
Concept-Guided Open-Vocabulary Temporal Action Detection

Songmiao Wang
Tianjin University

songmiaow@tju.edu.cn

Ruize Han
Shenzhen Institute of Advanced Technology,

Chinese Academy of Sciences
rz.han@siat.ac.cn

Wei Feng
Tianjin University
wfeng@tju.edu.cn

Abstract

Vision-Language (ViL) models have shown strong
open-vocabulary learning abilities in various video un-
derstanding tasks. However, when applied to Open-
Vocabulary Temporal Action Detection (OV-TAD), ex-
isting OV-TAD methods often face challenges in gener-
alizing to unseen action categories due to their reliance
on visual features, resulting in limited generalization. In
this paper, we propose a novel Concept-guided Seman-
tic Projection framework to enhance the generalization
ability of OV-TAD models. By projecting video features
into a unified action concept space, guiding the model
to leverage the abstracted action concepts present in the
video for action detection, rather than solely relying on
visual details. To further improve feature consistency
across action categories, we introduce a Mutual Con-
trastive Loss, ensuring semantic coherence and better
feature discrimination. Extensive experiments on Activ-
ityNet and THUMOS14 benchmarks demonstrate that
our method outperforms state-of-the-art OV-TAD mod-
els. Code and data are available at Concept-Guided-OV-
TAD.

Keywords: Open-Vocabulary, Temporal Action Local-
ization, Visual-language Models

1. Introduction

Temporal Action Detection (TAD) addresses the task of
identifying and classifying actions within untrimmed videos
[1, 2, 3]. In recent years, significant progress has been
made in TAD using deep learning techniques for video un-
derstanding and analysis [4, 5, 6, 7]. However, a critical
bottleneck in traditional TAD methods is their dependence
on large-scale labeled datasets, which limits their scalabil-
ity to new (unseen) action categories. To tackle this issue,
Open-Vocabulary Temporal Action Detection (OV-TAD),
also called as Zero-Shot Temporal Action Detection (ZS-
TAD) [8], has emerged as a more promising problem. OV-
TAD aims to detect actions from categories that have and
have not been observed during training [9], thereby reduc-
ing the need for extensive labeled data for various action

CILP TAD

CLIP TAD

Train: “Kickball”

Test: “Beach soccer”

CLIP TAD

Train: “Kickball”

Test: “Beach soccer”

CLIP

CLIP

video
feature

video
feature

Kicking

Passing

Field goal

P
ro

je
ct

io
n

unified action
concept space

projected
feature

T
A

D

(a) Existing Approach

(b) Ours Approach

Figure 1. Illustration of (a) existing OV-TAD methods that rely on
visual features, struggling to generalize to unseen actions due to
the visual discrepancy between training and testing sets. (b) Our
approach addresses this by projecting video features into a uni-
fied action concept space, allowing better generalization through
semantic guidance.

categories. OV-TAD typically relies on transferring knowl-
edge from seen to unseen action categories. An effective
way to achieve this is by leveraging Vision-Language (ViL)
models, such as CLIP [10], due to their strong generaliza-
tion capabilities, making them a promising tool for OV-
TAD [11, 8, 12].

Nevertheless, applying ViL models to dense prediction
tasks like OV-TAD presents unique challenges. A main
issue lies in the over-reliance on visual features to local-
ize potential target action segments. Specifically, OV-TAD
mainly contains two sub-tasks, localizing the interested ac-
tion segments from the untrimmed videos, and recogniz-
ing the action category of the video segment. Existing ap-
proaches [11, 8, 12] mainly aim to address the action clas-
sification task (especially for the unseen new actions), but
not the previous localization task. Note that, the action lo-
calization is also significantly important for the OV-TAD,
in which abundant training on the seen actions may make
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the model overfitted on these actions, and difficult to iden-
tify the unseen (open-vocabulary) action segments from the
background video (sequences without action). As shown
in Figure 1(a), prior methods, no matter using a one-stage
design or decoupling method for localization and classifi-
cation, primarily rely on the visual cues to localize the po-
tential action segments. However, this reliance on visual
features can be problematic in OV-TAD, since the visual
appearance of unseen action categories during testing may
differ significantly from that of the seen categories during
training. This visual mismatch restricts the model’s gen-
eralization ability to localize the unseen actions, since the
model may struggle to identify the actions that do not re-
semble those (seen actions) in the training set.

To overcome this limitation, as shown in Figure 1(b), we
propose a novel concept-guided semantic projection (CSP)
framework, which projects video features into a unified ac-
tion concept space. Instead of relying solely on visual de-
tails, this approach focuses on capturing the underlying se-
mantics of actions, making the model generalize to identify
(localize) the unseen action categories based on the action
semantics rather than the specific visual features. Through
aligning the video features with action semantics, our ap-
proach addresses the fundamental challenge in OV-TAD
which is the adaptive representation ability from the seen
to unseen categories for action localization.

Moreover, to project the video feature into the concept
space, a new challenge arises. How to ensure the projected
features are semantically meaningful and discriminative.
In other words, after projecting the features into a shared
space, these features should accurately reflect the underly-
ing action concepts and be discriminative among different
action categories. For this purpose, we develop a novel mu-
tual contrastive loss (MCL) that encourages the projected
concept features (from CSP) to maintain the same seman-
tic structure as the (language based) action categories. This
loss aims to constrain the projected features not only to be
expressive in action semantics but also discriminative, mak-
ing the action concept space more representative and effec-
tive for OV-TAD.

We evaluate our approach on two widely-used video
benchmarks, ActivityNet [13] and THUMOS14 [14],
demonstrating that our method significantly outperforms
current state-of-the-art OV-TAD/ZS-TAD models. Experi-
mental results highlight the importance of addressing the vi-
sual representation deficiency for action localization and the
effectiveness of semantically representative and discrimina-
tive features for OV-TAD task. The main contributions of
this work are outlined as follows:
1) We propose a novel Concept-guided Semantic Projec-

tion (CSP) framework for OV-TAD, which projects
video features into an action concept space, making the
model effectively generalize to identify and localize the

unseen action categories by focusing on underlying ac-
tion semantics rather than specific visual cues.

2) We develop a Mutual Contrastive Loss (MCL) that en-
courages the concept features to mirror the semantic
structure of language-based action categories, prompt-
ing the projected features to maintain semantic repre-
sentation ability and be well-discriminative within the
action concept space.

3) Extensive experimental results on ActivityNet and
THUMOS14 demonstrate the superior performance of
our approach, significantly outperforming state-of-the-
art methods in OV-TAD.

2. Related Works

2.1. Temporal Action Detection

Close-set temporal action detection methods can broadly
be categorized into two categories: two-stage and single-
stage methods.

Two-stage methods. Two-stage methods first generate
action proposals, then classify them, and further refine the
boundaries of the action candidates. In the proposal gener-
ation stage, some methods rely on classifying anchor win-
dows [4, 15, 16], while others generate proposals by accu-
rately locating action boundaries [17, 18, 19]. Additionally,
some works focus on modeling intra- and inter-proposal re-
lationships using graph based networks [20, 21, 22]. For
instance, Li et al. [22] proposed an intra-attention-based
GCN and an inter-attention-based GCN, which are fur-
ther fused to simultaneously model long-range dependen-
cies and inter-proposal relationships. In subsequent studies
[23, 24, 25], the self-attention mechanism has also been ap-
plied to model these relationships.

Single-stage methods. Different from Two-stage meth-
ods, single-stage methods do not rely on proposals and in-
stead localize actions in a single shot. Some single-stage
methods [26, 27, 28, 29, 30, 31] predict both the tempo-
ral boundaries and action categories of each action instance
simultaneously [32]. Lin et al. [26] proposed SSAD net-
work based on 1D temporal convolutional layers to jointly
predict action proposals and refine the temporal boundaries.
Similarly, Gao et al. [27] also skip the proposal generation
step by temporal coordinate regression. While these meth-
ods are effective at identifying action instances, their per-
formance is inherently restricted by the reliance on prede-
fined anchors [32]. To address this issue, Lin et al. [33]
proposed an anchor-free framework that includes a simple
anchor-free predictor for generating coarse temporal bound-
aries. Recently, Zhang et al. [34] proposed ActionFormer, a
transformer-based model that detects actions and classifies
them in a single step, without the need for action proposals
or pre-defined anchors. In [35], a long-memory transformer
was introduced by Cheng et al. to enhance long-range tem-



poral boundary localization.

2.2. Open-Vocabulary Temporal Action Detection

Open-vocabulary learning aims to recognize new classes
that have not been seen during the training phase [36]. Tra-
ditional open-vocabulary learning methods utilize manually
defined visual attributes, such as shape and color, to enable
the model to recognize unseen classes [12]. Subsequent re-
search [37, 38, 39, 40, 41] has explored replacing manu-
ally defined visual attributes with word vectors derived from
models such as Word2Vec [42] and GloVe [43], which en-
hances the scalability of the models. Zhang et al. first intro-
duced open-vocabulary learning to Temporal Action Detec-
tion [9] and defined the Open-Vocabulary Temporal Action
Detection (OV-TAD) task, which aims to detect unseen ac-
tions in untrimmed videos. They proposed an end-to-end
network with a Detection Subnet that classifies activity pro-
posals using cosine distance between proposal features and
Word2Vec [42] label features. More recently, several works
have attempted to leverage the generalization capabilities
of CLIP [10] to enhance open-vocabulary temporal action
detection. Ju et al. [11] firstly utilizes pre-trained CLIP as
proposal classifier. Owing to its two-stage design, it strug-
gles to mitigate the interference between the localization
and classification processes. To resolve this issue, Nag et
al. [12] introduced a one-stage OV-TAD architecture, which
removes the dependence between these two processes. Dif-
ferently, Li et al. [8] decoupled the generation of action
proposals and action classification and trained separate net-
works to avoid interference between the two tasks. Differ-
ing from existing methods, this paper introduces a concept-
guided semantic projection framework that projects visual
features into an action concept space, allowing for more ef-
fective generalization to unseen actions.

3. Methodology

3.1. Overview

The overall structure of our method is shown in Figure
2. First, given an untrimmed video V , following previ-
ous practices [17, 6, 12], we uniformly sample T tempo-
ral points from the video, denoted as X = {x0, . . . , xT }.
Then, we extract frame-wise features using image encoder
Φimg from CLIP. Since the image encoder of CLIP lacks
temporal modeling capabilities, we leverage a transformer
encoder to capture temporal dependencies, resulting in the
video feature Fvid as

Fvid = T (Φimg(X)) ∈ RT×D, (1)

where T is the temporal transformer encoder and D is the
feature dimension. To further enhance the open-vocabulary
capability of the model, we propose a Concept-guided
Semantic Projection (CSP) framework. This framework

projects the raw video feature Fvid into a predefined ac-
tion concept space, resulting in concept feature Fcon, and
guides the model to leverage the semantic concepts of ac-
tions present in the video for action detection. This will be
detailed in Section 3.2. To better train the CSP, we propose
a Mutual Contrastive Loss (MCL), which leverages CLIP’s
text encoder Φtext to compute action label features for each
segment. This loss encourages the concept features to align
with the semantic relationships between action categories,
ensuring that the projection into the concept space remains
both semantically meaningful and distinctive. Further de-
tails are provided in Section 3.3. In Section 3.4, we utilize
the action localization and classification heads to accom-
plish the OV-TAD task.

3.2. Concept-guided Semantic Projection

In the OV-TAD setting, the disjoint action categories be-
tween the training and test sets pose a significant challenge
for generalization. Existing methods rely heavily on pre-
trained visual encoders to extract visual features for action
localization and classification. However, this reliance on
specific visual features can lead to overfitting, as the visual
appearance of actions in the test set may differ significantly
from those in the training set.

To address this limitation, we propose a concept-guided
semantic projection (CSP) strategy. The core idea of CSP
is to map the extracted visual features into a unified action
concept space, enabling the model to focus on the semantic
meanings of actions rather than low-level visual patterns.
Specifically, this involves two key components: (1) con-
structing a semantically rich action concept space, indepen-
dent of any specific dataset, and (2) designing a learnable
concept interaction projection mechanism to align visual
features with this concept space. By leveraging the action
concept space, which is built using language-based repre-
sentations, CSP captures the underlying semantics of ac-
tions and alleviates overfitting on specific visual features.
This approach significantly enhances the model’s ability to
generalize to unseen action categories, addressing the core
challenge of OV-TAD.

Action concept space. We aim to establish a unified,
dataset-agnostic action concept space. The action concept
space serves as the basis for aligning visual features with
high-level action semantics, helping the model to focus on
semantic meanings rather than low-level visual patterns.

Action concept generation. First, we use GPT-4 [44] to
generate conceptually diverse action concepts. Specifically,
we ask GPT-4 to categorize human activities into X broad
categories, such as physical movement & exercise, work &
productivity, etc. For each category, it generates Z action
concepts, ensuring that these concepts are semantically di-
verse. For example, for the category Physical movement
& exercise, concepts such as Ballet dancing, Mountain bik-
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Figure 2. Overview of our proposed Open-Vocabulary Temporal Action Detection (OV-TAD) model. We first extract frame-level features
from a pre-trained, frozen video encoder and capture temporal dependencies using a temporal transformer. The Concept-guided Semantic
Projection (CSP) module then projects the video features into a unified action concept space. A Mutual Contrastive Loss (MCL) ensures
that the projected features align with the semantic structure of action categories. Finally, actionness mask localizer and action category
classifier are used for temporal action detection.

ing, and Rock climbing are generated. In total, we generate
X × Z = N concepts.

Action concept encoding. After obtaining all the ac-
tion concepts, we use CLIP’s text encoder to generate text
features θi for each concept. After normalization, these fea-
tures are used as the basis concept vectors for the action
concept space. With its powerful text encoding capability,
the text encoder can capture subtle differences between cat-
egories, producing semantically rich concept vectors:

li = θi/ ∥θi∥22 ; i = 1, 2, ..., N, (2)

L = [l1, l2, . . . lN ]
⊤
;L ∈ RN×D, (3)

where li is the concept vector, N is the number of concept
vectors (which is also the number of action concepts), and
D is the feature dimension. Note that these basis concept
vectors are not necessarily orthogonal.

Alternative strategies. Besides prompting an LLM to
generate action concepts, we also explored other strategies,
such as incorporating action labels from existing action
recognition datasets. Detailed experiments are provided in
Section 4.4.

Concept interaction projection mechanism. To
project the visual features Fvid into the action concept
space, a straightforward approach is to calculate the dot-
product similarity between Fvid and each basis concept vec-
tor of the concept space [44]. This yields a similarity score
distribution across all concept vectors, serving as the pro-
jection of Fvid in the action concept space. However, when
calculating the dot-product, much of the useful informa-

tion in the original visual features can be lost. Addition-
ally, using a fixed dot-product projection makes the pro-
cess non-optimizable and non-learnable. Related experi-
ments are detailed in Section 4.4. Therefore, we propose a
learnable Concept Interaction Projection mechanism, which
leverages cross-attention to facilitate cross-modal informa-
tion interaction, enabling a more flexible and adaptive pro-
jection.

We first employ a multi-head cross-attention mechanism
[45] to perform interaction between video features and con-
cept vectors. Specifically, we use concept vectors L as the
query Q, and video features Fvid as the key K and value V.
First, the video and concept features are projected into the
query, key, and value spaces through linear transformations

Q = LWQ, K = Fvid WK , V = FvidWV , (4)

where WQ,WK ,WV are learnable projection matrices.
For the multi-head attention mechanism, the query Q, key
K, and value V are split into multiple heads, resulting in
Qh, Kh, and Vh for each head. Next, for each head h, we
compute the scaled dot-product attention between the query
Qh and key Kh to obtain the attention weights

Ah = softmax

(
QhK

⊤
h√

dh

)
, (5)

where dh is the dimensionality of each attention head. Us-
ing these attention weights Ah, we perform a weighted sum
over the value Vh to obtain the updated concept vectors for
each head

V′
h = AhVh. (6)
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Figure 3. Illustration of the proposed mutual contrastive loss (MCL). After obtaining the concept features for each segment in the batch
through Concept-guided Semantic Projection, we use CLIP’s text encoder to extract the label features corresponding to each segment. We
then compute the similarity matrices between the concept features and the label features. By constraining the distance between these two
matrices, we encourage the concept features to reflect the semantic structure of the language-based action categories, ensuring that the
projected features retain strong semantic representation and are highly discriminative within the action concept space.

Once we have the updated concept vectors V′
h for each

head, we combine them to form the final updated concept
vectors V′. We then project the video features onto these
updated concept vectors as

Fcon = FvidV
′⊤ ∈ RT×N , (7)

where Fcon represents the concept feature. Through the
Concept Interaction Projection mechanism, Fcon contains
rich action semantic information.

3.3. Mutual Contrastive Loss for Video-Text Alignment

The Concept-guided Semantic Projection model projects
the video features Fvid into the action concept space, result-
ing in the concept features Fcon, which capture the semantic
information of the action concepts present in the video. To
ensure the effectiveness of this projection, we further pro-
pose a Mutual Contrastive Loss (MCL) to specifically opti-
mize the projection process.

A simple approach to achieve this would be to use a
classic contrastive loss, such as InfoNCE [46], which pulls
the features of segments belonging to the same action cat-
egory closer and pushes those of different categories apart.
However, this approach overlooks the relative semantic re-
lationships between categories. For example, as shown
in Figure 3, consider three video segments, Seg1, Seg2,
and Seg3, corresponding to the action categories ‘Scuba
diving,’ ‘Swimming,’ and ‘Making a cake.’ While all
three actions are different, the semantic relationship be-
tween ‘Scuba diving’ and ‘Swimming’ is relatively simi-
lar, whereas the relationship between ‘Scuba diving’ and
‘Making a cake’ is more distant. To address this, MCL em-
beds the mutual relationships between categories into the

concept space, ensuring that semantically related actions re-
main closer while unrelated actions are pushed further apart.

Specifically, during the training phase, we utilize the
ground truth (GT) action annotations to identify the frames
corresponding to specific action segments. For each action
segment i, we aggregate the frame-level concept features
Fcon using mean pooling to obtain its segment-level feature:

si = meanpool(Fcon). (8)

Here, si denotes the concept feature of the i-th segment,
where i ∈ [1,K] and K is the total number of segments
in the batch. The corresponding action label for the i-th
segment is denoted as ti. Using CLIP’s text encoder, we
compute the text feature of each segment’s action label as

ei = Φtext(ti), (9)

where Φtext represents CLIP’s text encoder.
For each segment i and j in the batch, we compute the

similarity between their concept features si and sj using the
inner product

qij = ⟨si, sj⟩ = s⊤i sj . (10)

The similarity matrix calculated from the segments’ concept
features is denoted as Q, where Q ∈ RK×K . Similarly, for
each segment i and j, we compute the similarity between
their label features ei and ej using the inner product

bij = ⟨ei, ej⟩ = e⊤i ej . (11)

The similarity matrix calculated from the segments’ label
features is denoted as B ∈ RK×K .



Finally, we compute the cross-entropy loss between ma-
trix Q and matrix B as mutual contrastive loss:

Lmc = − 1

N2 −N

N∑
i=1

N∑
j=1,j ̸=i

(
Bij logQij

+ (1−Bij) log(1−Qij)
)
,

(12)

where we exclude the elements on the main diagonal of the
matrices since the diagonal elements represent the relation-
ship of segments with themselves, which is not meaningful.

The mutual contrastive loss between the similarity ma-
trices Q and B ensures that the learned concept features
not only differentiate between different action categories
but also respect the relative semantic relationships between
them. By minimizing the cross-entropy loss, the concept
features are encouraged to mirror the semantic structure of
the action categories, making the projection into the concept
space both semantically meaningful and discriminative.

3.4. Action Localization and Classification Heads

Through the Concept-guided Semantic Projection
model, we project video features Fvid into a unified action
concept space, obtaining the concept features Fcon. Based
on these features, we further perform action segment
localization and classification using the actionness mask
localizer and action category classifier task heads.

Actionness mask localizer. Similar to [12], we use a
temporal 1D convolution to predict the actionness mask M
as

M = sigmoid (Φconv (Fcon)) . (13)

The actionness mask M represents the probability of an ac-
tion occurring at each temporal point, where M ∈ R1×T .
By leveraging the rich action semantic information in the
concept features Fcon, the prediction of the actionness mask
no longer relies on specific visual elements, allowing for
better generalization to unseen classes. We train the predic-
tion of the actionness mask using cross-entropy loss as

Lmask = CrossEntropy(M,G), (14)

where G is the ground truth actionness mask, with the same
size of 1 × T , where each temporal point is either 0 or 1.
Similar to [12], based on the actionness mask, we apply a
set of thresholds for thresholding, followed by further post-
processing techniques, including Soft-NMS [47], to obtain
the final localization results.

Action category classifier. For action segment classi-
fication, we adopt a process similar to the standard CLIP.
As described in Eq. (9), we obtain the text features of the
C target action categories, denoted as Flan ∈ RC×D, using
the text encoder. Given the visual features extracted from
CLIP’s image encoder, we obtain the foreground action seg-
ment feature by extracting the part where the action occurs,

denoted as Factn ∈ RT ′×D, where T ′ is the temporal length
of the foreground segment. Further details can be found in
Section 3.5. We then compute the inner product between
this segment feature and the target action categories’ text
features as

P = Flan · (Factn)
⊤
, (15)

where P ∈ RC×T ′
represents the classification output, with

each column corresponding to a temporal location t ∈ T ′.
The t-th column, denoted as Pt ∈ RC×1, represents the
probability distribution over the C action categories at tem-
poral location t. Combined with the actionness mask M,
we further compute the action category prediction Pactn ∈
RC for the segment as

Pactn =

∑T ′

t=1 M(t)Pt∑T ′

t=1 M(t)
. (16)

Here, we use the actionness mask as a weight to aggre-
gate the classification results P over all foreground tempo-
ral points, because some frames may contain background
or irrelevant information, while others may clearly indicate
the occurrence of the action. The actionness mask M(t)
serves as a mechanism to dynamically weigh the classifi-
cation results at each temporal point. For foregrousegment
classification, we train using the standard cross-entropy loss
as

Lcls = CrossEntropy(Pactn, P̂actn), (17)

where P̂actn ∈ RC is ground-truth class label of the fore-
ground segment.

3.5. Implementation Details

Following previous practices [17, 6, 12], we sample and
rescale each video’s feature to T = 128 and 256 tempo-
ral points for the ActivityNet and THUMOS datasets, re-
spectively, using linear interpolation. The feature dimen-
sion D is set as 512. For action concept space, we set
X , Z and N to 20, 100 and 2000, respectively. During
the training phase, our overall objective loss function is
L = Lmc + Lmask + Lcls. For calculating Lcls, we use
the ground truth start and end position labels of action seg-
ments to obtain the foreground segment feature Factn. Dur-
ing inference, we extract it using the predicted results from
the actionness mask localizer. Our model is trained for 40
epochs using stochastic gradient descent (SGD) with the
Adam optimization method, with a learning rate of 10−4,
on a GTX 3090 GPU. For the CLIP encoders, we freeze
the parameters of both the image encoder and the text en-
coder. Therefore, during training, the temporal transformer,
concept-guided semantic projection model, and action lo-
calization and classification heads update their parameters.



4. Experiments

4.1. Setup

We evaluate our method on two widely-used Tempo-
ral Action Detection (TAD) benchmarks: ActivityNet-v1.3
[13] and THUMOS14 [14]. ActivityNet-v1.3 consists of
19,994 videos across 200 action categories, split into train-
ing, validation, and testing sets in a 2:1:1 ratio. THU-
MOS14 contains 200 validation and 213 testing videos an-
notated with temporal boundaries from 20 action categories.
For both datasets, we report mean Average Precision (mAP)
at various temporal Intersection over Union (tIoU) thresh-
olds: [0.3:0.1:0.7] for THUMOS14 and [0.5:0.05:0.95] for
ActivityNet-v1.3. To evaluate in a open-vocabulary set-
ting, we follow the protocol from [11], ensuring that the
action categories in the training and testing sets are disjoint.
Specifically, we use two splits: (1) training on 75% of the
categories and testing on the remaining 25%, and (2) train-
ing on 50% and testing on the other 50%. Each setting is
repeated with 10 random splits of the categories.

4.2. Comparison to State of The Arts

Comparison methods. In this section, we compare our
approach with several existing OV-TAD methods, with re-
sults shown in Table 1. Following the setup from [8], we
include TMaxer [48], ActionFormer [34], and TriDet [49],
which were originally designed for closed-set TAD but have
been adapted for the OV-TAD task. Additionally, following
[12], we also include B-I, a two-stage model with BMN
for proposals and CLIP with handcrafted prompts, and a
one-stage model, referred to as B-II, which uses CLIP’s
pre-trained image encoder for dense prediction with TAD.
Eff-Prompt [11], STALE [12], and DeTAL [8] are meth-
ods specifically designed for OV-TAD, and we also include
them in our comparison.

Comparison results. As shown in Table 1, our method
demonstrates superior performance compared to exist-
ing approaches across both the THUMOS14 and Activi-
tyNet1.3 datasets, achieving higher mAP scores at multiple
tIoU thresholds. Specifically, on ActivityNet1.3, our model
achieves significant gains across all tIoU thresholds. For
example, compared to STALE, an OV-TAD method with
a similar one-stage design, a key difference is our intro-
duction of concept-guided semantic projection. In the 75
Seen/25% Unseen and 50% Seen/50% Unseen splits, we
achieve an average mAP of 28.1% and 25.7%, respectively,
compared to STALE’s 24.9% and 20.5%, suggesting that
our approach might benefit from the Concept-guided Se-
mantic Projection. This design likely helps the model cap-
ture underlying action concepts more effectively by leverag-
ing semantic information, which could reduce over-reliance
on specific visual features that might hinder generalization.

4.3. Ablation Study

To validate the effectiveness of our design, we conduct
ablation experiments by removing one sub-module of the
model, as shown in Table 2.
• w/o CSP: We remove the Concept-guided Semantic Pro-
jection model in Section 3.2, and replace Fcon with Fvid in
Eq. (13).
• w/o Lmc: We remove the mutual contrastive loss Lmc in
Eq. (12).
• Pactn w/o M: We remove the actionness mask from the
aggregation operation Eq. (16), replacing it with a simple
average across all temporal points.
• w/o T : We remove the transformer encoder T from
Eq. (1).

As shown in Table 2, each component of our model con-
tributes to the overall performance, with every ablation re-
sulting in a decrease in mAP. Notably, removing the CSP
model leads to the largest drop in mAP (3.2%), highlight-
ing its crucial role in our model. Since we replace Fcon with
Fvid, the subsequent task heads can no longer leverage the
action semantics encoded in Fcon, which may result in a sig-
nificant degradation in open-vocabulary performance. Ad-
ditionally, the removal of the mutual contrastive loss Lmc
also results in a noticeable decrease in performance. This
loss is designed to ensure that the projection into the con-
cept space is both semantically meaningful and discrimina-
tive, and removing it may reduce the effectiveness of the
projection module.

Effectiveness of the concept-guided semantic projec-
tion. For the proposed CSP model, similar to [44], we re-
placed it with a simple dot product operation for compari-
son, as shown in Table 3.
• w dot product proj: We replace the proposed CSP model
with the dot product operation.

After replacing the proposed CSP model with the dot
product operation, the model’s performance drops signif-
icantly, slightly above the result of directly removing the
CSP model. This could be because, compared to using a
simple dot product, our CSP model effectively preserves
useful semantic features from the visual representations
during the projection into the action concept space, prov-
ing the effectiveness of CSP.

Effectiveness of the mutual contrastive loss. To further
investigate the effectiveness of the proposed Mutual Con-
trastive Loss, we conducted additional experiments by re-
placing it with other loss functions, as shown in Table 4.
• w Lce loss: We replace the proposed Lmc with a simpler
alignment loss, where cross-entropy (CE) loss is directly
used to align each segment’s concept feature s with its cor-
responding label feature e.
• w Linfo loss: We replace the proposed Lmc with the stan-
dard infoNCE loss [46].

As shown in Table 4, when we replace Lmc with the sim-



Table 1. OV-TAD results on THUMOS14 and ActivityNet1.3, where the score for the top and the second best performances are bolded and
underlined respectively. The methods marked with * indicate that they were originally designed for close-set TAD while adapted to the
OV-TAD task in the experiment.

Data Split Methods THUMOS14 ActivityNet1.3
0.3 0.4 0.5 0.6 0.7 Avg mAP 0.5 0.75 0.95 Avg mAP

75% Seen
25 Unseen

TMaxer* [48] 19.8 17.2 14.2 10.8 7.6 13.9 20.0 11.5 0.5 11.5
ActionFormer* [34] 22.7 20.0 16.5 12.8 8.5 16.1 25.0 15.1 2.0 15.2

TriDet* [49] 25.9 22.5 18.2 13.1 8.2 17.6 25.5 15.2 2.0 15.3
B-II [10] 28.5 20.3 17.1 10.5 6.9 16.6 32.6 18.5 5.8 19.6
B-I [10] 33.0 25.5 18.3 11.6 5.7 18.8 35.6 20.4 2.1 20.2

Eff-Prompt [11] 39.7 31.6 23.0 14.9 7.5 23.3 37.6 22.9 3.8 23.1
STALE [12] 40.5 32.3 23.5 15.3 7.6 23.8 38.2 25.2 6.0 24.9
DeTAL [8] 39.8 33.6 25.9 17.4 9.9 25.3 39.3 26.4 5.0 25.8

Ours 42.7 35.5 26.4 18.5 12.0 27.0 41.1 28.8 7.4 28.1

50% Seen
50% Unseen

TMaxer* [48] 10.6 9.4 8.0 6.2 4.4 7.7 15.0 8.5 0.4 8.6
ActionFormer* [34] 11.3 10.0 8.4 6.6 4.6 8.2 17.9 10.8 1.3 10.8

TriDet* [49] 15.2 13.2 10.8 7.9 5.2 10.5 19.1 11.5 1.1 11.4
B-II [10] 21.0 16.4 11.2 6.3 3.2 11.6 25.3 13.0 3.7 12.9
B-I [10] 27.2 21.3 15.3 9.7 4.8 15.7 28.0 16.4 1.2 16.0

Eff-Prompt [11] 37.2 29.6 21.6 14.0 7.2 21.9 32.0 19.3 2.9 19.6
STALE [12] 38.3 30.7 21.2 13.8 7.0 22.2 32.1 20.7 5.9 20.5
DeTAL [8] 38.3 32.3 24.4 16.3 9.0 24.1 34.4 23.0 4.0 22.4

Ours 41.2 33.4 24.8 17.3 10.9 25.5 38.4 26.4 5.2 25.7

Table 2. Ablation study of the proposed method with its variations
on ActivityNet1.3 dataset with 50% split.

Method mAP
0.5 0.75 0.95 Avg

w/o CSP 35.4 23.0 3.9 22.5
w/o Lmc 36.5 23.3 3.6 23.0

Pactn w/o M 39.8 24.7 3.0 24.4
w/o T 37.7 23.7 6.1 24.2
Ours 38.4 26.4 5.2 25.7

Table 3. Ablation study of concept projection on ActivityNet1.3
with 50% split.

Method mAP
0.5 0.75 0.95 Avg

w/o CSP 35.4 23.0 3.9 22.5
w dot product proj 35.4 22.5 4.8 22.6

Ours 38.4 26.4 5.2 25.7

pler alignment loss Lce, the model’s performance declines.
This could be because it directly pushes the concept fea-
ture of a segment to align closely with the corresponding
label’s text feature, potentially leading to the loss of valu-
able information unique to the concept feature during train-
ing. However, in our proposed Lmc, we optimize the relative
relationships between samples by calculating cross-entropy

(CE) loss over the similarity matrix in Eq. (12), avoiding the
information loss caused by direct alignment. Additionally,
when we replace Lmc with the standard contrastive learning
loss (infoNCE loss), the model’s performance also drops.
Unlike our Lmc, which considers the relative semantic dis-
tance between segments, the infoNCE loss simply trains the
projection model by pulling the concept features of seg-
ments within the same class closer and pushing those from
different classes further apart. This approach ignores the
relative distances between segments, and treating all seg-
ments from different classes equivalently may hinder the
model’s ability to capture finer semantic distinctions. Fi-
nally, if we entirely remove Lmc, the model experiences
the largest performance drop, which suggests that the CSP
model benefits from targeted optimization. Our proposed
Lmc effectively leverages the mutual relationships between
the action categories of the segments to optimize the relative
relationships between their concept features, ensuring that
the projection into the concept space is both semantically
meaningful and discriminative.

4.4. In-depth Analysis of Action Concept Space

To analyze the impact of different concept spaces on the
performance of our method, we built and compared concept
spaces using various approaches. In Section 3.2, we utilized
a large language model (LLM) and CLIP’s text encoder to
generate a concept space, referred to as concept space A.



Table 4. Ablation study of Mutual Contrastive Loss on Activi-
tyNet1.3 with 50% split.

Method mAP
0.5 0.75 0.95 Avg

w/o Lmc 36.5 23.3 4.2 23.0
w Lce loss 38.3 24.3 3.6 24.1

w Linfo loss 37.2 24.7 4.2 24.3
Ours 38.4 26.4 5.2 25.7

Specifically, this concept space was created by prompting
GPT-4 [50] to generate conceptually diverse action labels,
which were then fed into CLIP’s text encoder to produce
concept vectors. Concept space A is a concept space that
is not tied to any specific dataset and contains 2,000 con-
cept vectors. Additionally, we constructed another concept
space by extracting all action labels from three common ac-
tion recognition datasets: Kinetics-400 [51], UCF-101 [52],
and Moments in Time [53]. After removing duplicate and
semantically redundant labels, we used CLIP’s text encoder
to generate 644 concept vectors, forming concept space B.
As shown in Table 5, our method exhibits stable perfor-
mance when using different concept spaces, with no sig-
nificant fluctuations. This reflects the robustness of our ap-
proach.

Table 5. Analysis of concept space on ActivityNet1.3 with 50%
split.

Method mAP
0.5 0.75 0.95 Avg

concept space A 38.4 26.4 5.2 25.7
concept space B 38.2 25.0 2.8 24.9

In Table 6, we further analyze the impact of using differ-
ent numbers of concept vectors on the model’s performance.
In Section 3.2, we prompted GPT-4 [50] to categorize hu-
man activities into 20 broad categories and generate 100 ac-
tion concepts for each category, resulting in 2,000 concept
vectors. We randomly sampled 250 and 500 action concepts
from these categories, obtaining 500 and 1,000 concept vec-
tors, and conducted experiments using these subsets. As
shown, while the model’s performance slightly decreases as
the number of concept vectors is reduced, it remains rela-
tively stable and still outperforms other comparison meth-
ods. This further demonstrates the robustness of our ap-
proach.

4.5. Visualization of Projection Effect

To demonstrate the impact of the Concept-guided Se-
mantic Projection (CSP) module and the Mutual Con-
trastive Loss (MCL), we visualize the video clip features

Table 6. Analysis of the number of concept vectors on Activi-
tyNet1.3 with 50% split.

concept number mAP
0.5 0.75 0.95 Avg

500 39.0 26.0 4.1 25.1
1000 40.2 25.8 2.5 25.1
2000 38.4 26.4 5.2 25.7

Figure 4. t-SNE visualization of video clip features before (a) and
after (b) projection.

before and after projection using t-SNE, as shown in Figure
4.

Before projection, the semantic relationships between
action categories are not well captured. For instance, some
of the features of Table soccer (green points), which are se-
mantically consistent remain relatively far apart from each
other, while some of them are closer to the unrelated cate-



gory Baking cookies. This indicates that the raw features
fail to encode the underlying action semantics effectively.
After applying CSP and MCL, the features are projected
into the action concept space, where semantic relationships
are better preserved. Semantically consistent categories
such as those of Table soccer are closer, while unrelated cat-
egories like Baking cookies are pushed further apart. Fur-
thermore, MCL improves the intra-class compactness by
aligning features within the same action label, as reflected
in the tighter distributions of samples within each cluster.

5. Conclusion

In this work, we propose a novel framework for Open-
Vocabulary Temporal Action Detection (OV-TAD) by in-
troducing a Concept-guided Semantic Projection mecha-
nism. We use the Concept-guided Semantic Projection
(CSP) model to project video features into an action con-
cept space, which effectively addresses the challenge of de-
tecting unseen actions by leveraging their semantic infor-
mation. Additionally, we introduced a Mutual Contrastive
Loss (MCL), which ensures semantic consistency and im-
proves feature discrimination in the concept space. Ex-
tensive experiments on the ActivityNet and THUMOS14
datasets demonstrate that the proposed model achieves su-
perior performance. Ablation studies further confirm the
effectiveness of the CSP and MCL in improving OV-TAD.
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