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Figure 1. CADTrans is a transformer-based autoregressive generation model that leverages a sketch-and-extrude strategy guided by a code
tree representation encoded via three trained discrete regularized codebooks (left). Random generation results are showcased in the top
right. CADTrans introduces a number of new controlled generation methods (bottom right), enabling (i) User Edit, which allows parameter
modification while preserving design consistency, and (ii) Controllable Generation, which facilitates design based on specific controls,
such as code tree mixing, and automatic completion and refinement of partial models.

Abstract

The creation of computational agents capable of gen-
erating computer-aided design (CAD) models that rival
those produced by professional designers is a pressing
challenge in the field of computational design. The key
obstacle is the need to generate a large number of real-
istic and diverse models while maintaining control over
the output to a certain degree. Therefore, we propose
a novel CAD model generation network called CAD-
Trans which is based on a code tree-guided transformer

framework to autoregressively generate CAD construc-
tion sequences. Firstly, three regularized discrete code-
books are extracted through vector quantized adversar-
ial learning, with each codebook respectively represent-
ing the features of Loop, Profile, and Solid. Secondly,
these codebooks are used to normalize a CAD construc-
tion sequence into a structured code tree representation
which is then used to train a standard transformer net-
work to reconstruct the code tree. Finally, the code
tree is used as global information to guide the sketch-
and-extrude method to recover the corresponding ge-
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ometric information, thereby reconstructing the com-
plete CAD model. Extensive experiments demonstrate
that CADTrans achieves state-of-the-art performance,
generating higher-quality, more varied, and complex
models. Meanwhile, it provides more possibilities for
CAD applications through its flexible control method,
enabling users to quickly experiment with different de-
sign schemes, inspiring diverse design ideas and the gen-
eration of a wide variety of models or even inspiring
models, thereby improving design efficiency and pro-
moting creativity. The code is available at https:
//effieguoxufei.github.io/CADtrans/.

Keywords: Vector quantization, Shape representations,
Autoregressive generation model

1. Introduction

Computer-aided design (CAD) tools have a significant
impact on industries such as engineering, architecture and
manufacturing. Users can create complex models by fol-
lowing simple step-by-step instructions, which brings a
number of benefits: design efficiency increased, error and
cost reduced, interdisciplinary collaboration enhanced, and
product development cycles accelerated. However, the pro-
cess of creating models remains challenging for many users.
Even with specialized training and experience, any unex-
pected action can cause a model to fail, especially when cre-
ating accurate and detailed 3D models. As a result, there are
relatively few available 3D models compared to the abun-
dance of 2D data, which limits the research and application
of deep learning methods in this area.

To overcome the difficulties of generation, research ef-
forts nowadays focus on designing computational agents to
create CAD models like a professional designer. But gen-
erating CAD models directly is a challenging task. The
key challenge lies in constructing a unified representation
that can describe the different geometric operations of a
CAD model. Many existing generation methods use 3D
data representations such as point clouds [11, 24, 25, 42],
voxels [21, 35, 36], meshes [9, 12] and boundary represen-
tation (B-rep) [14, 40] to avoid this problem.These repre-
sentation methods based on the final geometric form gener-
ally ignore the core feature of parametric CAD modeling,
that is, the generation process of building a model through
feature sequence and design history. As a result, the recon-
structed model loses the hierarchical feature structure, pa-
rameter constraint relationship and editable characteristics
of the original CAD design, making it difficult to support
design backtracking and iterative optimization in engineer-
ing scenarios.

Recently, [37, 38, 39, 41] adopts a new representation,
the sketch-and-extrude approach, which effectively pre-
serves the design sequence and parameters. This procedural

creation process is roughly as follows: the user first creates
2D sketches, which are subsequently extruded to form 3D
solids, and finally Boolean operations are applied between
these 3D solids to generate the final 3D model. However,
despite the advances made in this approach, there are still
some limitations. In the study of [37, 38], only one sur-
face is involved in each generation process, which greatly
limits the complexity and diversity of the generated results.
While [39, 41] improve the complexity of generation to a
certain extent by including multiple facets. However, it still
fails to address several critical issues. It generates results
that lack diversity, and during the model generation process,
scattered and incoherent jumbled extrusion often occurs.
Consequently, the generated models frequently exhibit frag-
mentation, flaws, or redundancy, which can be clearly seen
in Figure 2.

Figure 2. The contrast between realistic and unrealistic models.
Realistic models more closely resemble everyday physical objects
and usually have a high degree of complexity; unrealistic models,
on the other hand, tend to contain a large number of fragments, a
jumbled or extruded appearance, or oversimplification.

One of the primary limitations contributing to these is-
sues is directly related to the use of vector quantization
(VQ) [8, 26, 31] method. Although the embedding vectors
of VQ input are clustered and represented as code informa-
tion stored in the codebook, which significantly improves
the recovery ability and enhances the semantic understand-
ing of the model structure compared to traditional meth-
ods that rely on simple feature embeddings, during the VQ
training process, the embedding vectors are aligned with the
most similar vectors in the codebook through nearest neigh-
bor search, resulting in most input vectors being mapped to
only a few codes instead of being evenly distributed in the
codebook space. Consequently, only a small portion of the
codebook is updated and utilized, leading to a phenomenon
known as codebook collapse [29]. This collapse restricts
the model’s ability to learn all potential patterns in the input
data because it relies on a limited number of codes, mak-
ing it difficult to capture the full range of design variations
in the dataset. The reliance on fewer codes results in de-
creased generation quality, increased reconstruction errors,
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and weakened generalization ability. Ultimately, this leads
to poor fit with the real data distribution. Another limitation
is that previous methods rely on non-adversarial training,
which refers to training with simple loss functions such as
mean squared error or cross entropy. To minimize the risk
of wrong predictions, such training tends to average out re-
gions of uncertainty, and the results are often coarse. In
addition, they are prone to mode collapse, where the gener-
ator converges to a solution that can only produce a limited
set of outputs. This not only leads to loss of details, but also
causes the generated 3D models to deviate from the true
data distribution.

To address the limitations of existing methods, we pro-
pose CADTrans, a novel approach. CADTrans generates
CAD reconstruction sequences autoregressively through the
Transformers [32] framework, guided by a regularized code
tree. Moreover, the code tree guidance provides a degree
of control over the generation process. The generated se-
quences can then be compatible with other CAD tools for
modification and redesign.

Specifically, the root node of the code tree represents the
solid code, and the other elements such as profile and loop
code are gradually transformed into child nodes from the
top to the bottom, as shown on the left side of Figure 3. The
codes of these nodes are represented by a regularized dis-
crete codebook extracted by vector quantization [8, 26, 31]
adversarial learning [10]. By leveraging regularization, we
encourage the model to make more comprehensive use of
the codebook, thus enabling the generation of more realistic
and diverse results. The codes obtained using this approach
largely alleviate the lack of diversity caused by codebook
collapse.

At the same time, in order to further promote the realism
of the generated results, it is natural to create a competitive
environment for the generator. Therefore, we introduced a
discriminator network to evaluate the realism of the gener-
ated results, forcing the generator to learn the distribution
patterns of various geometric shapes, structural relation-
ships, and feature combinations in real CAD models, and
then adjust its generation model to more effectively approx-
imate the real data distribution in the model and generate
more accurate and realistic CAD models.

Extensive experimental results and ablation experiments
show that CADTrans can generate more complex, realistic
and diverse models compared to existing methods. The per-
formance is beyond the level of the best baseline models.
We also try to explore more applications and design options
as shown in Figure 1. In summary, we make the following
contributions:

• We propose a transformer-based autoregressive CAD
generative network guided by a code tree encoded
from three regularized codebooks to generate realistic,
high-quality, well-structured and diverse outputs.

• We design a vector quantized adversarial network to
extract codebooks and propose a regularization strat-
egy to mitigate codebook collapse. The regularized
codebook facilitates the passage of more information
through codebook bottlenecks, enabling the learning
of richer data representations.

• We achieve state-of-the-art performance in CAD
model generation compared to previous approaches
and provide greater design flexibility and geometric di-
versity in applications.

2. Related Work

Various approaches are developed for constructing CAD
models, including constructive solid geometry (CSG) and
construction sequence modeling (CSM) techniques. These
methods enable the representation of CAD models by trac-
ing their design history, with each step containing rich para-
metric data. This not only affords more effective con-
trol over modifications but also facilitates further design
iterations using the recovered design elements. Based on
these two forms, researchers have extended many applica-
tions to explore a wider range of CAD model construction.
For example, [17] greatly broadens the way users inter-
act with CAD systems by parsing hand drawings into CAD
commands. In view of this, researchers are increasingly
interested in recovering the design history of CAD mod-
els [7, 15, 28, 37]. In this section, we will review current
research on CSG and CSM methods.

2.1. CSG-Based Approaches

As a popular reverse-engineering representation for 3D
models, learning exploration for CSG tree reconstruction
gains traction [6, 18, 30, 43]. Break down 3D models into
simple elementary solids, such as box, cylinder, cone and
sphere. Subsequently reassemble them using Boolean op-
erations (union, intersection, and difference) to reconstruct
the CSG tree. Initial explorations of the CSG-based ap-
proach, as discussed in [16], focus on the process of in-
crementally constructing complex models through sequen-
tial Boolean operations on simple solids. However, this
approach is hindered by two primary limitations. Firstly,
the reliance on basic solids restricts the accurate represen-
tation of intricate 3D models. Secondly, learning a deep
CSG tree has significant challenges, and further constrains
the representation of complex geometries. Recent advance-
ments [3, 27, 43] seeks to address these limitations. CSG-
Stump [27] proposes a three-layered architecture consist-
ing of complementary, cross, and connection layers, which
effectively streamlines the complexity and depth of the
CSG tree. Building upon this, CAPRI-Net [43] leverages
quadratic surface elements to construct CSG trees, thereby
improving the representation of detailed shapes.While this



approach surpasses previous reconstruction strategies in
terms of detail shape representation, it introduces new chal-
lenges related to designer editability and model reconstruc-
tion due to the implicit equations and parameter complexi-
ties inherent to quadratic surface elements.

2.2. CSM-Based Approaches

Hence, simulating the 3D modeling process that be-
gins with 2D sketches and progresses through extrusions
and Boolean operations offers a promising solution. This
approach, first introduced by [38], represents 3D models
as CAD sequences, describes shapes through a series of
constructive operations that mimic the natural shape con-
structing process in CAD software.This approach provides
a more intuitive and flexible representation of 3D models,
[22, 28, 37] leverage this expression. Building upon these
foundations, subsequent work [19, 39, 41] directly targets
the learning of reconstruction sequences for reconstructing
3D shapes, utilizes elementary sketch-and-extrude opera-
tions which contain more component details. The predic-
tion process preserves the sequential and parametric nature
of the modeling. Previous methods are prone to collapse
when generating 3D models using sketch-and-extrude op-
erations, resulting in unrealistic generated models such as
poor structure and too simple. In our approach, we em-
ploy a code tree represented by three regularized codebooks
to guide the generation process, enhancing the controllabil-
ity of the CAD model during generation and improving the
quality, realism, and diversity of generated results.

3. Method

CADTrans guides the generation of a CAD sequence
based on a transformer by using a code tree consisting of
codes from three regularized discrete codebooks as global
information. Before training, we first represent the CAD
model in a unified CAD construction sequence format (Sec-
tion 3.1). Our training process consists of three stages.
Firstly, we train three regularized discrete codebooks for
the subsequent code tree representation (Section 3.2). Sec-
ondly, we train a code tree generation network (Section 3.3).
Thirdly, we train conditional transformers to gradually gen-
erate the geometric information of the model (Section 3.4).

3.1. CAD Construction Sequence Representation

Since it is difficult to learn the entire construction se-
quence directly, we follow [39], which splits the sequence
of CAD models into three primitive structures: loop, profile,
and solid. In order to simplify the complex construction se-
quence of the model, we define these three primitives as 2D
geometry, 2D arrangement, and 3D arrangement, and train
the codebook for each primitive.

Primitive Definition. The basic elements of 3D model
are primitive curves (lines, arcs, and circles). A line con-

tains two coordinate points: a start point and an end point.
An arc consists of three coordinate points: a start point, a
midpoint, and an end point. A circle consists of four equally
spaced coordinate points.

A loop is defined as a closed path comprising multiple
curves, which is represented by the set (L) of x-y coordi-
nate points along the curve. Notably, L includes a special
⟨s⟩ tag to demarcate individual curves within the loop.

One or more loops are encapsulated within a 2D region
called a face. And for simplicity, we only use the set (P ) of
2D bounding boxes
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a face, called the profiles, to represent the information on
a face briefly and illustrate the distribution of the locations
of the loops. Where (xt
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i ) denote the top left

and bottom right coordinate point of the 2D bounding box
respectively. Here i is the sequence number of a loop.

Solids are formed by extruding faces, and multiple solids
can be combined into a 3D model through basic Boolean
operations. Here we simply use the set (S) of 3D solid
bounding boxes
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relationship between multiple solids, where
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denote the top left and bottom right corner of

the 3D bounding box respectively. Here i is the sequence
number of a solid.

Construction Sequence. A CAD construction sequence
is understood from a user operation point of view to be from
1) Drawing a sketch, that is, drawing a face in a plane. Here
we use L tokens and P tokens to simply represent the in-
formation contained in a face. This information will be
used as a part of the code tree to guide the recovery of
more detailed sketch operation parameters SO. 2) Then
perform a series of 3D operations on the sketch to turn it
into a model, here we only consider simple 3D operations:
extrusion and Boolean operations. We only use the solid
S tokens to simply represent the solids information of the
model. This information will be used as a part of the code
tree to guide the recovery of more detailed 3D operation pa-
rameters EO. In this way, a CAD construction sequence is
represented as a long sequence containing only L,P, S to-
kens. The CAD reconstruction sequence is represented as
a sequence SO,EO that recovers the geometric operation
information (Section 3.4).

3.2. Regularized Discrete Codebooks

For codebook training, we use the VQ method [8, 26, 31]
to compress continuous data in the latent space into discrete
vectors and propose a new vector quantization adversarial
network to train the regularized codebook.

Since we use the same network structure for training
loops, profiles, and solids, for simplicity we denote the se-
quence as A, which can be a loop sequence L, a profile
sequence P or a solid sequence S. We use encoder E to en-
code the input sequence A and use the predicted sequence



Figure 3. Our code tree is constructed from the codes in three discretized regularized codebooks, which are trained using vector quantization
adversarial network. Specifically, we decompose the reconstructed sequence of the model into three distinct primitives: solid (S), profile
(P ), and loop (L), then train the network to extract three codebooks (right). Each codebook training network contains an encoder (E), a
decoder (G), a discriminator (D), and a codebook (C). Then we represent the model as a tree structure, wherein each node is encoded with
a specific code from the codebook. The code tree is constructed in a top-down manner S − P − L (left).

of decoder G to perform adversarial training with the dis-
criminator D to obtain the codebook C.

Encoder & Quantization. For the loop we quantize it to
a plane of 64 × 64 pixels, so each token can be represented
as a 64-dimensional one-hot vector, but the loop set L con-
tains ⟨s⟩ tokens to separate the coordinate of the curves, so
we need to add an extra dimension to differentiate them,
and therefore use a 65-dimensional one-hot vector to repre-
sent each token in the loop. Each L is denoted as hi

L. The
symbol i denotes the index of the token in the loop, and
this vector is used to uniquely identify the token informa-
tion. For the P and S, we quantize each of their coordinate
dimensions to 64 pixels, so each token can be represented
using a 64-dimensional one-hot vector, denoted hi

P and hi
S,

respectively.
Then, we convert these one-hot vectors hi

A into embed-
ding Ai

e by a multilayer perceptual network and utilize the
sequence encoder E to obtain a 256-dimensional embed-
ding E(Ai

e). Next, we quantize the average pooling latent
space embedding E(Ai

e) by the minimum distance match-
ing technique in the codebook CA and map the embeddings
to the corresponding quantized code indices. This leads to
the quantization code Aq as a component of the decoder
input, as detailed in Equation 1.

Aq ← ck, k = argmin
cj∈CA

∥∥E(Ai
e)− cj

∥∥2 . (1)

Regularized Codebook. Through the above quanti-
zation process, we obtain a discretized representation of
the potential space. However, in existing VQ-based meth-
ods [8, 26, 34, 39, 44], codebook collapse is often encoun-
tered when optimizing the code. In this case, only a few
code vectors receive useful updates, whereas most remain
largely unchanged or unused, as evident from the green
“dead” spots in the bottom row of Figure 4. These “dead”
code vectors are quantized only for specific vectors with lit-
tle or no use. This phenomenon limits the effectiveness of
VQ in learning larger code sets and the expressive power of
code sets in complex reconstruction tasks that require high-
capacity representations.

To address the above issues, we are inspired by the en-
tropy regularization technique [4] from unsupervised clus-
tering tasks [1, 20] and propose a generalized regularization
approach to mitigate codebook collapse. The method con-
tinuously updates codes by minimizing the entropy of each
code, which effectively avoids the problem of codebooks
learning only specific vector representations, and thus im-
proves the expressive and generalization capabilities of the
codebook set. At the same time, we also increase the dif-
ferences between codebooks by maximizing the entropy be-
tween different codes, which in turn improves the accuracy
and diversity of the learned codebook features.

Specifically, we minimize the L2 distance Di,j between
the feature embedding E(Ai

e) and the codebook CA =



{cj}Cj=1. Subsequently, by applying a softmax normaliza-
tion on Di,j and then calculating the mean of these prob-
abilities produced a frequency vector Dj = 1

N

∑N
i=1Di,j

representing the overall utilization of each codebook item.
Minimizing the entropy H(D) of this vector ensures the us-
age of the codebook is more balanced, which in turn en-
hances the generation quality and diversity:

H(D) = −
∑
j

Dj logDj . (2)

As shown in Figure 4, our approach generally improves
the utilization of codebook under the same dataset and
learns codebook shapes that are closer to the true data dis-
tribution. This dual strategy not only significantly improves
the separability of the codebook, but also enhances the rep-
resentation capability of per code, ensuring that each entry
in the codebook adequately represents valid features and in-
formation, and avoids the problem of learning only specific
information that fails to capture the true data distribution.
By equalizing the representation capabilities of codebooks,
our approach helps to learn feature representations more
comprehensively, further mitigates codebook collapse, and
greatly enriches the overall utility and performance of code-
book.

Figure 4. The usage of codebook. We evaluated our method
against the HNC-CAD [39] method on the DeepCAD [38] dataset.
There are a large number of “dead” vectors (green dots) on the
HNC-CAD [39], with some of the low-use vectors circled in black.
In contrast, our method is able to effectively cluster similar fea-
tures and separate dissimilar features by using entropy regulariza-
tion, which enables our network to learn a codebook distribution
that represents the true data distribution and significantly improves
the utilization of the codebook.

Decoder & Adversarial Learning. To improve the gen-
eralization and robustness of the model, we use a noise in-
jection mask [2, 5, 23, 33, 39] on the input of decoder G
by adding noise to the initial input sequence A, randomly
masking 20% to 80% of the elements in the sequence, and
encoding the modified sequence using a three-layer percep-

tron network to transform it into a 256-dimensional embed-
ding to obtain Am

e . We concatenate the quantization code
Aq with the mask embedding sequence Am

e and input it into
the decoder G for predicting the sequence A:

Â = G(Aq ||Am
e ). (3)

Since codebook quantization is a non-backpropagable
process, we use sg to stop the gradient operator [8, 26, 31],
which acts as an identifier in the forward computation but
stops the flow of the gradient in the backward computation.
This mechanism ensures that the gradient is more stable,
thus facilitating model convergence and backpropagation
during training. Additionally adding our entropy regular-
ization loss term H(D) in Equation 2 to the codebook loss
optimizes the codebook distribution to improve the code-
book representation. We can then obtain the end-to-end loss
of our improved reconstructed codebook:

LVQ(E,G,C) = EMD
(
A, Â

)
+

∥∥sg[E(Ae)]−Aq

∥∥2
2

+β
∥∥sg [Aq]− E(Ae)

∥∥2
2
+ ρH(D).

(4)

The reconstruction loss is minimized using the Earth
Moving Distance (EMD) loss to ensure that the distribution
of the sequence Â generated by the decoder G is similar to
the distribution of the original input sequence A. The com-
mitment loss is denoted by

∥∥sg [Aq]− E(Ae)
∥∥2
2
. The hy-

perparameter β is set to 0.25 to scale the commitment loss.
We fix ρ to 0.01 in our experiments to maintain balance and
optimize performance.

We add a discriminator D to the decoded output, and use
adversarial learning [10] to make the decoder G and dis-
criminator D compete and collaborate with each other to
optimize. This enables the generated results to better ap-
proximate the real distribution and is also helpful in allevi-
ating the situation where the codebook only learns coarse-
grained information, resulting in overall local inconsistency
in the generated results, improving the realism of the gen-
erated results, and also enhancing the generalization ability
of the model. The adversarial loss function is as follows:

LGAN({E,G,C}, D) = [logD(A) + log(1−D(Â))], (5)

where D(A) signifies the likelihood that A is deemed real

by the discriminator, and D(Â) signifies the likelihood that
Â is considered real by the discriminator. In this equa-
tion, the goal of maximizing D is to maximize both terms,
whereas the minimization of E,G,C seeks only to mini-
mize the second term in Equation 5.

Loss Function. We train three codebooks CL,CP and
CS respectively, in which the codebook size N is 4000, and



the training loss item is as follow:

L(E,G,C,D) = arg min
E,G,C

max
D

EA∼p(A)[LVQ(E,G, C)

+λLGAN({E,G, C}, D)].
(6)

The min-max portion reflects an adversarial training pro-
cess, where the encoder E, decoder G, and codebook C
collectively minimize, and the discriminator D maximizes
separately.

Here, λ acts as a hyperparameter that adjusts the relative
importance of the adversarial loss compared to the VQ loss.
The determination of λ is contingent upon the generator’s
sensitivity to gradients in both LEMD and LGAN. with a
small positive constant δ to prevent division by zero. The
LEMD term represents the reconstruction loss, computed as
the EMD loss. ∇GL

[.] represents the gradient of the last
layer L of the generator.The equations for the computation
of λ are as follows:

λ =
∇GL

[
LEMD

]
∇GL

[
LGAN

]
+ δ

. (7)

3.3. Code Tree Representation & Generation

After completing the above training, and before re-
covering the detailed geometric information through
the codebook information, we follow the idea in Skex-
Gen [41], HNC-CAD [39] to represent the sequence into
the code sequence first.The input constructed sequence
can be transformed into a code sequence using our trained
encoder and regularized codebook quantization, taking
the model on the left side of Figure 3 as an example,
it can be transformed into the following code sequence:
[⟨ss⟩, S, ⟨sp⟩, P1, ⟨sp⟩, P2, ⟨sl⟩, L1, L2, ⟨sl⟩, L3, L4, L5, L6,
L7, ⟨eo⟩], where Li, Pi, and S are from the code in the
codebook CL,CP ,CS , as well as the beginnings of the
profile, loop, solid token ⟨sp⟩, ⟨sl⟩, ⟨ss⟩ and the end-of-
sequence token ⟨eo⟩.We use the standard transformer’s
architecture [32], which generates sequences of code that
is, each layer of the code tree, sequentially using 6 layers
of attention mechanisms and 8 multiple heads of attention
and guided by minimizing the loss of cross-entropy, so that
the generation of the code tree T can be expressed as:

P (T ) = P (TL|TS , TP )P (TP |TS)P (TS |ϕ), (8)

where TS represents the code sequence at the solid layer of
the code tree, TP represents the code sequence at the profile
layer of the code tree and TL represents the code sequence
at the loop layer of the code tree.

For code sequence generation we use kernel sampling
[13] autoregressive generated sequences. The generated
quantized sequences can be easily transformed into a tree
structure using the separators in the sequences, as shown
on the left side of Figure 3, which will serve as a guide for
subsequent learning of the detailed model information.

3.4. CAD Construction Sequence Generation

Directly generating all geometric information simulta-
neously poses a significant challenge, even when utilizing
a rough code tree as a foundation. Therefore, we adopt
a sketch-and-extrude generation strategy that gradually re-
covers the parameters of the sketch and extrusion operations
during model creation. We use the code tree as a guid and
condition the step-by-step generation results. Specifically,
we decompose the sequence of construction operations X
into a product of conditional estimates for the stepwise gen-
eration with the following equation:

P (X) = P (EO|T, SO)P (SO|T ), (9)

where SO represents the recovered 2D sketch operation pa-
rameters, including curve type and curve parameters; EO
represents the recovered 3D operation parameters, includ-
ing extrusion and Boolean operation parameters. Since the
networks for recovering 2D sketch operation parameters
and 3D operation parameters share the same network archi-
tecture, with only slight differences in input, output data,
and guided information, we will only provide a detailed in-
troduction to the transformer network for sketch operation
parameter recovery.

Specifically, we positionally encode the sketch opera-
tion parameters and convert them to a 256-dimensional em-
bedding. An additional layer normalization is applied to
the standard transformer encoder layer, while the remaining
structures remain unchanged. Our encoder consists of 6 lay-
ers, each equipped with 8 multi-head attention mechanisms.
For the decoder, we utilize the code tree as guided infor-
mation to inform the recovery of sketch operation parame-
ters. Similarly, an additional layer normalization is added
to the standard transformer decoder layer, with the other
structures remaining unchanged. The decoder consists of
6 layers, also with 8 multi-head attention mechanisms, as
illustrated in Figure 5. For the recovery of 3D operation pa-
rameters, the input and output are the parameters of the 3D
operation, with SO and the code tree serving as guidance
information. Finally, we employ a combined cross-entropy
loss to optimize two transformer networks.

During the generation process, we generate the geomet-
ric operation parameters based on the generated code tree as
a guide and autoregressively recover the CAD construction
sequences by kernel sampling method [13]. Subsequently,
we transform the recovered CAD construction sequences
into STEP files.

Loss Function. Our loss function is as follows, where
CE

(
.
)

is the cross-entropy loss, ŜO, ÊO are the predic-
tion parameters of sketch operation and 3D operation re-
spectively:

LCAD = CE
(
SO, ŜO

)
+CE

(
EO, ÊO

)
. (10)



Figure 5. Improved conditionally guided transformer architecture
for sketch operation parameters recovery.

4. Experiments

In this section we give the results of unconditional and
conditional control generation. Numerous experimental re-
sults demonstrate that we can generate more realistic, high-
quality, and more complex and diverse models compared to
the state-of-the-art approach. We also provide richer means
of conditional control generation including user editing, au-
tocompletion and code tree controlled generation.

We implement the model using PyTorch and conduct ex-
periments on an NVIDIA GeForce RTX 3090 GPU. We
trained the improved 2D sketch transformer and the 3D
transformer backbone with 256 batch sizes each for 350
epochs. We utilized the Adam optimizer for both gener-
ators, which was initialized with a learning rate of 0.001.
This was followed by a linear warmup strategy over 2000
steps to gradually increase the learning rate.

4.1. Experimental Settings

Training Dataset. Our research makes full use of the
DeepCAD dataset [38], which combines 178,238 sketch-
and-extrude models. Divided into 90% training, 5% vali-
dation, and 5% test sets. To ensure the quality of the data,
some preprocessing steps are performed. Duplicate mod-
els are detected and removed from the training set. In ad-

dition, the model is centered and rotated 45 degrees each
time for a total of 8 rotations, starting from an isometric
viewpoint. After each rotation, the image of one viewpoint
and the model contour map in the picture are rendered and
saved, from which the broken and invalid models contain-
ing multiple outer contours are removed. Post filtering, the
training set retains 116,102 instances of sketch-and-extrude
sequences and 94,191 solid sequences, 53,502 profile se-
quences, 135,588 loop sequences for codebooks’ learning.

4.2. Evaluation Metrics

In order to quantitatively evaluate the generative models,
five metrics were used to comprehensively evaluate the dif-
ferent generative methods. We convert the model to point
cloud to compute three metrics - coverage (COV), minimum
matching distance (MMD), and Jensen-Shannon divergence
(JSD) employed in previous works [38, 39, 41]. The metrics
Novelty (Nov) and uniqueness (Uniq), on the other hand,
are improvements on the metrics of previous works, aiming
to partially address the anomalous lowering of the metrics
in [39, 41], and to further improve the accuracy and reason-
ableness of the assessment.

We observe that during training, sequences are trans-
formed from a preprocessed real model, so that each se-
quence corresponds to a real and valid model. However,
the situation is different during the generation process. Not
all generated CAD sequence models are successfully trans-
formed into valid CAD models. This also explains why
sometimes the generated distributions appear to have been
optimized and enhanced, but the results of the generated
CAD models instead appear to be degraded on the Nov and
Uniq metrics. To conduct a more precise evaluation of the
generated models and address the anomalous experimental
results mentioned earlier, we refined the evaluation criterion
for the Nov and Uniq metrics by shifting the focus from the
generated sequences to the generated valid models.

• COV measures the percentage of generated data that
have at least one match to the real data after assigning
each generated data to its nearest neighbor in the real
data by Chamfer Distance (CD).

• MMD measures average minimum matching distance
between generated sets and their corresponding real
sets.

• JSD assesses similarity in marginal point distributions
between true distributions and generated distributions.

• Novel quantifies the percent of successfully generated
valid CAD models which is not found in the training
set, reflecting the generative model’s capacity to de-
velop new designs.



Figure 6. Randomly generated 3D models by DeepCAD [38], SkexGen [41], HNC-CAD [39] and CADTrans. A visual comparison shows
that our method produces more complex and diverse models than existing methods and significantly reduces the probability of broken or
damaged models. The unrealistic model is framed by the dashed box.

• Uniqueness represents the ratio of uniquely occurring
instances in successfully generated valid CAD models,
evaluating the generative data’s diversity.

4.3. Unconditional Generation

We performed a quantitative and qualitative comparison
of unconditional generation results with DeepCAD [38],
SkexGen [41] and HNC-CAD [39]. To ensure the reliability
of the comparison results, 10,000 CAD building sequences
are randomly generated for each method and converted to
B-rep format. At the same time, 2,500 real CAD models
are randomly selected from the available test dataset and a
series of quantitative metrics are calculated for these 10,000
generated models.

Ablation study. To further demonstrate its effectiveness,
we also conducted ablation study, where NR stands for not
applying regularization and NG stands for not applying ad-
versarial training. Table 1 experimental results show that by
employing adversarial training, our method is able to im-
prove the quality and generalization ability of the codebook
more effectively, and this improvement significantly boosts
the COV metric. At the same time, the introduction of a
regularized codebook makes the generated code distribution
closer to the real distribution and improves the representa-
tion ability of the codebook, which leads to a significant
decrease in the JSD metric.

Qualitative Evaluation. Figure 7 presents the qualitati-
ve results of our sketch generation, which produces more
complex structures and diverse outputs compared to the
best baseline model. Similarly, Figure 6 shows that our ap-

Figure 7. Random sketch generation results by HNC-CAD [39]
and CADTrans. Our method utilizes richer elements in the gener-
ation of each sketch, resulting in more complex and realistic out-
comes.

proach generates well-structured CAD models that closely
resemble real-world models, with increased complexity and
diversity in geometries and combinations. In particular,
when the generator tries to generate models with unreal-
istic features or lacks coherent geometric features, both of
which may lead to fragmentation and are considered unre-
alistic models. Our adversarial learning strategy will force
the generator to learn to generate samples that are more



Figure 8. Autocompletion generations based on the provided model, maintaining the structure of the provided model while generating
reasonable and human-like design.

consistent with the true distribution, become more com-
plete, and reduce the generation of fragmented geometry.
To fully demonstrate our approach, we provide more re-
sults for generated CAD models and sketchs in https:
//effieguoxufei.github.io/CADtrans/.

Method COV MMD JSD Nov Uniq
(%) ↑ ↓ ↓ (%)↑ (%)↑

DeepCAD 79.83 1.49 3.91 83.59 83.61
SkexGen 85.19 1.06 0.82 85.20 85.18
HNC-CAD 87.55 0.95 0.69 79.32 97.65
Ours(NR) 89.16 0.92 0.64 74.60 97.60
Ours(NG) 88.56 0.95 0.58 88.49 99.21
Ours 89.54 0.94 0.59 80.64 99.05

Table 1. Quantitative evaluations on CAD generation task with
metrics: coverage percentage (COV), minimum matching distance
(MMD), Jensen-Shannon divergence (JSD), novelty percentage
(Nov), uniqueness (Uniq) percentage. The best result bolded.

Quantitative Evaluation. Table 1 shows the quantita-
tive evaluation results on CAD generation. Our method
outperforms existing works on all value matrices, indicating
that our method has improved both quality and diversity.

4.4. Conditional Generation

The generation strategy of discrete regularized code-
books and autoregression of the transformer allows for con-
ditional generation, so we give three main heuristics for
the controlled generation: user editing, autocompletion, and
code tree controlled generation.

4.4.1 User Editing

Figure 9 demonstrates the editing capabilities that allow the
user to directly intervene and modify the model parame-
ters in order to adjust various parts of the generated CAD

model. During the iterative editing process, the modified
parameters are encoded through the embedding layer along
with other parameters of the original model and fed again
into the generative network. The output of the network is
the fine-tuned 3D model.

Figure 9. Edit model parameters such as radius and length. Edit-
ing changes the size in a responsive manner and aligns with the
relevant structure.

For example, on the left side of Figure 9, the rest of
the model is automatically adapted when the inner radius
is changed. Throughout the operation, the network is able
to sensitively change the dimensions and intelligently adapt
the associated structures to optimize the hole locations
while avoiding causing unnecessary occlusions or affecting
the overall aesthetics and consistency. In addition, users
can directly import the generated CAD model into existing
CAD tools for further modification and editing.

4.4.2 Autocompletion

The autocompletion capability enables further design and
detail refinement based on user input of an initial model of
one or more parts, resulting in a 3D model with more com-
plex geometry structures and details. We complement the
code tree based on the user’s input and input it with the ex-
isting CAD geometry sequence as conditional information
into our code tree-guided transformer network to generate
a new CAD model. As shown in Figure 8, it is possi-
ble to form more complex models based on a given model
while maintaining the basic structure of the input model.
The process and results of autocompletion of the model are

https://effieguoxufei.github.io/CADtrans/
https://effieguoxufei.github.io/CADtrans/


Figure 10. Mixed code tree showcase. Code generation results for fixed loop and profile codes (left), fixed solid codes (middle), and mixed
code tree (right).

reasonable and produce results that are more in line with
real-world design concepts.

4.4.3 Code Tree Controlled Generation

Target Code Tree Structure Generation. Figure 11 shows
the generation results guided by the target code tree struc-
ture. For example, the first row in Figure 11 contains only
solids consisting of two profiles for Boolean manipulation,
and each profile contains only one loop. With this setup, we
can manipulate the code structure under certain code con-
straints to achieve targeted model generation. This allows
us to manipulate the code structure within certain code con-
straints, thus enabling targeted model generation.

Figure 11. Target code tree structure generation. The first column
is the structure of the code tree.

Mixed Code Tree Code Generation. Mixing codes
from different code trees can generate entirely new 3D mod-
els. Locking down some of the code tree information helps
to mimic a particular design style, thus generating simi-
lar design models and widening the design boundary. As
shown in Figure 10, the “ fixed loop and profile codes” il-
lustrates a series of models that share the same 2D geome-
try parameters but have different extension parameters. For

example, the sketches in the first row are all circles, but
with different 3D operation parameters (including extension
height and Boolean operation type). The “fixed solid codes”
shows another set of models with similar 3D extrusion pa-
rameters. For example, the models in the third row all use
the same 3D operations. In addition, the models shown in
the “ mixed code tree” are a mixture of loop and profile
codes from different models as well as 3D solid codes, re-
sulting in a new model that has both sketched features in-
herited from the supplied loop and profile codes and 3D op-
eration parameters inherited from the supplied solid code.
For example, the hybrid model generated at the end of the
first line has the same sketched geometric elements as the
model with the provided loop and profile code, and at the
same time has the same 3D operations as the provided solid
code.

5. Conclusion

In summary, we introduce CADTrans, a transformer-
based autoregressive generative network guided by a code
tree using three regularized discrete codebooks.Extensive
experimental evaluations demonstrate the superiority of
CADTrans over the state-of-the-art baseline, showcasing its
ability to generate more realistic and diverse outputs. CAD-
Trans supports both unconditional and conditional autore-
gressive generation, and its rich interactivity and control
greatly improve the user experience.

Limitation. Since our method quantizes the model data
to 64 pixels, data smaller than a certain threshold is treated
as identical during the learning reconstruction process re-
sulting in loss of detail. This limitation is similar to other
sketch-and-extrude generation methods such as [39, 41].

Future Work. We provide various generation control
methods that can provide generation results based on the
user’s explicit design intent. However, for users with
unclear design goals, their code trees for result control
are correspondingly vague. In order to fully utilize the



spark of inspiration, many methods are currently being
investigated. [34] attempts to use a textual approach to
control generation, but it only guarantees the inclusion
of inspirational elements in the generated result, but does
not guarantee the generation of meaningful results. [45]
attempts to use semantic annotations of CAD programs
to control CAD models, but is unable to reorganize the
ordering of the input program. We envision that future
research directions will focus on developing more effective
control mechanisms, such as generating professional and
realistic CAD models from textual descriptions or 2D
images, in an effort to bridge the gap between design intent
and generated results.
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