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Abstract

Talking head generation based on neural radiance
fields (NeRF) has gained prominence, primarily owing
to its implicit 3D representation capability within neural
networks. However, most NeRF-based methods often
intertwine audio-to-video conversion in a joint training
process, resulting in challenges such as inadequate lip
synchronization, limited learning efficiency, large mem-
ory requirement and lack of editability. In response
to these issues, this paper introduces a fully decoupled
NeRF-based method for generating talking head. This
method separates the audio-to-video conversion into two
stages through the use of facial landmarks. Notably,
the Transformer network is used to establish the cross-
modal connection between audio and landmarks effec-
tively and generate landmarks conforming to the dis-
tribution of training data. We also explore formant
features of the audio as additional conditions to guide
landmark generation. Then, these landmarks are com-
bined with Gaussian relative position coding to refine
the sampling points on the rays, thereby constructing
a dynamic neural radiation field conditioned on these
landmarks and audio features for rendering the gener-
ated head. This decoupled setup enhances both the fi-
delity and flexibility of mapping audio to video with two
independent small-scale networks. Additionally, it sup-
ports the generation of the torso part from the head-only
image with deformable convolution and pseudo 3D con-
volution, further enhancing the realism of the generated
talking head. The experimental results demonstrate that
our method excels in producing lifelike talking head,
and the lightweight neural network models also exhibit
superior speed and learning efficiency with less memory

requirement.
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1. Introduction

The task of generating talking haed from input audio is
to render video portraits that synchronize with and faithfully
convey the speech of the person in the audio. This cutting-
edge technology boasts a wide array of computer graphics
and multimedia applications, spanning from virtual assis-
tants to enriching the realms of virtual reality, digital enter-
tainment, and beyond [5, 15, 32, 48, 53]. As a cross-modal
conversion from audio to video, it usually faces challenges
such as lip synchronization with audio, realism in facial de-
tails, and naturalness of head movement. Additionally, in
some certain scenarios such as live broadcasts or chatbots,
fast learning and inference for rendering the talking head
are also highly valuable.

The recent advance of neural radiance fields (NeRF)
[28] has sparked a surge of endeavor in generating realistic
talking heads [15, 32, 45]. By fully exploiting some spa-
tial information, these methods offer a unique advantage,
particularly in terms of rendering fine-grained details and
overall realism. Typically, existing NeRF-based works rely
on two key networks: one dedicated to mapping audio to
features and the other for constructing conditional radiance
fields based on these intermediate features. However, these
methods often entail the joint training of the two networks.
While the joint training has demonstrated its effectiveness,
it comes with a set of disadvantages. For example, NeRF
models tend to impose a significant training overhead due
to the complexity of the task and the lack of supervised fea-
ture learning [3, 15]. This, in turn, leads to issues such as
inadequate lip synchronization, image blur and prolonged
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training time. Besides, assessing the accuracy of the audio
mapping before producing the final video is unfeasible, and
the limited storage space of computing devices constrains
the network’s ability to represent the talking head corre-
sponding to audio effectively [23, 45].

Facial landmarks are identifiable points on a face that
are concise yet crucial for recognizing and understanding its
unique features. This insight sparks the idea of decoupling
the NeRF-based talking head generation process through
the utilization of facial landmarks. Actually, a few meth-
ods like [46, 47] have validated the potential of decoupling
talking head generation via landmark-based neural radia-
tion fields. However, they still have some limitations, such
as the inability to generate landmarks that align with the
training set distribution in a single attempt and the lack of
precise control over the contribution of landmarks at each
sampling point, which is also a common challenge faced by
NeRF-based methods and leads to increased training time.

Inspired by the decoupling scheme with facial land-
marks, we also separate the talking head generation into two
relatively individual stages, but further improve the land-
mark prediction and talking head rendering to address the
aforementioned limitations. Specifically, the cross-modal
conversion from the input audio to lip movement is en-
hanced to constrain the distribution of predicted landmarks.
This is achieved by incorporating features from a large
model and formant features. Then, these landmarks are
modeled as the centers of Gaussian distributions and used
to construct the radiation field for rendering talking head
images. To mitigate the inevitable impact of information
loss when generating landmarks from audio, we incorpo-
rate audio features extracted from the input as a condition-
ing factor. Besides, deformable convolution and pseudo 3D
convolution are integrated into a head-to-torso network, en-
abling the generation of a coherent body that seamlessly
aligns with the head, thereby enhancing the naturalness and
authenticity of synthesized videos.

Our major contribution is a decoupled two-stage talking
head generation method by utilizing facial landmarks with
Gaussian distribution, which features the following aspects.

• A Transformer model for predicting landmarks. In
the first stage, we adapt the Transformer model [41]
by incorporating formant feature matrix and a faster
cross-attention layer, with training on a large dataset.
This enhances the speed and accuracy of landmark pre-
diction, while ensuring contextual consistency and a
more faithful distribution of landmarks.

• Gaussian landmark encoding for NeRF rendering.
In the second stage, we treat landmarks as the centers
of Gaussian distributions and calculate the Gaussian
relative position coding with the sampling points on
the ray. This enables precise control of the neural radi-

ance fields, which can improve the learning efficiency
and rendering quality of the generated head.

• A UNet network for generating torso. After render-
ing the head using NeRF, we further adapt the UNet
model with deformable convolution to generate a com-
plete image that includes both the head and torso. Ad-
ditionally, we introduce a temporal dimension to create
a pseudo 3D convolution network. This head-to-torso
network can avoid artifacts such as rigid hair and gaps
between the head and torso, thereby augmenting the
naturalness and authenticity of the final video.

2. Related Work

2.1. 2D-based methods

Image-to-image translation [10, 52, 53], generative ad-
versarial networks (GANs) [6, 9, 14, 42] and recently pop-
ular diffusion models [36] are typically used for creating
talking heads, often accompanied by intermediary parame-
ters like emoticons or landmarks. These approaches can be
classified into two primary categories: end-to-end and non-
end-to-end approaches, depending on whether audio control
is applied directly or indirectly.

End-to-end approaches like [19] involve the synthesis of
talking heads by using a decoder network. This process
takes place after both images and audio are simultaneously
encoded into a latent space through an encoder network.
With the unsupervised training, it becomes feasible to create
audio-controlled videos in which a static image of a mouth
progressively transforms in synchronization with the audio.
Another end-to-end method [42] utilizes a temporal GAN
methodology that incorporates three discriminators, which
collaborate to generate unique images, synchronize mouth
movements with audio, and convey a range of facial emo-
tions. Diffused heads [36] employ a provided single identity
frame along with an audio clip containing speech. Leverag-
ing a diffusion model, it samples successive frames in an
autoregressive fashion, preserving identity while modeling
lip and head movements to synchronize with the audio input
without any further guidance. Non-end-to-end approaches
like [53] entail the use of audio to predict landmark dis-
placements. Then, networks similar to pix2pix [18] are
employed to generate talking head images based on these
newly predicted landmarks.

Nonetheless, both end-to-end and non-end-to-end ap-
proaches encounter constraints stemming from their 2D
processing. This limitation arises from the absence of 3D
structural information, which might cause artifacts like un-
stable facial appearances.

2.2. 3D-based methods

The 3D Morphable Model (3DMM) [4] is extensively
used as an intermediary representation. Suwajanakorn et
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Figure 1. An overview of our decoupled two-stage method for talking head generation. In the first stage, input audio and initial landmarks
are processed by using encoders Eaud and Elm respectively to extract features. The landmark features of preceding frames fl[1 : i] are
delivered to the Transformer decoder Da2l, which contains periodic position encoding (PPE), a self-attention layer (SA) and a cross-
attention layer (CA), to get ḟl[i+ 1] and f̈l[i+ 1], and predict fl[i+ 1] with fa[1 : T ] that form a looped sequence. In the second stage,
generated landmarks are combined with sampling points during Gaussian landmark encoding. The utilization of Gaussian landmark
encoding and audio features contributes to generating the density σ and color c necessary for rendering the head. This head image is
subsequently used to generate the body through the UNet network.

al. [37] utilize 3DMM to learn mouth textures, as well as
predict landmarks in the mouth region based on the au-
dio characteristics of Mel-frequency cepstral coefficients
(MFCC). Then, these landmarks and textures are combined
to synthesize new mouth-area images, which are seamlessly
integrated into the original video. Song et al. [35] lever-
age 3DMM to dissect video frames into a parameter space,
encompassing expression geometry and gestures. Subse-
quently, they introduce a recurrent neural network (RNN)
to convert audio to these audio-related parameters and de-
sign a rendering network with dynamics to facilitate video
generation. Justus et al. [39], on the other hand, employ
an attention network to extract features from audio by using
DeepSpeech2 [1]. These features are then transformed to
the corresponding parameters of the 3DMM model and fur-
ther rendered to produce the final video. Zhang et al. [49]
also use 3D models to achieve the stability of diffusion-
generated images over consecutive frames.

Recently, NeRF [28] has been gaining ground as the
method of choice for talking head generation, owing to its
proficiency in implicitly representing complex scenes. Ini-
tially, Guo et al. [15] propose a method that separately vi-
sualizes the head and body, by introducing characteristics
derived from audio as additional conditions for NeRF. Yao

et al. [45] take this a step further by disentangling audio
features into lip motion features and other personalized at-
tributes. Meanwhile, Shen et al. [32] introduce prior fea-
tures in 2D images alongside audio characteristics. For the
purpose of editable NeRF, Hong et al. [16] incorporate pa-
rameters like identity, expression, appearance and lighting
obtained from the decomposition of the 3DMM as condi-
tional inputs. Furthermore, Gafni et al. [12] construct NeRF
using learnable latent codes and expression parameters de-
rived from the decomposition of 3DMM. For the fast com-
putation with neural radiation fields, Tang et al. [38] intro-
duce RAD-NeRF, which harnesses grid-based neural radia-
tion fields to expedite both training and inference. Similarly,
Li et al. [23] propose ER-NeRF, which employs three-plane
hash coding to steer the generation of neural radiation fields.

However, it’s worth noting that most of the aforemen-
tioned NeRF-based methods employ intricate joint training
strategies. These strategies entail using audio directly to in-
struct NeRF on influencing rendering outcomes, imposing
a significant training load on NeRF. Furthermore, to pre-
vent the audio mapping network from excessively enlarging
the model, the audio mapping networks employed by these
methods are relatively simple, lacking expressive power in
representing the intricate relationship between audio and



video. Consequently, this causes drawbacks like poor align-
ment between mouth shape and audio, slow learning speeds,
and the large scale of complex models.

To tackle the above issues, there are methods to decou-
ple the NeRF-based talking head generation process. Gene-
face [47] is the first attempt by using facial landmarks. It
utilizes variational auto-encoder (VAE) [22] to generate fa-
cial landmarks from audio, and then employs additional net-
works to refine these landmarks. Within the neural radiation
fields, it utilizes MLP to convert these landmarks to fea-
ture vectors, which contributes to density field generation.
Geneface++ [46] improves this framework by incorporat-
ing pitch-aware and fast NeRF rendering scheme. However,
both of the two methods still struggle to ensure a reasonable
distribution of generated landmarks due to the limitation of
VAE. Moreover, they treat the landmarks as identical for all
sampling points during the learning process, which neces-
sitates additional time to establish the varying contributions
of each point. While the proposed method in this paper is
also based on landmarks to decouple the talking head gen-
eration, it can improve the distribution of generated land-
marks from the input audio, as well as learn the network of
NeRF more efficiently.

3. Method Overview

Fig. 1 depicts a schematic overview of our method. The
dataset is created by utilizing 3DMM to extract both cam-
era poses and facial landmarks from video frames within a
unified coordinate system. We use facial landmarks as inter-
mediaries to connect two separate stages for audio-to-video
conversion.

In the first stage, we adapt the Transformer model to
construct a cross-modal model with the long-term context.
This network operates in an autoregressive manner, leverag-
ing features extracted from the input audio with the aid of
a pretrained Transformer-based language model and linear
predictive coding (LPC). Simultaneously, it processes facial
landmarks using the Transformer encoder. Subsequently, it
seamlessly combines audio features with facial landmark at-
tributes from preceding frames to derive the landmarks spe-
cific to the current frame by the Transformer decoder. For
this decoder, we further simplify the calculation across the
cross-attention layer without performance degradation. To
fully leverage audio information and enhance robustness in
landmark generation, we employ a training scheme that in-
volves pre-training on a large dataset (VOCA) [8] followed
by fine-tuning on specific individuals.

In the second stage, it is noted that existing methods for
dynamic neural radiation fields uniformly incorporate time-
related features for all rays into the input, along with po-
sition and direction information. However, it is not con-
ducive to effective network learning. Instead, we design
distinct Gaussian kernels for each landmark using the ellip-

soidal Gaussian distribution to support anisotropy. Specifi-
cally, to enable nuanced adjustments on individual rays and
sampling points, we treat each landmark as the center of
a Gaussian distribution. After selecting sample points on
rays, we calculate the weight of each sample point on each
landmark for constructing the radiation field, which is re-
ferred as Gaussian landmark encoding. Then, an MLP net-
work is employed to generate color and density for volume
rendering of the head image. Subsequently, we employ a
UNet network with a pseudo 3D convolution architecture
based on the deformable convolution, to generate the body
image seamlessly connected to the head image, ultimately
producing the output video. The details are provided in the
following sections.

4. talking head Generation

4.1. Training dataset construction

Our method leverages the state-of-the-art face shape es-
timator MICA [54] and a matched face movement tracker,
as well as utilizing the 3DMM face model FLAME [24].
Typically, the mesh vertices M in the FLAME model can
be expressed as:

M(β⃗, θ⃗, ψ⃗) : R|β⃗|×|θ⃗|×|ψ⃗| → R3N (1)

where M ∈ R3N represents the face geometry of a tem-
plate triangle mesh with N vertices. The vectors β⃗, θ⃗ and ψ⃗
are the coefficients for shape, pose and expression, respec-
tively.

Besides, before tracking the face movement, we selected
68 triangle faces on the face mesh and calculate the corre-
sponding facial landmark according to the weight of three
points on each face. These landmarks, denoted as Lworld ∈
R3×68, are then projected into image space according to
camera parameters, that are composed of rotation matrix
R ∈ R3×3, translation vector t ∈ R3 and camera intrin-
sic matrix K ∈ R3×3. Among them, the rotation matrix
can be expressed by Euler angles ae = (pitch, yaw, roll).
So far, the head pose can be represented by p = (ae, t).
When tracking, we optimizes the above values, except for
β⃗ that is obtained from MICA, by minimizing L2 loss be-
tween mesh’s landmarks and detected landmarks from im-
age processing technology, multi-scale rendering loss, and
various regularization loss terms that ensure two adjacent
frames are coherent.

In prior studies [15, 38], facial parsing technology [26]
has typically been employed to extract facial data. However,
a common observation is that the mask images generated by
this method often exhibit gaps, particularly in areas such as
body parts. To address this limitation, we adopt a network
based on U2net [29] to pre-separate the individual and back-
ground within the image. Then, facial parsing is applied to
delineate the facial area I with better accuracy. In our study,
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Figure 2. The first stage contains (a) the wav2vec2-based audio encoder Eaud, (b) the landmark encoder Elm and (c) the Transformer
decoder Da2l. The selected facial landmarks are indicated by red dots in (b).

it is observed that the MICA and FLAME models excel in
accurately modeling the eyes, enabling us to easily calcu-
late the extent of eye closure. We do this by calculating the
ratio r between the area of the eye landmarks in each frame
and the area in the first frame, where there is usually no ex-
pression. This ratio serves as an indicator for quantifying
the extent of eye closure. In the training process, we collect
and record the data of Lworld (facial landmarks), I (facial
image data), p (6 DoF rigid pose), K (camera intrinsic ma-
trix) and r (eye closure extent), which are used to construct
the training dataset.

4.2. First stage: Audio to facial landmarks

Using the facial landmarks denoted as Lworld, our first
stage involves establishing a connection between the input
audio and these landmarks. Here, we employ the Trans-
former framework, which is chosen for its ability to han-
dle variable-length inputs and maintain long-range audio-
context correlations.

Although Transformer networks [11] have been proven
effective and widely adopted for generating landmarks, the
results generated solely by Transformer are not sufficiently
accurate. The outputs often reflect an averaged trend, which
may fail to achieve full lip closure. To address this, we in-
troduce energy and formant conditions to assist in control-
ling lip movements. When the energy of the audio is below
the threshold at a certain moment, we consider that there is
no sound and the lip shape should be closed at that time.
Due to high potential relativity of phoneme and formant,
accurate control of lip movement can be realized. Drawing
inspiration from FaceFormer [11], our method adopts an au-
toregressive strategy to predict new landmarks, using both

previous landmark attributes and contextual audio informa-
tion as conditioning factors. Within this procedure, we for-
mulate the architecture with two Transformer encoders and
one Transformer decoder.

Concretely, as shown in Fig. 2(a), the first encoder, de-
noted as Eaud, is designed to transform audio into features.
It leverages the pre-trained wav2vec2 model [2] and in-
corporates formant features. Here, the wav2vec2 model is
used to obtain audio semantic features from the audio sig-
nal, and the frequency and bandwidth of the formants are
calculated after windowing and applying LPC. Besides, a
short-time Fourier transform (STFT) is utilized to obtain
the audio’s energy, which serves as a threshold for con-
straining the formants. In Fig. 2(b), the second encoder is
a landmark encoder denoted as Elm, which is composed
of CNN and Transformer encoder structures. Notably, lip
movements exhibit a strong correlation with audio, unlike
eye blinks. Therefore, only 37 landmarks, marked with red,
from Lworld within the lip area and outer contour are se-
lected by Elm to extract relevant features. In Fig. 2(c),
the decoder architecture is partially inspired by FaceFormer,
incorporating a periodic position encoding (PPE) layer,
a biased causal multi-head self-attention layer, and a bi-
ased cross-modal multi-head attention layer to construct the
Transformer decoder. However, it is observed that the bi-
ased cross-modal multi-head attention layer underperforms
due to alignment bias, represented by a matrix with a zero
diagonal and the other elements set to negative infinity. This
bias is applied before the softmax function, causing the at-
tention weight matrix to resemble an identity matrix, which
leads to redundant calculations. To address this issue, we
remove the biased cross-modal multi-head attention layer



and replace it with a simple linear network.
Overall, the audio is initially processed by Eaud to ob-

tain audio features of the T frames of a video, denoted as
fa[1 : T ]. When generating landmarks for the i + 1 frame,
all audio features are fused with landmark features from the
previous i frames, denoted as fl[1 : i], through the utiliza-
tion of Elm. Then, fl[1 : i] and fa[1 : T ] undergo the Trans-
former decoder Da2l to predict fl[i+ 1].

In the training phase, we train our model on the VOCA
dataset and then fine-tune it on individual portraits to en-
hance both accuracy and robustness, as well as to reduce
errors in landmark generation. For the pre-training on the
VOCA dataset, we apply the same method described in
Sec. 4.1 to extract 68 landmarks from the face mesh. Our
model is trained by minimizing the smooth L1 loss [13] be-
tween the predicted landmarks L̂world and the ground truth,
denoted as:

Ls1 =

{
0.5(∆L)2 if ∆L < 1

∆L− 0.5 otherwise
(2)

where ∆L is |L̂world − Lworld|.
It has been observed that employing facial features ob-

tained directly from processing facial landmarks can lead to
static facial expressions during the inference process. This
issue arises due to the absence of a well-defined weight ini-
tialization, resulting in increased learning costs and diffi-
culties in capturing subtle motion changes between consec-
utive frames. To address this issue, we have devised a dual-
pronged solution. Firstly, we employ landmark shifting by
subtracting the average of all landmarks from each land-
mark in every frame. Secondly, we set the weight of the
last linear layer of Da2l to zero. This solution has been put
in place to alleviate the issue and encourage more dynamic
and expressive facial animations.

In the implementation, we set all the multi-head-
attention layers used in Elm and Da2l with 4 heads and 64
feature dimensions. For the Eaud, we set 16 heads and 768
feature dimensions, and the FC layer next to it converts 768
dimensions to 64 dimensions.

4.3. Second stage: Landmarks to facial images

After acquiring the landmarks Lworld and camera poses
p, the next step involves leveraging NeRF for rendering im-
ages of the talking head. Typically, NeRF [28] can be rep-
resented as follows:

Fθ(x,d) = (c, σ) (3)

where x denotes a point in the voxel space, d represents
the 2D view direction, and c and σ stand for the color and
density of the voxel at the position x along the direction
d. The values of c and σ are subsequently utilized to ren-
der the final image by accumulating along the ray using the

following volume rendering formula:

C(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t),d)dt, (4)

where r(t) is the camera ray and T (·) is computed by

T (t) = exp

(
−
∫ t

tn

σ(r(s))ds

)
(5)

Head generation. When it comes to generating talk-
ing head, a challenge occurs because the provided videos
are typically recorded from a fixed camera pose, whereas
NeRF requires input from multiple camera poses. Guo et
al. [15] introduce AD-NeRF, which incorporates head pos-
tures obtained from 3DMM. By treating motion as a rela-
tive change, it simulates a scenario where the head remains
stationary while the camera moves around it. As a result,
NeRF implicitly models the facial space. As depicted in
Fig. 1, to render the corresponding head image based on
the given landmarks within NeRF, we employ these land-
marks as additional conditions to establish a dynamic NeRF
framework. Furthermore, to minimize errors in landmark
creation during the first stage, we incorporated the audio
features used for generating those landmarks as additional
conditions. Overall, we extend the NeRF network from
Eq. (3) to the following expression:

Fθ(Lworld , fa,x,d) = (c, σ) (6)

It should be noted that the method of KeypointNeRF [27]
introduces the concept of relative spatial keypoint encoding
for expressing landmarks as the density and color of the ra-
diation field in their human body reconstruction work. The
method relies on multiple cameras capturing the dataset si-
multaneously, which is not feasible for talking head gener-
ation with only a single video input. To address this issue,
we use parameterized facial models to match videos and
obtain stable motion landmarks, rather than relying on data
from multiple camera perspectives. Additionally, unlike
the Gaussian kernel used in vanilla KeypointNeRF, which
is uniform across all landmarks and adverse to optimiza-
tion, we design different Gaussian kernels for each land-
mark using the ellipsoidal Gaussian distribution to support
anisotropy. Concretely, our method calculates the relative
distance between the voxel x and landmark Lworld, denoted
as δ ∈ RK×N×3 , where N and K are the number of sam-
ple points and landmarks. Subsequently, as shown in Fig. 3,
we employ camera pose information to transform it into the
camera coordinate system, denoted as d = (dx,dy,dz). In
vanilla KeypointNeRF, to obtain the relative position cod-
ing, position embedding γ(·) and Gaussian exponential ker-
nels are further applied as follows:

r(x|Lworld) = exp(− |d|2

2 ∗ α2
) · γ(dz) (7)



where the hyperparameter α is set to a fixed value of 0.05.
Inspired by 3DGS [20], we change this equation as follows
to control variance in all directions:

r(x|Lworld) = exp(−1

2
diag(δΣ−1δT )) · γ(dz) (8a)

Σ = RS(RS)T (8b)

where Σ ∈ RK×3×3 is a learnable variable that represents
covariance matrix, S and R are the scaling matrix and rota-
tion matrix respectively.
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Figure 3. The Gaussian landmark encoding for neural radiance
fields rendering.

Furthermore, when computing the color c and den-
sity σ defined in Eq. (6), vanilla NeRF usually has slow
speed. Fortunately, there have been some grid-based meth-
ods like [23, 38]. Here, we also leverage grid-based NeRF
with two MLPs to expedite both training and inference pro-
cesses as used in RAD-NeRF [38]. Concretely, the network
architecture involves the density MLP with three layers,
whereas the color MLP encompasses two layers. Both of
these networks are designed with 64 hidden dimensions for
achieving the optimal performance. Additionally, because
landmarks are unevenly distributed, using different Gaus-
sian kernels for different landmarks offers certain advan-
tages in accuracy and performance. To verify this superior-
ity, we conducted ablation experiments with different land-
mark representation methods (see the details in Sec. 5.3).

Besides, to enhance the training speed of our model, we
strategically select a 64 × 64 pixel region from each image
at a random resolution and perform voxel sampling on the
corresponding rays. For the learning process of the neural
radiance field in the facial region, we also introduce a mask
during the early stages of training. Specifically, we con-
strain the length of the range corresponding to the sampled
points on rays in non-facial regions to 0. In the training
procedure, we gradually phase out the mask, allowing the
neural radiance field to extend its learning to non-facial re-
gions.

BN (Conv64↓2) (DCN64) P3D

ReLU BN (Conv64↓2) (DCN64) P3D

ReLU BN (Conv128↓2) P3D

ReLU BN (↑2Conv128) P3D

ReLU BN (↑2Conv64) (DCN64) P3D

ReLU BN (↑2Conv64) (DCN64) P3D
Head Images Total Images

UNet Module ReLU BN (Conv3-1x1) P3D

Resize128

ESPCN_x4

Figure 4. The proposed UNet. BN refer a batchnorm layer.
Conv(C) refers to a convolution layer with C channels, while ↓ 2
indicates that it is strided down by a factor of 2. Conversely, ↑ 2
implies that this convolution is performed after a nearest-neighbor
upsampling by a factor of 2. DCN(C) represents a deformable
convolution with C channels. All convolutions typically employ
3 × 3 filters unless specified otherwise, such as Conv3 − 1 × 1
with 1×1 filters. P3D means a convolution in the time dimension.
For the symbols between parentheses, there is a ReLU layer after
them.

Throughout our experiments, it is also observed that
while facial landmarks encompass both open and closed
eyes, the neural radiation field predominantly showcase ren-
dering results with open eyes during inference. The under-
lying reason for this phenomenon is that the dataset con-
tains a large number of instances with open eyes. To ad-
dress this issue, we introduce a dynamic adjustment mech-
anism for the weight of the image loss associated with the
eye region, based on the representation r for indicating the
eye closure. The experiments demonstrate that this adaptive
scheme enables the neural radiation field to accurately ren-
der the blinking effect by adapting to changes in landmarks
corresponding to the eyes. To achieve a more comprehen-
sive understanding of the entire image and enhance image
perception throughout the training process, we further inte-
grate a VGG network [34]. This network computes addi-
tional losses, akin to HumanNeRF [44], in addition to the
conventional image reconstruction loss typically utilized in
NeRF. Thus, the training loss in the second stage is:

Lnerf
s2 = λ1Lnerf

pix + λ2Lnerf
alpha + e1−rLnerf

eye

Lnerf
pix = Lnerf

SmoothL1 + λ3Lnerf
V GG

(9)

where Lnerf
pix is the pixel loss, which comprises the smooth

L1 loss and the difference in the output of the VGG net-
work between the rendered and original images, Lnerf

alpha

represents the cross-entropy loss on masked images, and



e1−rLnerf
eye denotes the pixel loss focused on the eye region,

weighted by the eye closure representation r.
Torso generation. The NeRF mentioned above can

successfully render a talking head in accordance with the
input audio. However, rendering only the head is usually
insufficient for obtaining a full and lifelike representation.
The method of AD-NeRF [15] implicitly describes the re-
quired camera pose by combining the head posture and au-
dio features, since there is no known pose for the torso
NeRF. While the method of ER-NeRF [23] addresses the
head-torso separation issue by mapping intricate transfor-
mations of head poses to spatial coordinates, there are usu-
ally gaps between the generated heads and bodies. To ad-
dress this issue, we further introduce a network based on the
deformable convolution, pseudo 3D convolution [30] and
UNet [31, 43] for synthesizing the full image with torso
from a head-only image (see Fig. 4). This can also ef-
fectively mitigate the gravity-defying issue associated with
NeRF-generated hair as demonstrated in the experiments.
Similar to other NeRF-based methods, our torso generation
method is influenced by the training data and the parameters
of the torso generation network. Because the deformable
convolution and pseudo 3D convolution require additional
time, and the torso typically contains fewer details com-
pared to the head, we employ a strategy of low-resolution
learning followed by super-resolution inference to enhance
learning and inference speed.

Concretely, with the goal of reconstructing the original
image from the background and head parts, we tailor the
UNet generator in pix2pix [18] and add DCNv3 after some
convolution layers to automatically identify facial areas to
fulfil our requirement. To deal with the checkerboard ar-
tifacts, we choose nearest-neighbor interpolation followed
by convolution, replacing the original transposed convolu-
tion upsampling method. To ensure stability, we employ
the pseudo 3D convolution, which introduces a temporal
convolution after the last convolution layer. Finally, we
apply a pre-trained ESPCN [33] model to perform super-
resolution on the generated low-resolution video. Similar
to Eq. (9) in the head generation, we integrate a VGG net-
work alongside the smooth L1 loss, denoted by Lunets2 =
LunetSmoothL1 + LunetV GG. As the example shown in Fig. 4 for
the torso generation, our network can generate a body that
seamlessly attached to the head while maintaining clear de-
tails of the full image with the torso.

5. Experiments

We have implemented our method based on the PyTorch
framework and performed the training on a single NVIDIA
RTX 3090 GPU with 24 GB of memory. We collected some
datasets of speech videos from previous works [15, 50]. For
each person-specific dataset, we changed the correspond-
ing video to 25 FPS with more than 6000 frames with the

resolution of 512 × 512. Then, we compared our method
with some state-of-the-art NeRF-based methods for talking
head generation on the datasets, including AD-NeRF [15],
RAD-NeRF [38], ER-NeRF [23] and Geneface++ [46], as
well as MakeItTalk [53] and NVP [40] that are not NeRF-
based methods. We refer the reader to the companion video
for visual demonstrations of the generated talking heads by
different methods. Next, we elaborate the details of the ex-
periments.

5.1. Training

The individual networks in the two stages are trained
separately. For the training in the first stage, we adopt
AdamW optimizer [25] with the learning rate 1e-4. The
dataset is divided into groups with every 200 frames, where-
upon each group contains aligned audio and the 3D coor-
dinates of landmarks Lworld in the world coordinate sys-
tem. Both the audio and landmarks are taken into Eaud and
Elm to generate outputs with the encoding dimension of 64.
The training process usually takes about half an hour in this
stage.

For the training of NeRF in the second stage, we adopt
Adam optimizer [21] with an initial learning rate set to 5e-4.
The training data involves head images P, camera parame-
ters {K,P}, and landmarks Lworld . In the training process,
we set 64× 64 rays from the image plane. The loss scale is
set to 10 for λ1, 5 for λ2 and 0.05 for λ3. We adopt AdamW
optimizer with the learning rate 1e-3 during the training
of UNet in second stage. Tab. 1 show the training time
and memory usage of the parameters used in our method.
We also make a comparison with some other NeRF-based
methods. It can be seen that our method provides superior
speed and learning efficiency, while our method requiring
less memory to store the network parameters.

Table 1. Comparisons of training time (in hours) and memory us-
age (in MByte).

Time(h) Memory (MByte)
AD-NeRF 36 29

RAD-NeRF 7 15
ER-NeRF 4.5 18

Geneface++ 20 57
Ours 4 12

5.2. Results

To demonstrate the superiority of generated talking
heads by our method, we perform both qualitative and
quantitative evaluations as commonly employed in previ-
ous works. In the following results, we test the methods
with both self-driven and cross-driven examples. In both
self-driven and cross-driven scenarios, the generated video
shares the same audio and head poses as the given video.
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Figure 5. Qualitative comparison of self-driven results obtained by MakeItTalk [53], AD-NeRF [15] RAD-NeRF [38], ER-NeRF [23],
Geneface++ [46] and our method. The top line represents the reference source video. The red boxes indicate the areas with artifacts like
different lip shapes, different eyes, gaps and blurred hair.

The main difference lies in whether the portrait image in the
given video is the same as the one used in the training. The
camera poses used in the reconstruction are taken from the
source video, while eye blinking is randomly generated. It
is important to note that since the datasets have no portraits
with back views, both our method and the other methods
used for comparison do not generate images from the back
viewpoints.

Qualitative evaluation. The visual quality of the gener-
ated talking head relates to lip synchronization, free of blur
and distortion, natural head movement, etc. Fig. 5 presents

samples of self-driven reconstructed talking heads gener-
ated by different methods. Among these methods, only
NeRF-based methods have the ability to produce videos
with a variety of head movements. MakeItTalk exhibits lim-
itations in generating a positive talking head with inaccu-
rate lip shapes. The edge of the mouth regions generated
by NVP has artifacts compared to the original image. No-
ticeable gaps between the head and torso, and wrong lip
shapes are often observed in the results by AD-NeRF. The
lip shapes generated by RAD-NeRF are not always good,
and there are distortions in the hair regions. ER-NeRF and
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Figure 6. Qualitative comparison of cross-driven results obtained by ER-NeRF [23], Geneface++ [46] and our method. The top line
represents the reference source video. The red boxes indicate the areas with artifacts like different lip shapes, different eyes, gaps and
blurred hair.

Geneface++ also have some similar artifacts, while Gene-
face++ appears to have blurred hair in the generated results.
In the companion demo video, we also find that AD-NeRF
have some unnatural, low-frequency, and incompletely eye
movements, because their blinking features are implicitly
included in the audio features. The noticeable body shak-
ing exists in the results obtained by ER-NeRF. Addition-
ally, for portraits with long hair, these methods often pro-
duce either relatively stiff hair as shown in the results by
ER-NeRF, or unrealistic graininess as observed in the re-
sults by RAD-NeRF and Geneface++. The supplementary
material provides the dynamic exhibition to compare the ef-
fectiveness of ER-NeRF and our method in generating long
hair. In contrast, our method can produce more realistic re-
sults with lip synchronization, natural blinking, stable body
movements and clear hair.

We also test the effectiveness of ER-NeRF, Geneface++
and our method in the cross-driven tasks. Here, we map an-
other person’s audio and head poses to a new portrait. Fig. 6
shows some results, and it can be seen that our method has
more accurate eye and mouth mapping.

As one key ingredient of our method to improve the qual-
ity, we adapt the Transformer model to obtain facial land-
marks to bridge the two stages of our method. So we further
make a comparison for generating landmarks by classical
VAE model from Geneface++ and our Transformer model.
As noted by Ye et al. in their study [46], the majority of
landmarks obtained using the VAE method do not adhere
to the distribution of the training data. We further do the
test on our Transformer model in this regard, and the results

(a) (b)
Figure 7. T-SNE visualization of facial landmark distribution gen-
erated by (a) VAE from Geneface++ and (b) our Transformer
model in the first stage. The purple points represent the set of
training data, while the yellow points indicate the set of generated
data.

are depicted in Fig. 7. It can be seen that our method can
generate landmarks that adhere better to the distribution of
the training data, thus improving the fidelity of generated
talking head in the audio-to-video conversion.

Quantitative evaluation. We utilize the metrics of
peak signal-to-noise ratio (PSNR) [17], structural similar-
ity (SSIM) [17], and learned perceptual image patch simi-
larity (LPIPS) [51] to measure the generated image quality.
Because PSNR usually tends to provide higher scores for
blurry images, we advocate for the use of the more repre-
sentative perceptual metric LPIPS. It is worth noting that to
more accurately evaluate the accuracy of lip synchroniza-
tion, we also employ the landmark distance (LMD) and the
confidence score proposed in SyncNet [7] in the experi-
ments.

The statistics of quantitative evaluation is reported in



Table 2. Quantitative evaluation of different talking head generation methods. The numbers corresponding to NVP are not thicken to be
bold due to it directly replaces the mouth area from the original image.

Method Iteration Test A Test B
PSNR↑ SSIM↑ LPIPS↓ SyncNet↑ LMD↓ PSNR↑ SSIM↑ LPIPS↓ SyncNet↑ LMD↓

Ground Truth - - - - 6.76 0 - - - 7.81 0
MakeItTalk [53] - 30.37 0.597 0.217 6.72 4.88 25.02 0.459 0.284 7.29 5.36

NVP [40] - 42.30 0.951 0.016 5.28 4.22 39.65 0.966 0.041 5.92 4.04

AD-NeRF [15] 100k 30.16 0.683 0.162 3.73 5.26 28.71 0.503 0.216 5.40 5.63
300k 31.89 0.766 0.091 4.52 4.40 29.06 0.661 0.164 5.68 5.04

RAD-NeRF [38] 100k 33.24 0.813 0.103 4.67 4.62 30.36 0.749 0.188 5.76 5.10
300k 33.56 0.896 0.055 5.16 4.24 30.81 0.800 0.102 5.99 4.89

ER-NeRF [23] 100k 34.21 0.889 0.079 5.63 4.69 30.25 0.710 0.173 5.84 5.22
300k 34.49 0.908 0.046 6.01 4.26 31.06 0.775 0.101 6.05 5.03

Geneface++ [46] 100k 34.38 0.870 0.061 5.07 3.78 30.53 0.713 0.140 6.10 4.19
300k 35.04 0.918 0.041 6.13 3.78 31.18 0.767 0.084 6.22 4.08

Ours 100k 35.16 0.906 0.035 6.08 3.34 31.14 0.745 0.085 6.13 3.46
300k 35.28 0.922 0.028 6.20 3.34 31.35 0.772 0.077 6.39 3.46

Tab. 2. It can be seen that our method produces the best
results for most of the metrics. Here, it should be noted that
the NVP method directly replaces the mouth region from
the original image, which gains better PSNR, SSIM, and
LPIPS scores than all the other methods. So it is unfair to
make the comparison with the other methods based on these
metrics, whereas the numbers are not thicken to be bold in
Tab. 2. MakeItTalk also produces a high Syncnet score, be-
cause it processes the incoming video only using lip move-
ments without head movements. Our Syncnet score is more
reasonable. Additionally, our method achieves a favorable
evaluation score after training on 100,000 images, surpass-
ing contemporaneous methods and demonstrating a faster
learning performance for our model.

5.3. Ablation study

We also conduct ablation experiments to assess the effec-
tiveness of key components in our two-stage setup. Firstly,
we examine the influence of the generation of landmarks
from audio between vanilla FaceFormer and our method.
Secondly, we assess the impact of using average landmark
subtraction and zero-setting the last linear layer. Thirdly,
we demonstrate through experiments that incorporating for-
mant can significantly enhance the accuracy of landmark
generation. Additionally, we compare different landmark
encoders, including those from vanilla KeypointNeRF [27],
Geneface [47], our method and other variants. We also eval-
uate the effect of incorporating audio features in the second
stage. Furthermore, we attempt to bypass the supervision
of landmarks for audio generation and directly apply end-
to-end generation from audio to talking head images. The
purpose is to ascertain the significance of decoupling the
two stages in the process. Next, we elaborate the details of
the ablation study.

The Transformer model in the first stage. As de-
scribed in Sec. 4.2, we implement the conversion from au-
dio features to landmarks based on FaceFormer. Here, we
conducted two types of comparisons: the first one compares
the vanilla FaceFormer with our method, and the second one
examines the impact of using average landmark subtraction
and zero-setting the last linear layer. In the first compari-
son, Tab. 3 presents the results of using vanilla FaceFormer
versus our network, where Ls1 represents the training loss
from Eq. (2) after 10 epochs. It can be observed that our net-
work achieves faster convergence and a smaller loss. For the
second comparison, we refer readers to the supplementary
materials for the dynamic exhibition. Generally, the lack
of average landmark subtraction and zero-setting cause the
inability to converge, and the generated landmark motion
tends to be static.

Additionally, to demonstrate the effectiveness of our
method in reducing error and improving accuracy, we com-
pare the results with and without using formant. As shown
in Fig. 8, the disparity between the generated results and
ground truth are large when formant feature is absent,
with the mouth failing to even close during periods of si-
lence. Conversely, our method makes use of formant fea-
ture, which yields generated results that closely resemble
the ground truth, achieving a higher degree of fidelity. .

Table 3. Different Transformer model after 10 epoches in the first
stage.

Ls1(×10−4) Time (seconds per iteration)
FaceFormer [11] 0.641 86.90

Ours 0.251 70.16

Facial landmark encoding in the second stage. As
outlined in Sec. 4.3, we utilize Gaussian landmark encod-
ing, denoted as Eq. (8a), to handle the input landmarks as
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Figure 8. Ablation study on the use of formant in the first stage.
The outlines in red indicate the results without formant, while the
outlines in green indicate our results with formant. The black out-
lines indicate the ground truth. The texts below the outlines corre-
spond to the phoneme in the images, where ‘none’ represents there
is no speech.

one of the conditions for the dynamic neural radiance fields.
In Tab. 4, we compare the impact of our method on neural
rendering with the processing of landmarks using only po-
sition embedding γ(·) after flatten the landmark, an MLP
encoder like Geneface [47], Eq. (7) from KeypointNeRF,
Eq. (8a) without embedding the relative depth γ(dz) and
our Eq. (8a). The recorded data are obtained after the same
training iterations of 100,000. Evidently, employing only
position embedding γ(·) does not contribute effectively to
learning. Conversely, favorable results are achieved when
applying Eq. (8a) to process landmarks. In Sec. 4.3, we
utilize audio features as additional conditions for minimiz-
ing error accumulation. The results after 100k iterations
with and without audio features are shown in Tab. 5. It can
be seen that with the help of audio features, the generated
video gets higher quality and accuracy.

Table 4. Different landmark encoding module in the second stage.
Mode PSNR↑ SSIM↑ LPIPS↓ SyncNet↑
γ(·) 28.32 0.406 1.017 4.86

MLP (Geneface) 34.84 0.865 0.049 5.72
Eq. (7) (KeypointNeRF) 34.95 0.912 0.037 5.99

Eq. (8a) w/o γ(dz) 34.01 0.829 0.056 5.35
Eq. (8a) (Ours) 35.16 0.906 0.035 6.08

Table 5. The effectiveness of audio features in the second stage.
Mode PSNR↑ SSIM↑ LPIPS↓ SyncNet↑

w/o audio features 34.96 0.882 0.043 5.84
w audio features 35.16 0.906 0.035 6.08

End-to-end generation without decoupling. To
demonstrate the superiority of our decoupled generation,
we also conducted an experiment with the end-to-end

generation. In this experiment, we calculate the Gaussian
landmark encoding directly from the predicted landmarks
L̂world, rather than comparing the loss between L̂world and
the ground truth Lworld. The end-to-end model combines
Transformer network and NeRF components, but it’s
susceptible to memory constraints during the training.
As a result, we can’t learn a mapping of 200 frames
simultaneously, as discussed in Sec. 5.1. When we attempt
to reduce the length, we encounter a challenge: simply
adhering to GPU memory constraints often causes the
loss to be NaN during the training, indicating a gradient
explosion. After extensive tuning of the training process,
we select a length of 25 frames as the optimal compromise.
With an identical number of iterations, e.g., 10,000 images,
the rendering results are depicted in Fig. 9. It can be
seen that the decoupled generation is able to produce
clearer images with less blur. Besides, the results by the
end-to-end generation tend to be a static head without lip
or eye movement.

Figure 9. The comparison of the results obtained by the end-to-
end generation (top) and decoupled generation (bottom) after 10k
iterations.

5.4. Talking head editing with landmarks

To demonstrate the editing ability of our method, we also
provide an interface for users to control the movement of
eye and mouth landmarks via slide bars. This facilitates ad-
justing the landmarks generated by the audio, thus changing
the generated talking heads. We select three parameters,
namely α1 ∈ [0, 2] for controlling the left eye, α2 ∈ [0, 2]
for controlling the right eye, and α3 ∈ [0, 2] for controlling
the mouth, to regulate the changes of the facial landmarks.
With the landmarks on the i-th frame as the initialization,
all of the three parameters are set to 1.0 by default. Then,
users can adjust the respective landmarks by simply drag-
ging the slider bars. For the example as shown in Fig. 10,
we adjust α1 to 0.0, α2 to 0.5, and α3 to 2.0 in turn, while
keeping other parameters unchanged. As a result, the head
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Figure 10. Facial landmark editing. (a) Initial head. (b) Left eye
changed. (c) Right eye changed. (d) Mouth changed.

in the image is changed to be the one with closed left eye,
half-closed right eye and larger open mouth. We refer the
reader to the companion video for dynamic exhibition of the
editing results.

6. Conclusion

We have introduced a NeRF-based method for talking
head generation with a decoupled two-stage framework. In
the first stage, a Transformer network is constructed to gen-
erate landmarks from audio. In the second stage, relative
position encoding based on Gaussian distribution is used to
handle landmarks during rendering. Experimental evidence
shows the effectiveness of our method for talking head gen-
eration, showcasing its ability to enhance the quality of gen-
erated talking head with less training time and model size.

As the future work, we are set to integrate the expression
in accordance with the input speech to enable more expres-
sive talking head generation. Besides, it is also promising
to extend our method to rendering the whole human body,
achieving the creation of fully articulate and realistic talking
human.
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