods
[26][2], these approaches often struggle with robustness,
being particularly vulnerable to noise factors like variations
in brightness, background, and clothing. Later, some skele-
ton based methods [4][11][18][41] have been developed.
Unlike RGB-based approaches, the skeleton data represents
the human body as a series of 2D or 3D key point coordi-
nates. This representation not only simplifies the computa-
tional process but also enhances robustness against occlu-
sion and background interference, making it a more reliable
alternative in dynamic environments.

Deep learning methods have achieved performance im-
provements in skeleton action recognition, including recur-
rent neural networks (RNNs) [15][16], convolutional neural
networks (CNNs) [37][17], graph convolutional networks
(GCNs) [38][12] and transformer-based methods [20][21].
RNNs and their variants are adept at handling sequence
data but fail to capture spatial relationships. CNNs, while
effective at extracting spatial features, overlook temporal
dynamics. Transformer-based methods, with their self-
attention mechanism, can manage long-range dependencies
but suffer from high computational complexity, particularly
when processing long sequences or high-resolution inputs.
GCNs, naturally align with the graph structure of skeleton
data, allowing for efficient feature integration through mes-
sage passing between skeleton joints, offering a flexible and
effective solution for skeleton-based action recognition.

Despite the advancements in GCN-based methods, many
existing GCN-based methods rely on a fixed adjacency
matrix, which focuses primarily on capturing local rela-
tionships between neighboring nodes. To address this
limitation, Shi et al. [24] introduce an adaptive graph
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convolutional neural network that dynamically parameter-
izes the skeletal graph structure, allowing for joint learn-
ing and co-updating within the model framework. Sim-
ilarly, Xia et al. [36] integrate an MD-AGCN module
for adaptive graph topology and multidimensional spatial-
temporal-channel analysis. To better capture global mo-
tion features, Liu et al. [5] present a multi-scale disen-
tangled graph convolution approach and a G3D module for
integrated spatial-temporal graph convolutions, employing
dense cross-spacetime edges for efficient long-range mod-
eling. However, when models stack multiple GCN layers to
capture global dependencies, a challenge arises with over-
smoothing. As the number of layers increases, node fea-
tures begin to blend with those of neighboring nodes, caus-
ing a loss of feature distinctiveness. This blending reduces
the models ability to capture crucial long-range dependen-
cies, making it difficult to distinguish between subtle ac-
tions like “drinking water” and “putting on a hat,” both of
which involve hand-head interactions but require the per-
ception of fine-grained variations in joint relationships. To
cope with this defect, researchers introduced attention mod-
els to effectively capture the long-distance relations. Pliz-
zari et al. [8] use the Transformer self-attention operator to
model dependencies between joint points more effectively.
Liu et al. [13] leverage a novel partition-aggregation tempo-
ral Transformer for effective long-range dependency. How-
ever, these attention-based methods often overlook the syn-
ergies between local joints and fail to fully integrate local
and global information. To address this issue, Chen et al.
[3] combine GCNs with a Transformer architecture, creat-
ing a Pyramid Spatial-Temporal Graph Transformer that al-
ternates between local and global information processing.
While this design improves performance, it often requires
a large number of parameters to effectively model interac-
tions across spatial and temporal domains.

To tackle the aforementioned questions, we propose a
novel multi-scale adaptive large-kernel attention graph con-
volution network (MSLK-GCN), designed to effectively
aggregate global and local features while maintaining the
computational efficiency. The network is composed of three
key modules: multi-scale large-kernel convolution (MLK-
AGC) module, adaptive graph convolution (MSGC) mod-
ule, and multi-scale time self-attention (MSTC) module.
Specifically, multi-scale large-kernel convolution (MLK-
AGC) module captures both local and global dependen-
cies by leveraging a multi-scale large-kernel attention op-
erator (MLKA) and a simplified gated spatial attention
unit (GSAU). MLKA is responsible for extracting features
across different scales and fusing them to reduce the risk
of over-smoothing, ensuring that the model can still capture
long-range dependencies effectively. In parallel, the GSAU
reduces parameter complexity while adaptively enhancing
the model’s focus on key skeleton features, optimizing the

balance between complexity and performance. Building on
the local-global feature extraction from MLKAGC, adap-
tive graph convolution (MSGC) module further refines the
models representation by adaptively learning the skeleton’s
topology for each GCN layer and sample. This dynamic ad-
justment ensures that the model can better emphasize crit-
ical behavioral features while also improving local feature
aggregation. To further enhance the model’s ability to cap-
ture temporal dynamics, the MTC module combines multi-
scale time convolutions with an efficient channel attention.
This allows it to integrate long-term temporal dependen-
cies with the spatial features extracted by the MLKAGC
and MSGC modules, achieving a more comprehensive rep-
resentation of both spatial and temporal information. Ad-
ditionally, our model employs a multi-stream framework to
explicitly capture the second-order information of the skele-
ton data, effectively combining it with first-order informa-
tion.

The primary contributions of this work are summarized
as follows:

• We propose a multi-scale adaptive large kernel atten-
tion graph convolutional network (MSLK-GCN) that
effectively aggregates both global and local motion
features, improving the expression ability of the model
while maintaining the computational efficiency of the
model.

• We introduce a multi-scale large kernel graph convo-
lution network (MLKAGC), which integrates a multi-
scale large kernel attention module (MLKA) and gat-
ing unit (GSAU). This design mitigates the over-
smoothing problem associated with excessive stacking
of graph convolution layers while effectively aggregat-
ing global motion features through large kernel convo-
lution blocks.

• We design an adaptive graph convolutional network
(MSGC) and a multi-scale temporal self-attention
(MSTC) module. The MSGC adaptively learns the
topological structure of the graph to emphasize key lo-
cal action features, while the MTC module effectively
aggregates the temporal information by integrating an
efficient channel attention with multi-scale convolu-
tion.

2. Related Work

2.1. Skeleton-based action recognition

The representation of skeleton data significantly influ-
ences the performance of action recognition. Early works
[29][30] typically relied on handcrafted features, which re-
quired expert knowledge for their design and might not cap-
ture the full complexity of the data. With the advance-



ment of deep learning, automatic feature extraction methods
[4][12] have gradually become the mainstream.

Skeleton recognition methods based on graph convolu-
tional networks (GCNs) have been widely applied. Notably,
there are two main variants of GCN-based approaches:
spectral-based GCNs and spatial-based GCNs. The spectral
approach utilizes eigendecomposition of the graph Lapla-
cian matrix, whereas the spatial approach operates directly
on the adjacency structure of the graph. Yan et al. [38]
have introduced an innovative framework known as Spatial
Temporal Graph Convolutional Networks, which surpasses
traditional approaches by autonomously discerning spatial
and temporal dynamics within datasets. Shi et al. [24]
proposed the adaptive graph convolutional neural network,
which constructed a two-stream framework to explicitly use
the second-order information of skeleton data, and parame-
terize the graph structure of skeleton data and embed it into
the network for joint learning and updating with the model.
Li et al. [12] introduced an encoder-decoder architecture
that stacks action-structure graph convolution and tempo-
ral convolution as the basic building blocks, simultaneously
learning spatial and temporal features for action recogni-
tion, capturing richer dependencies. Chen et al. [4] intro-
duced the innovative CTR-GC model for skeleton-based ac-
tion recognition, enabling dynamic topology adaptation and
efficient feature integration across channels. Wen et al. [34]
utilized sample-dependent latent relations and hierarchical
structures in human skeletal data, along with efficient local
and non-local temporal blocks, to enhance action recogni-
tion performance. Lee et al. [11] proposed an architecture
of hierarchical decomposition graph convolutional network
with a novel hierarchical decomposition graph , which can
extract both primary structural adjacency and distant edges,
and utilize them to construct an HD-Graph that includes
these edges within the same semantic space of human skele-
ton data. Liu et al. [19] proposed a multi-scale aggregation
scheme to distinguish the importance of nodes in differ-
ent neighborhoods for effective long-range modeling, and
proposed that the G3D module uses dense cross-temporal
edges as skip connections for direct information propaga-
tion across time-space graphs. Song et al. [27] designed
a composite scaling strategy to synchronously expand the
model’s width and depth, ultimately achieving a cluster of
efficient GCN baselines with high accuracy and a small
number of trainable parameters. While these studies have
achieved satisfactory results in addressing the recognition
of distant joints, the inherent limitations of Graph Convolu-
tional Networks (GCNs) have led many models to rely on
excessive stacking of convolutional layers to achieve recog-
nition performance. This approach significantly increases
the likelihood of feature over-smoothing in models follow-
ing multiple layers of stacking.

Concurrently, methods based on the Transformer archi-

tecture have also gained increasing popularity. Plizzari et al.
[20] used the Transformer self-attention operator to model
the dependencies between joints, and combined the spatial
and temporal self-attention modules in a two-stream net-
work to further enhance the performance of the model. Liu
et al. [23] leverage a novel partition-aggregation tempo-
ral Transformer for effective long-range dependency and
subtle temporal structure capture, along with a topology-
aware spatial Transformer for enhanced spatial correlation
modeling. While these models have achieved satisfactory
results, they primarily address the recognition of distant
joints, somewhat neglecting the local coordination among
joints and failing to effectively integrate the two aspects.

2.2. Multi-scale large kernel attention

The self-attention mechanism was originally designed
for natural language processing tasks. Due to its excellent
feature capture ability, it has gradually emerged in the field
of computer vision. However, the complexity of image data
brings great challenges to the application of self-attention
mechanism, especially the multi-dimensional characteris-
tics of skeleton data. Compared with the use of multiple
small convolution kernels to gradually increase the recep-
tive field, the direct use of large convolution kernels can
achieve the same effect in fewer layers, thereby reducing the
number of parameters and calculations of the model. Guo
et al. [8] proposed a new linear attention mechanism, called
large kernel attention (LKA), to achieve adaptive and long-
distance association of the model while avoiding the defects
of self-attention. In order to solve the problem of secondary
increase in computation and memory occupation caused by
the increase of convolution kernel size in the deep convolu-
tion layer of LKA module, Lau et al. [10] proposed a new
large separable kernel attention module for visual attention
network. By decomposing the two-dimensional convolu-
tion kernel of the deep convolution layer into cascaded hor-
izontal and vertical one-dimensional convolution kernels,
the computational and memory requirements are reduced.
Wang et al. [33] proposed a multi-scale attention network,
which improves the large-core attention through multi-scale
and gating schemes to obtain rich attention maps of dif-
ferent granularities to improve the performance of convo-
lutional neural networks in super-resolution tasks.

Recent work has achieved satisfactory results by com-
bining large-core attention with skeleton behavior recog-
nition. Liu et al. [18] introduced large kernel attention
into skeleton-based action recognition tasks to model long-
distance dependencies. However, it is worth noting that
LKAGCN may focus more on the capture of global fea-
tures and ignore the aggregation of local features. In ac-
tion recognition, local features (such as small movements
of hands or feet) are also very important, especially in com-
plex action sequences.
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Fig.1. Framework of the proposed multi-scale adaptive large kernel attention graph convolutional network. (a): Pipeline of the MSLK-GCN, comprising of
10 MSLKGC module, and each module includes MSGC, MLKAGC, and MSTC. (b): The prediction part of the recognition module. (c): The architecture
of the MSGC. (d): The structure of the MLKAGC.

3. Method

In this section, we first describe the overview of
MSLKGC in Section 3.1. Then we describe the overall ar-
chitecture of MLKAGC in Section 3.2. Following that, the
detailed structure of MSGC and MSTC modules are intro-
duced in Section 3.3 and Section 3.4, respectively. Finally,
we introduce the multi-stream input structure in Section 3.5.

3.1. Overview

The overall architecture of the MSLKGC model is
shown in Fig.1. Our model comprises of 10 spatio-temporal
modules, organized into three stages with 4, 3, and 3 mod-
ules, respectively. Each module includes a spatial and a
temporal component. The spatial module is composed of
two MLKAGC and one MSGC, which are used to ex-
tract the global and local information of the skeleton re-
spectively. In the MLKAGC module, there are two sub-
modules, MLKA and GSAU. Input features are fed into
each sub-module, where convolution kernels of different
sizes capture multi-scale features. The spatial attention
mechanism enables the model to focus on the most impor-
tant area for skeleton recognition, filtering out irrelevant
noise. In the MSGC module, the adaptive graph convo-
lution block dynamically adjusts the key joint weight in-
formation from the skeleton data. By combining MLK-
AGC and MSGC, the module generates global and lo-
cal features, enabling effective feature fusion into a new
feature representation. This new feature is then passed
into the multi-scale time self-attention convolution mod-
ule (MSTC), which leverages an efficient channel attention
mechanism and a multi-scale temporal module for time fea-
ture aggregation.

3.2. Multi-scale adaptive large kernel attention graph
convolution

Traditional GCNs improve their ability to capture global
features through multi-layer stacking. However, as the
number of layers increases, convolutions progressively
blend neighboring node features, which reduces feature dis-
tinctiveness and leads to over-smoothing. This can ob-
scure important long-range dependencies. To address this
and efficiently capture global skeletal information without
encountering the over-smoothing problem, we introduce
the MLKAGC module. This module combines multi-scale
large kernel attention (MLKA) with a gating spatial atten-
tion unit (GSAU), using large receptive fields and gating
mechanisms to consolidate indirect dependencies, as shown
in Fig.1(d).

Multi-scale Large Kernel Attention (MLKA). In the
MLKA module, we effectively aggregate long-distance
joint points by combining large kernel decomposition and
multi-scale learning. Firstly, we transform the input feature
into a high-level feature x ∈ RC×T×V , and use 1×1 convo-
lution to change the number of channels, which is denoted
as Conv1×1, as shown in Eq.1:

x′ = Conv1×1(x) (1)

Then, x
′

is divided into G groups according to the num-
ber of channels, and the number of channels in each group

is
C

G
. Among them, in order to better adapt to the skele-

ton data, we set the G of the first layer to 3, and the G
of the 2-10 layers to 4. Specifically, in the first layer of
graph convolution, x

′
is divided into three groups, each

processed using different sizes of large kernel convolution
(3×3, 5×5, 1×1),(5×5, 7×7, 1×1), and (7×7, 9×9, 1×1).



Additionally, varying dilation rates of 2, 3, and 4 are ap-
plied to capture features at different scales effectively. Dif-
ferent from the former, the fourth group uses different sizes
of large kernel convolution (9× 9, 11× 11, 1× 1) and dif-
ferent expansion rates 8. After multi-scale convolution cal-
culation, agi,ki is obtained. The process is shown in Eq.2
and Eq.3:

xg ∈ {xg1 , xg2 , xg3 , xg4} , xgi ∈ RC×T×V (2)

agi,ki = Convki×ki,di (xgi) (3)

where xgi is the data of group i, and a(gi,ki) represents the
data after the convolution operation, Conv(ki×ki,di) repre-
sents the convolution operation, where ki is the convolution
kernel size used in group i, and di is the corresponding ex-
pansion rate.

At the same time, deep separable convolution (DWConv)
is used for each set of features xgi . Deep separable convo-
lution first performs spatial convolution independently on
each input channel and then merges the results, effectively
capturing spatial features. After that, each group agi em-
ploys the gating mechanism that uses the gating weight γgi
to adjust the original packet data xgi :

γgi = σ ( DWConv ( agi ) ) (4)

x
′

gi = xgi ⊙ γgi (5)

where ⊙ represents the element-by-element multiplication,
and σ is the Sigmoid activation function.

All the modulated feature groups x
′

gi are stitched to-
gether to form a complete feature tensor xmod (Eq.6).

xmod = Concat ( x
′

0, x
′

1, . . . , x
′

G−1 ) (6)

By multiplying the spliced feature tensor xmod with the
initial aggregated high-level feature x

′
element by element,

x
′

mod is obtained. The process is shown in Eq.7:

x
′

mod = xmod ⊙ x
′

(7)

Finally, another 1×1 convolution layer is used to map the
modulated feature x

′

mod back to the original channel num-
ber C, and the final output Eq.8 is obtained:

MLKA ( x ) = Conv1×1 ( x
′

mod ) (8)

Gated Spatial Attention Unit (GSAU). GSAU uses
simple spatial attention and gated linear units to reduce pa-
rameters and calculations by using simpler structures, al-
lowing the model to adaptively adjust the response of the
feature map to better capture spatial information. We as-
sume that the output data of MLKA(x) is y, and y is in-
troduced into GSAU for gating unit calculation. Firstly, for
the input data y ∈ R(C×T×V ), the normalized feature is

mapped to a new feature space by using the 1 × 1 convo-
lution layer, and the output is divided into two parts y

′

1 and
y

′

2 according to the number of channels, as shown in the
formula:

( y1, y2 ) ∈ Conv1×1 ( y ) (9)

where y2 is normalized to obtain y
′

2, and y
′

2 is processed
by depthwise separable convolution DWConv, such as for-
mula:

y
′′

2 = DWConv ( y
′

2 ) (10)

where y
′′

2 is multiplied with y1 element by element to obtain
y

′
, as shown in the formula:

y
′
= y

′′

2 ⊙ y1 (11)

After 1× 1 convolution of the obtained y
′
, Y is obtained

by adjusting the layer normalization and scaling parameters,
as shown in the formula:

Y = LayerNormal ( Conv1×1 ( y
′
) ) (12)

Finally, the adjusted feature Y is added to the original
input y to obtain the final output, as shown in the formula:

GSAU (y) = Y + y (13)

3.3. Multi-channel adaptive graph convolution

In skeletal data, joint positions and relationships are
action-dependent, with temporal variations in skeleton data
exposing action sequences and dynamics. Fixed topolo-
gies may inadequately capture these dynamics, constrain-
ing model adaptability to changes. Thus, we introduce
the MSGC module, integrating spatial relationship mod-
eling via parallel structures to enhance multi-scale feature
extraction of topological structures, thereby bolstering the
model’s capacity for precise recognition and interpretation
of complex spatial-temporal relationships in action recogni-
tion tasks.

The previous method based on STGCN uses a predefined
graph to perform graph convolution on the skeleton data,
and uses the formula to implement:

fout =

Kv∑
k

WkfinAk (14)

where, f represents the feature map, fin ∈ R(Cin×T×N) is
the input feature, fout ∈ R(Cout×T×N) is the output feature,
N and T represent the number of joints and frames in the
skeleton data, Cin and Cout represent the input channel and

output channel respectively. Ak = ∧− 1
2

k

(
−
A

)
k

∧− 1
2

k , where

−
Ak is equivalent to the N ×N adjacency matrix, and the el-

ement
−
A

ij

k represents whether the vertex is in the subset Sik



of vi. However, the fixed skeleton data graph is not suitable
for identifying skeleton actions. Therefore, as shown in the
Fig.1(c), this paper proposes a multi-channel adaptive graph
convolution module (MSGC). By introducing the parame-
terized adjacency matrix Bk, the adaptive graph Ck and the
dynamic adjacency matrix Dk, the adaptive graph structure
is generated by modifying the formula as show in Eq.15:

fout =

Kv∑
k

Wkfin ( Ak +Bk + Ck +Dk ) (15)

The key difference between Eq.14 and Eq.15 is reflected
in the adjacency matrix. Ak, Bk, Ck, and Dk are variables
used to describe different parts of the graph topology in the
adaptive graph convolutional network. Specifically, Ak rep-
resents the original adjacency matrix, which represents the
physical structure of the human skeleton, is set manually
and is fixed in all layers and input samples. This adja-
cency matrix reflects the natural connection between human
joints, for example, it may represent the connection between
the arm joint and the shoulder joint. Bk is a learnable ad-
jacency matrix whose elements are parameterized and op-
timized with other parameters during the training process.
Unlike Ak, Bk has no fixed value limit, which means that
the structure of the graph can be fully learned from the train-
ing data. Bk can represent any value, which not only indi-
cates whether there is a connection between two joints, but
also indicates the strength of the connection. Ck is a data-
dependent graph that learns a unique graph for each sample.
It is calculated by the SoftMax function based on the input
feature graph, which represents the similarity between ver-
tices, so as to learn the data-specific graph structure:

Ck = Softmax ( fT
inW

T
θkW∅kfin ) (16)

where Wθ and Wϕ are the parameters of θ and in the em-
bedded function.

Dk is a dynamic adjacency matrix, and its elements ob-
tain learning parameters through multi-scale feature trans-
formation during training, which enhances the flexibility of
the graph. The multi-scale feature transform is calculated
by convolution of (5× 5, 3× 3, 1× 1), which is denoted as
MSConv, and expressed as:

Dk = MSConv ( fin ) (17)

3.4. Multi-scale temporal self-attention convolution

In this section, we introduce the self-attention time con-
volution module of the model in detail. As shown in Fig.2,
we embed the efficient channel attention (ECA) module be-
tween the spatial convolution module and the temporal con-
volution module. This layout enables an efficient channel
attention to more effectively aggregate information from

   

out
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Fig.2. The basic block of our MSTC, which includes ECA and MTC mod-
ules.

spatial and temporal dimensions, thereby enhancing the fea-
ture extraction ability of the model.

Efficient Channel Attention (ECA). Inspired by [32],
we consider that the model’s ability to extract features can
be enhanced by adaptively emphasizing the salient channels
in the input feature map. By learning the importance weight
of each channel, ECA can highlight those feature channels
that are more discriminative for identifying skeleton actions
while suppressing less important channels. This helps the
model to focus more on useful information in local features,
thereby improving the accuracy of recognition.

Firstly, according to the number of input channels C, the
kernel size K is calculated, as shown in the formula:

K =

[
log2C + b

γ

]
+ 1 (18)

If K is even, then add K to 1 to ensure that it is an odd
kernel.

After that, we use average pooling to perform channel
compression on the input data xin to generate a feature map
with a shape of (N, 1, T, V ). After that, the channel weight
y is calculated by the convolution kernel activation func-
tion. Finally, the channel weight y is extended back to the
original channel number and multiplied by the input feature
map xin to achieve channel weighting. The formula can be
expressed as:

xout = xin⊙(σ ( Conv ( AdaptiveAvgPool2d ( xin ) ) ))exp
(19)

where exp is the channel weight y, which is obtained
through the expansion operation expand to match the chan-
nel dimension of xin. ⊙ represents the multiplication by
elements.

Multi-scale temporal convolution (MTC). Since the
ability of GCN to extract information relies on effective
feature decomposition, a complex network structure with a
large number of parameters in skeleton graph input can re-
sult in feature redundancy, significantly increasing the mod-
els computational and storage costs. Additionally, most cur-
rent temporal modules use single-scale aggregation, which
limits their ability to aggregate complex skeleton data. To
address this, as shown in Fig.2, we propose a more stream-
lined multi-scale time module that reduces model complex-
ity without compromising performance.



(a) (b) (c) (d)

Fig.3. Multi-stream fusion skeleton diagram. Visualization of multi-stream
fusion strategy, which includes bone, joint, joint motion, and bone motion.
We take the “clap” action as an example. (a) The point represents the
human joint. (b) The line segment represents the human skeleton. (c) The
solid line connecting the joint points between adjacent frames represents
the joint motion. (d) The dashed line connecting the bone points between
adjacent frames represents the bone motion.

3.5. Multi-stream fusion strategy

In order to realize the fusion of multi-level information
to further improve the performance of our MSLK-GCN in
skeleton recognition tasks. We adopt a multi-stream fusion
strategy to model joint and bone information and their mo-
tion information simultaneously in a multi-stream frame-
work. As shown in the Fig.3, we adopt a multi-stream
fusion strategy and perform a series of processing on the
body joints in human skeleton data. Specifically, Fig.3
(a) and (b) represent human joint and bone data, we as-
sume that the source joint is jt,i = ( xt,i, yt,i, zt,i ), and
the target joint is jt,j = ( xt,j , yt,j , zt,j ), which are de-
fined as the joint near the center of gravity of the skele-
ton and the joint far from the center of gravity, respec-
tively. Where, from the source joint to the target joint
bt,i,j = ( xt,j − xt,i, yt,j − yt,i, zt,j − zt,i ) represents the
skeletal coordinates. Fig.3 (c) and (d) represent joint motion
and skeletal motion data, respectively. For motion data, it
is defined as the coordinate difference of the same joint or
bone in a continuous frame. For example, given the joint
point jt,i and the joint point j(t+1),i of adjacent frames,
the joint motion of adjacent frames can be expressed as
mt,t+1,i = ( xt+1,i−xt,i, yt+1,i−yt,i, zt+1,i−zt,i ). Sim-
ilarly, the skeleton coordinates of adjacent frames can be
expressed as mt,t+1,i,j = bt+1,i,j − bt,i,j . Finally, we in-
tegrate the bones, joints and their movements into the four
streams, and use the weighted method to fuse the scores of
the four streams to obtain the final prediction results.

4. Experiments

In this section, in order to comprehensively evaluate the
effectiveness of our MSLK-GCN, we conduct extensive ex-
periments on the NTU-RGB+D-60, NTU-RGB+D-120, and
Northwestern-UCLA datasets.

4.1. Datasets

NTU-RGB+D-60(NTU-60) [22]. The NTU-60 [22]
comprises an extensive collection of 3D human action
samples, captured utilizing Kinect sensors, and is fre-
quently utilized for action recognition tasks. The complete
NTU-RGB+D dataset comprises 56,880 skeletal motion se-
quences across 60 action categories. The collection encom-
passes depth data, 3D skeletal structures, color frames, and
thermal imagery sequences. It comprises the spatial coordi-
nates of 25 principal skeletal joints for each frame, with a
maximum of two individuals per frame. Two distinct evalu-
ation benchmarks exist: the Cross-subject (X-Sub) and the
Cross-setup (X-Set) configurations.

NTU-RGB+D-120(NTU-120) [14]. NTU-120 [14] ex-
tends NTU-60, adding another 60 classes and another
57,600 video samples, that is, NTU-120 has a total of 120
classes and 114,480 samples. The authors of this dataset
recommend two benchmarks: (1) Cross-Subject (X-Sub):
Similar to NTU-60, 53 subjects were used as training data
and the remaining 53 subjects were used as validation data.
(2) Cross-Setup (X-Set): Use the setting of even id as train-
ing data, and use the setting of odd id as validation data.

Northwestern-UCLA(NW-UCLA) [31]. The dataset is
a multi-view 3D action recognition dataset, which focuses
on capturing RGB, depth information and human skele-
ton data of human actions from multiple perspectives. It
uses three Kinect cameras to capture RGB, depth and hu-
man skeleton data simultaneously. It contains 1494 video
clips covering 10 categories, each performed by 10 actors.
We use the same evaluation protocol in [31], using sam-
ples from the first two cameras as training data, and samples
from the other camera as test data.

4.2. Implementation Details

Our experiments are implemented on the PyTorch deep
learning framework. The stochastic gradient descent (SGD)
momentum is set to 0.9. The cross-entropy function is em-
ployed to calculate the loss.

In addition, all experiments are carried out on NVIDIA
GeForce RTX 3090 GPU. All skeleton sequences are nor-
malized to 64 frames. For samples with less than 64 frames,
we fill them by repeating the existing frames., and for sam-
ples with more than 64 frames, we cut them.

For NTU-60 and NTU-120, the batch size is set to 64,
the learning rate starts at 0.1, and then divides by 10 at the
35th, 55th, and 65th rounds. The training process ends at
the 300th round, the weight attenuation is set to 0.0004, and
the batch size is set to 64. For Northwestern-UCLA, the
weight decay is set to 0.0001. Other parameter settings are
the same as the NTU-60 dataset.



Methods Year NTU-60 NTU-120 #Param.(M)X-Sub(%) X-View(%) X-Sub(%) X-Set(%)
ST-LSTM [15] 2016 69.2 77.7 58.2 60.9 -
GCA-LSTM [16] 2017 74.4 82.8 - - -
AGC-LSTM [25] 2019 95.0 89.2 - - -
Synthesized CNN [17] 2017 80.0 87.2 60.3 63.2 -
Ta-CNN [37] 2022 90.4 94.8 85.4 86.8 0.53†
ST-GCN [38] 2018 81.5 88.3 70.7 73.2 3.10∗
DGNN [23] 2019 89.9 96.1 - - 26.24†
AS-GCN [12] 2019 86.8 94.2 77.9 78.5 9.50∗
2s-AGCN [24] 2019 88.5 95.1 82.9 84.9 6.94∗
MS-G3D [19] 2020 91.5 96.2 86.9 88.4 6.40∗
Shift-GCN [5] 2020 90.7 96.5 85.9 87.6 10.00 †
SGN [39] 2020 89.0 94.5 79.2 81.5 0.69†
CTRGCN [4] 2021 92.4 96.8 88.9 90.6 1.46†
EfficientGCN-B4 [27] 2022 92.1 96.1 88.7 88.9 1.10†
SMotif-GCN+TBs [34] 2022 90.5 96.1 87.1 87.7 -
LKAGCN(2s) [18] 2023 90.7 96.1 86.3 87.8 -
MS-TEGCN [9] 2023 91.4 96.6 86.5 88.0 15.80†
GSTLN [6] 2023 91.9 96.6 88.1 89.3 1.50†
MCTM-Net [35] 2024 92.8 96.8 89.3 91.0 -
STTR [20] 2021 89.9 96.1 84.3 86.7 12.46∗
STTFormer [21] 2022 92.3 96.5 88.3 89.2 5.70∗
TranSkeleton [13] 2023 92.8 97.0 89.4 90.5 2.20†
STD-Transformer [40] 2024 92.6 96.4 88.9 90.8 -
MSLK-GCN (Ours) 93.5 97.2 89.8 91.8 4.75

Table 1. Accuracy (%) comparison of classification accuracy with existing methods on NTU-60 and NTU-120 dataset. ∗: These results are
implemented based on the released codes. †: These results are provided by their authors.

4.3. Comparison with state-of-the-art methods

To verify the superiority of our proposed model, we com-
pare it with the state-of-the-art methods on NTU-60, NTU-
120 datasets and NW-UCLA.

Results on the NTU-60 dataset: As shown in the Ta-
ble 1, we compare methods based on LSTM, CNN, GCN,
and Transformer. Among them, the LSTM-based method
has [15][16][25], the CNN-based method has [37][17],
the GCN-based method has [4][18][38][12][34] and the
Transformer-based methods have [20][21][13][40]. In the
LSTM-based methods, our model is 24.3% and 19.5%
higher than the ST-LSTM [15] method on the X-Sub and
X-View benchmarks, respectively. In the CNN-based meth-
ods, our model is 3.1% higher than the Ta-CNN [37] on
the X-Sub benchmark. In the Transformer-based method,
STTR [20] uses the Transformer self-attention operator to
model the dependencies between joints, and uses the spatial
and temporal self-attention modules to model the skeleton
information. Compared with ST-TR, our model improves
3.6% on the X-Sub benchmark test set, and the parame-
ter quantity decreases by 7.71M. This is due to the multi-
scale large kernel graph convolution module fused in our
method, which better captures the long-range dependence
of long-distance joints with fewer parameters. In the GCN-
based methods, SMotif-GCN [34] employs a multi-scale

enhanced graph convolution module to comprehensively
capture the feature representations of joints and bones. Our
model is 3.0% and 1.1% higher than it on the X-Sub and
X-View benchmarks, respectively, because our multi-scale
large kernel graph convolution module overcomes the over-
smoothing problem caused by over-stacked graph convo-
lution by extracting features of different scales and fusing
them. LKAGCN [18] effectively models the long-range
dependency of the skeleton by introducing the large ker-
nel attention module into the skeleton-based action recog-
nition task. On the X-Sub benchmark, it is 2.8% lower than
our method. This is because while our model introduces
a multi-scale large kernel graph convolution module, the
proposed adaptive adjacency matrix module enhances the
model’s ability to express the key behavior features in the
skeleton by learning the graph topology of different GCN
layers and skeleton samples, so as to better identify differ-
ent skeleton actions.

Results on the NTU-120 dataset: In order to
make the results more reliable, we compare the model
with LSTM-based [15], CNN-based [37][17], GCN-based
[4][18][38][12] and Transformer-based [20][21][13][40]
approaches. As shown in the Table 1, the effectiveness of
our model is proved. Our model achieves 89.8% and 91.8%
on the X-Sub and X-Set benchmarks, respectively. At sim-



Methods Year NW-UCLA(%)
AGC-LSTM [25] 2019 93.3
Synthesized CNN [17] 2017 92.6
Ta-CNN [37] 2022 96.1
Shift-GCN [5] 2020 94.6
SGN [39] 2020 92.5
CTRGCN [4] 2021 96.5
HDGCN [11] 2023 97.2
GSTLN [6] 2023 94.8
MCTM-Net [35] 2024 97.2
MSLK-GCN (Ours) 97.8

Table 2. The classification accuracy is compared with the existing
methods on the NW-UCLA dataset. The top-1 accuracy is listed.

ilar accuracy, our model parameters are significantly lower
than other SOTA models. We consider that this improve-
ment is due to the fusion of the multi-scale large kernel
graph convolution module in our method, and the concise
multi-scale time self-attention convolution module. The
concise and effective feature aggregation uses a lower pa-
rameter amount to ensure the performance of the overall
model.

Results on the NW-UCLA dataset: As shown in the
Table 2, the accuracy of our model on NW-UCLA dataset is
97.8%, which is 4.5% higher than Ensemble AGC-LSTM
[25] and 5.2% higher than Synthesized CNN [17]. These
methods capture the dynamic changes of actions by pro-
cessing time series and extracting spatial features, respec-
tively. CTR-GCN [4] uses channel-level topological refine-
ment graph convolution to dynamically learn different topo-
logical structures and effectively aggregate joint features in
different channels. Our method demonstrates a competitive
performance, outperforming it by 1.3%. GSTLN [6] com-
bines GSTL with the time modeling unit to generate the
global spatio-temporal collaborative topology of the joint.
Our method improves by 3.0% over it, benefiting from the
integration of our MLKAGC and MSGC module, which
aggregate the global features of the skeleton while ensur-
ing the effective aggregation of local features. Therefore,
comparison with the above methods on UCLA datasets, our
method not only applies to large-scale datasets, but also
achieves excellent performance on small-scale datasets.

4.4. Ablation Study

In this section, in order to demonstrate the effectiveness
of our proposed MSLK-GCN, we conduct ablation experi-
ments on three datasets, including NTU-60, NTU-120 and
NW-UCLA datasets.

4.4.1 Discussion of configuration

Evaluation of the Modules. To verify the effectiveness of
each module of our proposed model, we set up ablation

Model Configurations Par. Acc(%)
Baseline 2.09 85.41
Baseline+MSGC 3.14 90.80(↑5.39)
Baseline+MLKAGC 3.99 88.55(↑3.14)
Baseline+MSTC(ECA+MTC) 2.53 88.62(↑3.21)
+1MLKAGC+MSGC 4.31 92.61(↑7.20)
+2MLKAGC+MSGC 4.31 92.70(↑7.29)
+3MLKAGC+MSGC 4.31 90.90(↑5.49)
MSLK-GCN w/o res 4.75 92.94(↑7.53)
MSLK-GCN w/o ECA 4.75 92.71(↑7.30)
MSLK-GCN(Ours) 4.75 93.52(↑8.11)

Table 3. The number of parameters and prediction accuracy of the
model under different module combinations. MLKAGC stands for
Multi-scale Large Kernel Attention Graph Convolution, MSGC refers
to the Multi-channel Adaptive Graph Convolution module. Par.: In-
dicates Params (M).

experiments on the X-Sub benchmark dataset of NTU-60.
We replace the adjacency matrix of ST-GCN [38] with a
parametrizable adjacency matrix to establish the baseline
model.

The results are shown in Table 3. First, we add the
MSGC, MLKAGC, ECA, and MTC modules to the baseline
model individually and observe significant improvements in
accuracy, confirming the effectiveness of each module.

Then, to further explore the effectiveness of different
model architectures, we replace the GCs module in the
baseline model with various architectures. The results in-
dicate that although the parameter counts of the different
aggregation modules are similar, the accuracy of MSLK-
GCN increases by 8.11%. Moreover, all model configu-
rations outperform the baseline model, demonstrating that
our model significantly enhances recognition performance
without significantly increasing the number of parameters.

Discussion of parameters. When the GNN model cap-
tures the complex relationships between nodes in the graph,
this may lead to the need for more computing resources
for model training. Although the Transformer-based meth-
ods can effectively enhance the recognition of long-distance
joints in the skeleton, it has high computational costs due
to its complex self-attention mechanism when dealing with
skeleton data with high complexity and diversity. The
MLKAGC module reduces the computational complexity
by decomposing the large kernel convolution into multiple
small kernel convolutions. This decomposition method can
reduce the number of parameters and improve the computa-
tional efficiency of the model. Therefore, we set up ablation
experiments on the X-Sub benchmark dataset of NTU-60
and compared the model with parameters based on GNN,
GCN, and Transformer methods, as shown in Fig.4. It can
be seen that our model has obvious advantages in comput-
ing and storage overhead.
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Fig.4. Comparison of model size between our method and state-of-the-art
methods on the NTU-60 dataset under the xsub benchmark. Our model
has obvious advantages in terms of computational and storage overhead.

4.4.2 Effectiveness of multi-scale adaptive large kernel
attention

As shown in the Fig.5, we select 10 actions involving long-
distance joint dependence in the NTU-60 dataset and visual-
ize the recognition results on the X-Sub benchmark. Among
them, it can be clearly seen that our MLKAGC module
has obvious advantages in identifying such actions, which
shows that the MLKAGC module can extract the global fea-
tures of the image through multi-scale large kernel convolu-
tion, and effectively capture the large-scale information in
the image.

4.4.3 Effectiveness of multi-stream fusion strategy

We design a multi-stream fusion structure, which inputs
four types of data into the model after fusion. In order
to verify the effectiveness of the long-term fusion strategy,
we combined different input data and conducted four sets
of experiments with MSLK-GCN. The Table 4 shows the
specific performance comparison of different combinations.
The strategy we employed achieves the highest accuracy on
all three datasets. Obviously, the multi-stream fusion strat-
egy is superior to the single-stream fusion strategy, and the
fusion strategy we use by fusing the four data of bone, joint,
bone action and joint action effectively improves the accu-
racy and efficiency of action recognition.

4.5. Visualization and discussion

4.5.1 Visualization of adaptive adjacency matrix

In order to more intuitively display the different features
learned by the model, we visualize the trainable adjacency
matrices corresponding to layers 1, 3, 5, 7, 9, and 10.
Fig.6(a-c) represents the original predefined adjacency ma-
trix, and Fig.6(d-i) represents the output adjacency matrix
after each layer of training. We can clearly find that a richer
motion relationship between joints is extended in the trained
adjacency matrix. Therefore, our MSLKGC module effec-
tively improves the recognition ability of these nuances by
strengthening the capture of local features, thus showing its
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Fig.5. The effectiveness of MLKAGC module. We select 10 actions involv-
ing long-distance joint points. Yellow represents the result of removing the
MLKAGC module, and blue represents the result of adding the MLKAGC
module.

Fig.6. Visualization of the trainable adjacency matrixes corresponding to
different layers of MSGC module. (a)-(c): The initial predefined adjacency
matrix. (d)-(i): Corresponding to the adjacency matrix of 1, 3, 5, 7, 9, and
10 layers after training respectively.

unique advantages in behavior recognition tasks.
In addition, we visualize the “clapping” action to prove

the recognition performance of our model in long-distance
joints in Fig.7. It can be seen that although the left and
right hands belong to the non-physically connected long-
distance joint points, the weight of the two is significantly
higher than that of the other joint points of the body in the
heat map.

At the same time, we select two actions of “drink wa-
ter” and “eat meal” and visualize the adjacency matrix heat
map after their training Fig.8. In the “drink water” action,
it can be seen that the “left hand” and “head” with far joint
distance have higher weights, while in the “eating” action,
“between the left and right hands” and “head” have higher
weights, which indicates that our model does not ignore
local fine-grained actions while identifying long-distance
joint points.



Multi-stream NTU-60 NTU-120 NW-UCLA
X-Sub(%) X-View(%) X-Sub(%) X-Set(%) Top-1(%)

J 80.16 80.63 80.65 80.98 94.87
B 80.84 81.15 81.36 81.86 93.53
M 81.03 80.10 80.14 80.12 94.18

J+B 90.87 91.74 88.02 89.56 96.47
J+M 89.15 90.15 87.26 88.40 94.55
B+M 89.47 91.87 88.03 89.04 94.64

J+B+M 93.52 97.20 89.81 91.82 97.88
Table 4. Performance comparison of different fusion strategy combinations.

Fig.7. Visualize the adjacency matrix of the learned “clapping” action.

(a) Drink water
(b) Eat meal

Fig.8. Visualization of adjacency matrix of similar actions. The left image
is the “drink water” action, and the right image is the “eat meal” action, in
which the yellow box is the gap between the two.

4.5.2 Visualization of confusion matrix

In this section, we verify the effectiveness of the module in
effectively aggregating global and local action information
by visualizing the confusion matrix. It can be seen from the
Fig.9 that the four groups of actions of “drink water”, “eat
meal”, “put on glasses”, and “put on hat/cap” all involve
the connection between the hand and the head. The bound-
aries of these two types are not clear, which increases the
difficulty of classification. For instance, the action “drink
water” is characterized by the left hand lifting a cup to the
mouth, while “eat meal” involves both hands holding uten-
sils to the mouth. Despite the commonality of hand and
mouth interaction, the objectives and subtleties of execu-
tion differ significantly. Although both involve hand and

Fig.9. Visualization of skeleton actions for “drink water”, “eat meal”, “put
on glasses”, and “put on a hat/cap”.

head interaction, their purpose and execution details are dif-
ferent. Recent studies frequently neglect the importance of
local information extraction in the aggregation of global in-
formation. Our proposed MLKAGC and MSGC modules
adeptly integrate global and local cues to more accurately
discern features associated with specific actions.

As shown in Fig.10, we select ten similar actions con-
taining the above four groups of actions to visualize the con-
fusion matrix on the NTU-60, NTU-120 and NW-UCLA
datasets. Among them, Fig.10(a-d) is the confusion result
under three data sets. Under the NTU-60 and NTU-120
datasets, the accuracy rate is above 80%. Benefit from our
adaptive adjacency matrix module, the adjacency matrix of
similar actions is effectively distinguished, so that the over-
all accuracy rate is effectively improved. Under the NW-
UCLA dataset, it can be clearly seen that our accuracy is
above 90%. This shows that our model has also achieved
good classification results on small data sets.

Among them, Fig.11(a) is the confusion result without
using MLKAGC and MSGC modules, and Fig.11 (b) is the
confusion result after using MLKAGC and MSGC modules.
As shown in Fig.11(a), it is clear that four groups are very
vague. In the confusion matrix Fig.11(b) after module ag-
gregation, the accuracy of “drink water”, “eat meal”, “put
on glasses”, and “put on a hat/cap” increased by 10%, 10%,
7%, and 17% respectively, which effectively improved the
accuracy of distinguishing similar actions.



(a)  On the NTU-60 X-Sub benchmark (c)  On the NTU-120 X-Sub benchmark(b)  On the NTU-60 X-View benchmark (d)  On the N-UCLA Top-1 benchmark

Fig.10. Confusion matrices for selected actions on the NTU-60 and NW-UCLA dataset. We selected 10 similar actions. Among them, (a-d) are the confusion
matrices on X-Set and X-View benchmark of NTU-60, X-Sub benchmark of NTU-120, Top1% accuracy of NW-UCLA. The vertical axis label is an accurate
label, and the horizontal axis label is a prediction label.

Fig.11. Confusion matrices for selected actions on the NTU-60 X-sub
dataset. We selected 10 similar actions. (a) is the confusion matrix be-
fore adding MLKAGC and MSGC, (b) is the confusion matrix after adding
MLKAGC and MSGC. The vertical axis label is an accurate label, and the
horizontal axis label is a prediction label.

4.5.3 TSNE visualization

In order to better demonstrate the superiority of the model
in suppressing the GCN over-smoothing problem. We vi-
sualize the data distribution under the X-Sub benchmark of
the NTU-60 dataset in Fig.12. We select 10 classes in the
data set. Through the distribution of feature points on the
two-dimensional plane after t-SNE dimensionality reduc-
tion, we can clearly see that different types of actions have
been effectively separated, which indicates that our MSLK-
GCN model effectively alleviates the over-smoothing prob-
lem and has high discrimination and expression ability in
feature extraction. We can observe that at the beginning of
training, the data tends to be confused, but as our model
training progresses, the learned features have gradually be-
come clearly identifiable.

In particular, compared with NTU-60, NTU-120 con-
tains 60 additional classes, we select 10 classes for test-
ing and obtained similar experimental results, as shown in
Fig.12.

5. Conclusion

In this paper, we propose a novel multi-scale adap-
tive large kernel graph convolutional network MSLK-
GCN, which effectively aggregates local and global spatio-

Fig.12. The t-SNE visualization of feature distribution in different periods.
(a) - (c): Subgraphs obtained under the X-Sub benchmark of NTU-60.
(d)-(f): The subgraph obtained under the X-View benchmark of NTU-120.
Different colors represent different action classifications.

temporal correlations while maintaining the computational
efficiency of the model. In this work, we design a multi-
scale large-core attention network MLKAGC, which inte-
grates multi-scale large-core attention and gating mecha-
nism to adaptively adjust the attention map while captur-
ing the long-distance dependencies in the skeleton data. At
the same time, a multi-scale adaptive network MSGC is de-
signed to adaptively learn the relationship between differ-
ent joints by dynamically adjusting the connection weights
between nodes in graph convolution. Finally, our module
combines MLKAGC and MSGC to generate global and lo-
cal features for effective feature fusion to obtain a new fea-
ture. The new features are input into the multi-scale time
self-attention convolution module MSTC, which is com-
posed of ECA attention mechanism and multi-scale time
module, for time feature aggregation. We use a multi-
stream fusion strategy to perform a series of processing
on human joint points to achieve better recognition results.
Our model outperforms the state-of-the-art models on four
benchmark datasets from three interactive datasets: NTU-
RGB + D 60, NTU-RGB + D 120, and Northwestern-
UCLA. Both mathematical analysis and experimental re-



sults show that MSLK-GCN has stronger representation
ability than other graph convolutions.

We find that the model also has good generalization abil-
ity for two-person skeleton behavior recognition. There-
fore, this provides a new research idea for us to study the
complex logical relationship in two-person behavior.
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