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Abstract

Generating emotional talking faces from a single por-
trait image remains a significant challenge. The si-
multaneous achievement of expressive emotional talk-
ing and accurate lip-sync is particularly difficult, as
expressiveness is often compromised for lip-sync accu-
racy. Prevailing generative works usually struggle to
juggle subtle variations of emotional expression and lip-
synchronized talking generation. To address these chal-
lenges, we argue to model the implicit and explicit corre-
lations between audio and emotional talking faces with
a unified framework. As human emotional expressions
usually present subtle and implicit relations with speech
audio, we propose incorporating audio and emotional
style embeddings into the diffusion-based generation
process, indicating the realistic generation while concen-
trating on emotional expressions. We then propose lip-
based explicit correlation learning to construct a strong
mapping of audio and lip motions, assuring the lip-audio
synchronizations. Besides, we deploy a video-to-video
rendering module to transfer the expressions and lip
motions from our proxy 3D avatar to an arbitrary por-
trait. Both quantitatively and qualitatively, MagicTalk
outperforms state-of-the-art methods in terms of expres-
siveness, lip-sync and perceptual quality.
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Figure 1: MagicTalk takes as input a driving audio se-
quence, a given portrait image, and an example of emo-
tion style (a clip of an emotional talking face), and gen-
erates a photorealistic, lip-synchronized talking face video
that features high-quality emotional expressions. The re-
sults include both real human images and images generated
by AIGC. Please refer to our Project Page for more results.

Single image, Implicit and explicit correlation learning.

1. Introduction

The field of talking face generation has seen significant
advancements in recent years, becoming a key area of re-
search with a wide range of applications, including video
conferencing, virtual assistants, and entertainment, among
others. Recently, researchers have commenced incorporat-
ing emotion-conditioned facial expressions into talking face


https://magictalk.github.io/

generation [19, 18, 14], leveraging emotional annotations
in talking video datasets. However, none of these methods
have yet succeeded in generating expressive and lifelike ex-
pressions in their talking faces.

Several major challenges exist in current emotional talk-
ing face generation methods. Firstly, it is difficult to achieve
expressive emotion and accurate lip-sync simultaneously.
Emotional expressions in datasets like MEAD [51] show
significant exaggeration in the movements of eyebrows,
eye-blinking, and mouth shapes. Nonetheless, the sentences
and audio content used in these datasets lack sufficient
length to effectively train a precise lip-sync model. To ad-
dress this issue, SPACE [14] employed the supplementary
non-emotional dataset, namely VoxCeleb2 [6], alongside
emotional datasets [27, 51], to train their model. However,
integrating non-emotional and emotional datasets results in
synthesized emotional expressions that may lack the desired
level of expressiveness and dynamism. EAMM [18] tack-
les this problem by integrating two modules: one dedicated
to learning non-emotional audio-driven face synthesis and
another focused on capturing emotional displacements of
expressions. To prevent emotional displacements from dis-
torting lip-sync, it augmented the training data by obscuring
the mouth region of the speakers. Unfortunately, employ-
ing mouth-covering data augmentation compromises the ex-
pressiveness of mouth shapes during emotional speech.

Secondly, modeling the subtleties and variations of emo-
tional expressions is challenging. Emotional expressions in-
volve the activation of numerous facial muscles and exhibit
significant diversity throughout a speech. Existing meth-
ods [19, 18, 28, 14] typically utilize LSTM or CNN net-
works as generators to transform audio into facial repre-
sentations. While these models are adequate for capturing
the movements of the mouth and lips during regular speech,
they face challenges when it comes to faithfully portraying
the nuances and variations of emotional expressions. Con-
sequently, their generated emotional depictions often ap-
pear bland and artificial. Unlike lip-sync, which has a strict
frame-by-frame alignment with audio, the relationship be-
tween emotional expressions and audio is implicit and rep-
resents a global state correlation. This requires overall re-
alism and consistency rather than precise per-frame match-
ing. For example, sad emotion is characterized by a slower
speech rate and softer volume, accompanied by a downward
gaze and small head movements. However, current models
often fail to capture these holistic emotional cues.

To overcome these challenges, we introduce a collabora-
tive implicit-explicit correlation learning framework called
MagicTalk. This framework aims to generate realistic emo-
tional expressions by leveraging diffusion-based learning of
implicit information such as blinking and furrowing brows
through implicit correlations with audio. Subsequently, we
generate lip motion for lip sync by learning precise mouth

movements through explicit correlations with audio. At
its core is a carefully designed implicit-explicit correlation
learning pipeline, which achieves both expressive emotion
and precise lip-sync, as shown in Fig. 2. The first stage,
implicit correlation learning, is tailored to capture the dy-
namic nature of emotional expressions. Specifically, we
designed an emotion-conditioned diffusion model to trans-
form input audio to the facial expressions of the ARKit
model [25]. The second stage, explicit correlation learn-
ing, focuses on ensuring the precision of lip-sync in the
generated talking faces. To enhance the synchronization
of mouth movements with audio signals while preserving
the richness of emotional expressions, we have developed a
novel lip refinement network to re-optimize the parameters
of the mouth based on audio signals and specific emotional
styles. Unlike traditional face model [23] where mouth pa-
rameters are integrated with other facial parameters, using
3D ARKit model enables explicitly optimizing lip motion,
ensuring that the intensity of other facial expressions re-
mains unaffected. This design choice in our lip refinement
network guarantees that the expressiveness of emotions is
not compromised by lip-sync refinement, offering a more
targeted and effective approach for emotion-rich facial ani-
mation.

The sequential implicit-explicit correlation learning pro-
cess employed in MagicTalk effectively addresses the chal-
lenges mentioned earlier, allowing for the simultaneous
achievement of expressive emotions and precise lip-sync in
the generated talking faces. Our experimental results con-
vincingly showcase its exceptional ability to model the in-
tricacies and variations of emotional expressions from the
input audio. This includes realistically capturing emotional
movements in areas such as eyebrows, eye blinks, and be-
yond. Specifically, our diffusion model adeptly captures
high-frequency facial details, while lip refinement further
elevates the precision of mouth motion. The contributions
of this paper can be summarized as follows:

* We introduce a collaborative implicit-explicit correla-
tion learning to model the weak and strong relation-
ships of audio inputs with emotional talking heads.

* We propose to learn the implicit correlation between
audio and emotional expressions by gradually incor-
porating audio conditions with emotional style embed-
dings into the diffusion process of talking head gener-
ation.

* We present a lip-sync explicit correlation learning
with refined mouth parameters optimization to capture
acoustically aligned lip motion with expressive emo-
tional talking faces.
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Figure 2: Pipeline of our MagicTalk framework. Starting with the input audio, initial state, and emotion style as conditions,
we first employ EmoDiff for learning to denoise 3D expressions over time, utilizing a transformer-based architecture for
sequence modeling. The initial state corresponds to the expression in the first frame, and the emotion style is defined by
a randomly selected expression clip, independent of the input audio. Then, utilizing the conditioned audio and emotional
expressions, the lip refinement model, in conjunction with the Lip-sync expert, enhances mouth movements without affecting
the emotional intensity. This is followed by producing corresponding 3D rendering faces on a blendshape rig. Finally, we
employ a fine-tuned Face-Vid2Vid model [52] to generate emotional talking videos.

2. Related Work

Audio-driven talking face. The task of generating a talk-
ing face driven by audio [59, 3, 50, 49, 39, 12, 8, 44, 45,

, 24, 64, 61, 62] involves producing a realistic and co-
hesive video of a person’s speaking face, utilizing audio
input and, occasionally, an image or video of the speaker.
Early efforts by Taylor et al. [44] focused on converting au-
dio sequences into phoneme sequences to generate adapt-
able talking avatars for multiple languages. [40] curated
a dataset of Obama videos and introduced an end-to-end
framework to synthesize corresponding talking faces with
arbitrary voices. [5] and [63] pioneered the generation of
talking face videos, requiring only a single facial and au-
dio sequence. ATVGnet [4] and [60] proposed two-stage
talking face synthesis methods guided by landmarks. They
initially generated landmarks from a single identity image
and an audio sequence, which were then combined with
the identity image for the second stage of talking face syn-
thesis. [30] decomposed talking head synthesis into spa-
tial and style components, demonstrating improved per-
formance in few-shot novel view synthesis. Many meth-
ods [57, 37, 45, 42, 37, 22, 21, 56] used audio to regress
parameters in 3D face models, resulting in more realistic
synthesis. To enhance video quality, recent NeRF-based
methods [ 13, 54] employed an audio-driven neural radiance

fields (NeRF) model to synthesize high-quality talking-head
videos from audio input, surpassing existing GAN-based
methods. SadTalker [58] adeptly generates emotive speech
content by mapping audio inputs to 3DMM motion coef-
ficients, but challenges remain in achieving both realistic
expression and accurate lip movement. On the other hand,
[38, 34, 26, 33, 43] applied diffusion models to avoid chal-
lenges of GAN-based methods, such as training difficulties,
mode collapse, and facial distortion. However, those meth-
ods require extra motion sequence of the target individual to
guide the video generation and avoid unnatural-looking mo-
tions. Moreover, utilizing diffusion model as foundational
framework, DiffTalk also encountered challenges in main-
taining temporal coherence within the mouth region. On the
other hand, the works discussed above still lack emotional
information guidance, leading to monotonous expressions
in generated talking faces.

Emotional audio-driven talking face. In recent research
endeavors, there has been a growing focus on the develop-
ment of emotionally expressive talking faces [53, 18,41, 11,

, 46] or emotional talking mesh [31]. ExprGAN [9] in-
troduced an expression control module that enables the syn-
thesis of faces with diverse expressions, allowing for con-
tinuous adjustment of expression intensity. [10] presented a
neural network system conditioned on categorical emotions,
providing direct and flexible control over visual emotion ex-



pression. MEAD [51] enhanced the vividness of talking
faces by curating the MEAD dataset, offering a baseline for
emotional talking face generation. [19] proposed a ground-
breaking method for emotional control in video-based talk-
ing face generation, incorporating a component for distill-
ing content-agnostic emotion features. Addressing the chal-
lenge of the timbre gap, [22] introduced a framework for
talking-head synthesis that generates facial expressions and
corresponding head animations from textual inputs. EAMM
[18] and EMMN [41] both utilized 2D keypoints displace-
ment to synthesize the final emotional video, which can de-
grade the quality of generation. [24] presented a method for
generating expressive talking heads with meticulous con-
trol over mouth shape, head pose, and emotional expres-
sion. [36] proposed an optical flow-guided texture gener-
ation network capable of rendering emotional talking face
animations from a single image, regardless of the initial
neutral emotion. SPACE [14] introduced a method decom-
posing the task into facial landmark prediction and emotion
conditioning, resulting in talking face videos with elevated
resolution and fine-grained controllability. In our work, we
employ a diffusion model to predict expression sequences,
yielding more expressive outcomes.

3. Method

3.1. Preliminaries

Contrary to 2D landmark-based methods, which are
susceptible to head pose variations and often face chal-
lenges in maintaining consistent facial shape representa-
tion [63, 18], 3D modeling techniques offer shape-invariant
information, thereby facilitating more realistic renderings
that align with the actual three-dimensional structure of hu-
man faces. Traditional 3D models, such as 3D Morphable
Models (3DMM) or FLAME, predominantly utilize Princi-
pal Component Analysis (PCA) to encapsulate facial fea-
tures. While these parameters provide control over general
facial appearance, they fall short in isolating specific facial
attributes, such as eye blinking or lip movements. Given
our objective to enhance the mouth region while concur-
rently preserving the expressiveness of other facial features,
we have elected to employ ARKit blend shapes. This tech-
nology distinctly separates mouth-related parameters from
other facial elements, thus enabling targeted optimization.
The ARK:it facial model comprises 52 distinct parameters,
each representing unique facial features. It utilizes blend
shapes based on the Facial Action Coding System (FACS),
allowing each facial expression to activate specific facial
regions (e.g., mouth area, eyes, eyebrows) independently
and in a manner consistent with human facial anatomy [25].
This approach offers precise control over and optimization
of various facial attributes, rendering it particularly well-
suited for our specialized optimization requirements.

Subsequently, we conduct a comprehensive analysis of
ARKit parameters on each frame within the MEAD emo-
tion dataset, thereby extracting corresponding parameters.
This process facilitates the creation of an ARKit-specific
facial dataset, meticulously tailored to align with the emo-
tional nuances of the MEAD dataset. We develop an emo-
tion dataset that features fully disentangled 3D facial pa-
rameters. Such a development significantly amplifies the
practical utility and applicability of emotion-based datasets
in the field. For the convenience of the community, we plan
to release our dataset publicly in the future.

3.2. EmoDiff Implicit Correlation Learning

Our goal is to generate 3D emotional expressions from

audio. However, this task presents significant challenges
that require innovative solutions. Firstly, mapping audio
to expressions is a one-to-many problem, making it diffi-
cult to obtain dynamic and realistic expressions. Secondly,
generating a sequence of 3D face expression parameters in-
volves numerous issues, such as continuity and diversity.
To address these challenges, we propose to learn the im-
plicit correlation between audio and emotional expressions
by gradually incorporating audio conditions with emotional
style embeddings into the diffusion process of talking head
generation.
Forward diffusion and reverse process. We adopt denois-
ing diffusion probabilistic models (DDPM) [16], where a
real data sample xo ~ ¢(x) undergoes a forward noising
process, defined as:

a(zt|z0) = N(Varmo, (1 — ar)I), 6]

where @; € (0,1) follows a decreasing schedule, making
T = N (0, I )

The reverse process reconstructs &g from noise xp ~
N (0, I) by modeling:

pg(.’L‘t_l‘I‘t,C) :N(xt—1§ue(xt7tac)7ﬁtj)v (2)

where c represents conditioning inputs (audio, initial state,
emotion style). Following [65], we set ;I as time-
dependent constants.

Training objective. Since x; is available as the input to the
model, we predict the gaussian noise ¢ instead of y at time
step ¢:

1—0&,5
1—a

M@(J;t)tvc) = 69(3715;7570)) ) (3)

1
Tt —
VOt
where €g is a function approximator intended to predict e
from x;. We optimize 6 with the following objective, which

works better by ignoring the weighting term introduced in
Hoetal. [16]:
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Figure 3: Pipeline of our Lip Refinement framework. Our Lip refinement network uses an LSTM structure to learn lip
movements linked to audio. We start by creating a neutral talking face based on audio features, focusing on lip movements
related to the content. We then add emotional elements by combining audio features with emotion features, producing an
emotional Blendshape (BS) residue. This approach allows us to create a talking face with emotions that align closely with
the audio. Finally, we enhance the face with head poses from the emodiff module and improve the lip-sync by replacing the
emodiff’s lip part with the one from our lip refinement network. The result is a more emotionally expressive talking face with

better lip-syncing.
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where ¢ is uniformly sampled between 1 and T'.
Classifier-free guidance. We train our conditional diffu-
sion model by applying classifier-free guidance [ 7], which
is widely used in recent diffusion-based works [47, 65].
Specifically, the condition ¢ gets discarded periodically at
random by setting ¢ = ¢. The guided inference is then
expressed as the weighted sum of unconditionally and con-
ditionally generated samples:

ég = (w + 1)69($t7t,0) - ’LU(Ge(wt,t, ¢)a (5)

where w is the scale parameter to trade off uncondition-
ally and conditionally generated samples. The classifier-
free guidance can achieve a good balance between quality
and diversity.

Diffusion model. For the selection of the network architec-
ture, we primarily considered two issues: 1) how to incor-
porate different modality data, such as audio and 3D expres-
sions, and 2) how to generate the N-frame 3D face expres-
sion sequence different from images. As shown in Fig. 2,

we choose to use the transformer structure, which fuses the
representation of different modalities and captures the long-
term dependency with a cross-attention mechanism follow-
ing [65]. Please refer to the supplementary materials for
detailed information on the network architecture.

Time-aware positional embedding. Generating facial ex-
pressions with temporal continuity requires consideration
of two issues. Firstly, our training dataset only includes T-
frame input data. However, during testing, we may require
longer testing audio, so we need to consider the continuity
between generated sequences. To address this issue, we use
the first frame of the generated sequence as the input fea-
ture condition and add it to the network, which constrains
the initial state of the generated sequence.

Additionally, we need to guide the network to capture
the style of emotional expression. To achieve this, we use
three frames of expression as a representation of emotion
style. To prevent the style from representing audio informa-
tion, we randomly sample three frames of expression dur-
ing training. To incorporate the initial state condition and
style information into the network, we use a time position-
aware approach. Specifically, we first create a matrix with
the same length as the audio frames and set the first column
of the matrix to the initial state value, a 50-dimensional vec-



Algorithm 1 Long-term Dynamic Sampling

1: Trained diffusion model M, Input audio A, Emotion Style S,
Frame length N.

2: La = length(A)

3: Legp = length(S[0])

4: Output 0 = zeros(La, Lexp)

5: Condition ¢ = zeros(N, Legp + 1)

6: c[:,0,: —1] = S[random(1), ]

7: ¢, N/2—=1: N/2+42,: —1] = S[random(3),]
8: [:,0,-1] =1

9: ¢, N/2—1:N/2+2,—-1] =1

10: 240
11: whilei < L do

12:  temp = M.sampling(cat(c, A[i : i + NJ))

13: ¢[;,0,: —1] = temp[—1]
14:  ¢[:,N/2—-1:N/2+2,: —1] = S[random(3), ;]
15 o[t : i+ N] = temp

16: i<+ 1+ N—-1
17: end while
18: return o

tor with the last element set to 1. For style information, we
select the middle three positions of the matrix and set them
to the style values, with the last element also set to 1. We
then combine this matrix with the audio feature frame by
frame during training, which completes the setting of con-
ditions. (See supplementary materials for details)
Long-term and dynamic sampling. During testing, we
first select an emotional clip of a character from the dataset,
such as "M003 Angry clip001", along with input audio. As
shown in Alg. 1, to ensure continuity between sequences,
we randomly select one frame as the initial state and subse-
quently use the last frame of the previous sequence as the
initial state for the next sequence. This ensures the con-
tinuity of long sequences. To introduce diversity in each
sequence generation, we randomly select 3 frames as the
style each time, which allows for the generation of dynamic
facial expressions within the overall sequence.

3.3. Lip Explicit Correlation Learning

After obtaining dynamic emotional expressions denoted
as xg from the diffusion model, we observed an unintended
consequence in which the diffusion network inadvertently
reduced the influence of audio, resulting in a noticeable
misalignment between the audio and mouth shape. This
phenomenon is likely attributed to the diffusion network’s
inherent inclination toward generating realistic sequences,
which, in turn, diminishes the impact of the audio. To
rectify this issue, we introduce lip-sync explicit correlation
learning with refined mouth parameters optimization to cap-
ture acoustically aligned lip motion with expressive emo-
tional talking faces. Our Lip-sync network incorporates an
LSTM structure as the audio encoder and a CNN structure
as the emotion encoder. Additionally, we utilized a lip-sync

expert as a discriminator during the training of lip refine-
ment. This design effectively generates mouth-related pa-
rameters that closely align with the input audio and emo-
tional reference style. For a comprehensive understanding
of our lip refinement network, we direct readers to the sup-
plementary materials.

We use DeepSpeech [15] audio feature as a low-
dimensional audio embedding. As shown in Fig. 3, our lip
refinement framework contains two modules. First, we train
an LSTM-based network Audio2BS which predicts neutral
lip motion blendshape weights from input audio. This net-
work is to learn the accurate talking motion closely asso-
ciated with audio. To add emotional talking styles on the
talking faces, we then introduce a new module Emotional-
BS Residue Generator which predicts a blendshape weight
residue between emotional talking lip motion and neutral
lip motion. By adding the neutral talking face and the emo-
tional BS, we can create an emotional talking face that is
strongly correlated with the audio. Lastly, by integrating the
talking face with the head pose, generated by the EmoDiff
module, we use the lip part created by the lip refinement to
replace the EmoDiff’s result. This process ultimately yields
an emotional talking face with enhanced lip-sync capabili-
ties.

By following [32], we train a lip-sync expert. This expert
directly captures lip features and audio features, facilitating
similarity learning, which further constrains the correlation
between audio and lip motion. Lgync iS cosine-similarity
with binary cross-entropy loss between audio features and
lip features.

Subsequently, we employ these refined facial parameters
and the generated head poses to animate a 3D blend shape
rig. Utilizing GPU rendering, we obtain corresponding 3D
rendered avatar images denoted as I ;¢ o,..,n}- Following
this, we employ a video-to-video approach to generate talk-
ing face videos for arbitrary characters.

3.4. Face Neural Rendering

Upon acquiring images I; ;c(o,..,n} from an external
GPU renderer, we employ motion transfer techniques to
achieve a realistic talking head effect for different subjects.
Specifically, we utilize the Face-Vid2Vid method proposed
by Wang et al [52] as the fundamental neural rendering
pipeline R. Furthermore, we conduct a fine-tuning process
on the model using carefully selected high-resolution ex-
pressive talking videos from TalkHead-1HK dataset [52],
aiming to enhance both expressiveness and rendering qual-
ity. In addition to fine-tuning, we augment the final im-
age resolution to 512x512 using the face super-resolution
method outlined in [2]. To ensure effective identity preser-
vation throughout the process, we implement the relative
mode technique developed by Siarohin et al. [35] for neu-
ral motion transfer. Specifically, we first render a refer-
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Figure 4: Comparison of state-of-the-art models with our approach: In the first two comparisons, we conduct evaluations on
the MEAD and HDTF datasets, respectively. For the third comparison, we utilize one AIGC-generated face. We also visualize
our rig model results as intermediate representations. Our method consistently yields significantly superior results in terms of
emotional expression, lip synchronization, identity preservation, and image quality. Please refer to our supplementary video
for better comparison.

ence frame I,, with neural expression and then apply the
relative motion M _,;,, which represents the transforma-
tion between talking frames and the neural frame, onto the
source image 7'. Consequently, ultimate rendered outputs
R(T, My, _1,) is generated.

4. Experiments
4.1. Implementation Details

All experiments were conducted on a single V100 GPU
utilizing the Adam optimizer [20]. The frame rate for

all training datasets was set at 25 FPS. In the EmoDiff
Module, our training primarily leveraged two datasets: the
MEAD emotion dataset [51] and the HDTF multi-character
dataset [59]. Each sequence generated during training con-
sisted of a fixed length of 32 frames. We trained for a total
of 1000 epochs with a batch size of 64 and a learning rate of
0.0004. For the Lip refinement model, we employed a slid-
ing window of size T' = 8 to extract training samples of au-
dio features. The training process encompassed 50 epochs
with a batch size of 32 and a learning rate of 0.0001.



Table 1: Comparison with state-of-the-art one-shot methods on MEAD and HDTF datasets. MakeitTalk and SadTalker
maintain lip-sync and image quality without considering emotion. However, by adding emotions, EAMM and PD-FGC
struggles with low image quality. Our method achieves both emotional expression and maintains lip-sync and image quality.

| MEAD | HDTF
Method | LPIPS| CPBDf LMD| LSE-D| LSE-Ct|LPIPS| CPBDf LMD| LSE-D| LSE-Ct
Ground Truth 0 0.316 0 7420 7.486 0 0.303 0 7413 7487
MakeitTalk [63] | 0295 0213 4178 10.151 5012 | 0.289 0247 5026 10.334  4.823
SadTalker [58] | 0.189 0256 3960  9.63¢  6.095 | 0.195 0269 4006 9958  5.050
EAMM [I18] | 0295 0172 6.053 10.890 4328 | 0304  0.161 6941 10.686  4.448
PD-FGC[48] | 0315  0.53 6325 9903 5832 | 0331 0148 6.532 9754 5042
Ours | 0169  0.299 3845 9868 5915 | 0176 0280 3.948 9233  5.263

Figure 5: Comparison with the video sequences provided
by EVP on emotion "angry". Since EVP requires separate
training for each video, we cannot test it with arbitrary char-
acters.

Table 2: Comparisons of state-of-the-art methods and our
proposed method. SadTalker and MakeltTalk do not gen-
erate emotional speech. EAMM and PD-FGC produces
emotional videos but loses identity and dynamic facial ex-
pressions. EVP is a video-based method that generates
emotional speech but lacks emotion dynamics. In contrast,
MagicTalk offers dynamic emotional expression with gen-
erated eye blinks and identity preservation.

Emotional Generated Identity
Methods . . .
talking eye blinks  preservation

MakeltTalk [63] X X v
SadTalker [58] X v v
EAMM [ 18] v X X
PD-FGC [48] v X X
EVP [19] v X v
Ours v v v

4.2. Comparison with State-of-the-Arts

In Tab. 2, we offer an intuitive comparison of vari-
ous methods’ capabilities. It’s clear that SadTalker and
MakeltTalk lack the ability to generate emotional speech.
Although EAMM can produce emotional videos, it does

so at the expense of maintaining identity and fails to in-
corporate dynamic facial expressions, such as eye blink-
ing. While PG-FGC can generate emotional speech, it has
low image quality. EVP(Fig. 5) sacrifices the dynamism
of emotions and cannot drive from a single image, limit-
ing its applicability. In contrast, MagicTalk not only guar-
antees dynamic emotional expressions, such as generating
high-frequency expressions like eye blinks, but also deliv-
ers high-quality videos with accurate lip-sync.

4.2.1 Qualitative Evaluation

As shown in Fig. 4, we compare our work with three state-
of-the-art methods. MakeltTalk and SadTalker can’t gen-
erate desired emotions from a single image. MakeltTalk’s
2D approach lowers image quality, while SadTalker pro-
vides only neutral conversation. EAMM and PD-FGC gen-
erate emotional speech but sacrifices emotion dynamics and
video quality. Our method excels in emotional expression,
lip-sync, identity preservation, and image quality.

4.2.2 Quantitative Evaluation

Following established standards in the field, we utilize met-
rics for lip sync and image quality in our comparative anal-
yses. For assessing the synchronization between lip move-
ments and input audio, we employ SyncNet [7], which
measures he distance score (LSE-D) and confidence score
(LSE-C) to evaluate lip-sync precision. We also employ the
Landmark Distance on the entire face (LMD) for a compre-
hensive evaluation of facial expression accuracy. For image
quality, we assess image quality using learned perceptual
image patch similarity (LPIPS) and cumulative probability
blur detection (CPBD).

Our model exhibits enhanced performance over current
leading methods, as demonstrated in Tab. 1. Compar-
ing state-of-the-art methods on MEAD and HDTF datasets,
MakeltTalk and SadTalker maintain lip-sync and image



Table 3: Computational complexity and parameter compar-
ison of different methods. We report the GFLOPs and pa-
rameter counts for EAMM, PD-FGC, SadTalker, and our
method.

| EAMM PD-FGC SadTalker Ours

GFLOPs 57 230 762 641
10IM 146M 198M  168M

Params

quality without considering emotion. However, adding
emotion complicates lip-sync and rendering. EAMM faces
challenges in achieving both emotion and maintaining lip-
sync. PD-FGC has low image quality. Our method suc-
cessfully balances emotional expression with lip-sync and
image quality.

4.2.3 Computational Complexity and Parameters

We have calculated and compared our method’s parameter
count and computational complexity with the baseline mod-
els in Tab. 3. EAMM has a relatively small computational
and parameter count but does not achieve high generation
quality. The complexity of our method is similar to that of
SadTalker.

4.3. Ablation Study

Our ablation study primarily investigates three key ques-
tions, including whether to employ an auto-regressive gen-
eration approach based on the initial state, whether to utilize
a style encoding method with positional embedding, and
whether to incorporate lip refinement for lip-sync results.
Emotional style embedding Unlike the approach used in
EAMM, our emotional style employs positional embedding
with a diffusion model. Here, we compare the use of a
uniform emotional code against our method of positional
embedding. It is observed that our diffusion method com-
bined with positional embedding effectively captures high-
frequency information. As illustrated in Fig. 6, the 3D rig is
utilized to demonstrate the effects of employing Emotional
style embedding. Our findings indicate that using our style
embedding method effectively captures dynamic facial ex-
pression information. In contrast, when it is not utilized,
maintaining effective emotional information proves to be
challenging. We have also incorporated the Emotion-Fan
metric [29] to evaluate emotional accuracy. The result high-
lights the superior performance of our approach, achieving
an accuracy of 65.64 compared to 42.51 without Emotional
Style Embedding. This further demonstrates the effective-
ness of our method in preserving emotional expressiveness.

w/o Emotional style embedding Ours

Figure 6: Ablation for emotional style embedding. Visual-
ization of the 3D rig results in the *angry’ emotion. Without
the emotion style embedding, it’s challenging to maintain
characteristics of anger, such as furrowing brows.

Lip explicit correlation learning While the diffusion net-
work aids in generating dynamic emotions, we observed
that it struggles to produce sequences that fully align with
the audio. Hence, we employed a Lip Refinement Model
to further optimize lip motion based on the audio. In Tab.
4, we measured the results using SyncNet and found Lip
Refinement leads to more synchronized lip motion.

ARKit blend shapes Our ability to perform Lip Refinement
is enabled by the choice of ARKit blend shapes. ARKit
blend shapes allow us to separate mouth-related parameters,
making it possible to refine lip movements independently
without affecting other facial expressions. To validate this
design choice, we also experimented with SyncNet-based
optimization without separating mouth parameters. The re-
sults showed a Lip-sync confidence score of only 4.523, sig-
nificantly lower than our method’s 5.507. This highlights
the effectiveness of using ARKit blend shapes for precise
lip synchronization while maintaining overall facial expres-
siveness.

Autoregressive generation Since our goal is to generate
indefinitely long sequences, we require an autoregressive
method to achieve continuous talking results. In this ap-
proach, we use the last state of the previous sequence as a
condition to generate the next sequence, thereby ensuring
continuity between sequences. Refer to our supplementary
for comparison.

4.4. User Study

Due to the subjective nature of emotion, quantitative
evaluation is challenging. Therefore, we employed a sub-
jective assessment method, involving 20 users who com-
pared the results of different speech generation techniques.
We provided reference images and emotional information
for evaluation. The evaluation results depicted in Fig. 7
demonstrate that while EAMM and PD-FGC can generate
emotion, it comes at the expense of video quality, leading
to lower user ratings. Makeitalk and SadTalker, while lack-
ing in emotion generation, achieved better overall quality
than EAMM and PD-FGC. Our method, on the other hand,
successfully maintains emotional intensity while attaining



Table 4: Ablation for lip explicit correlation learning. With
lip refinement, the synchronization between the generated
mouth and the audio improves, and mouth movements be-
comes closer to the ground truth (GT).

Method |LMD | LSE-D| LSE-Ct
w/o Lip refinement | 4.167 10.583 4.338
Ours 3.927 9.648 5.507
EAMM P EAMM
10% MakeltTalk 5%
e MakeltTalk
15%
SadTalker
13%
SadTalker
Ours 32%

Ours
55%

41%

Figure 7: User study results show ratings for emotion
preservation (on the left) and overall quality (on the right).

high-quality generation.

4.5. Applications

MagicTalk demonstrates its ability to generalize to var-
ious application scenarios, including facilitating dialogue
generation for virtual characters using LLM, generating
talking videos with different emotion styles, and animating
real human faces or faces generated by Al-generated con-
tent (AIGC).

Virtual character dialogue generation with LLM Com-
bining the powerful text generation capability of Large Lan-
guage Models (LLM) with MagicTalk’s robust animation
ability, virtual dialogues are generated using LLM and con-
verted into audio through Text-to-Speech. MagicTalk then
utilizes the generated audio to produce dialogue videos.
Furthermore, MagicTalk can incorporate emotion labels
provided by LLM to create dialogues with specific emo-
tions. This application has two notable characteristics: it
can generate endless creative content and produce highly
imaginative videos, such as the depiction of a quarrel be-
tween Mona Lisa and Leonardo da Vinci, as illustrated in
Fig. 8.

Different emotions animation To further validate the uni-
versality and effectiveness of our method, we conducted ex-
periments with various emotions. MagicTalk can animate
different emotions for different individuals given the same
audio input. As shown in Fig. 9, we animated three faces
with various emotions, including Angry, Sad, Surprised,
and Contempt.

@ Dialogue between Leonardo da Vinci and Mona Lisa
. (generated by ChatGPT)

2

m i | g (1

Text to Speech

Talking videos generated by MagicTalk

Figure 8: Virtual character dialogue generation. The virtual
dialogue between Mona Lisa and Leonardo da Vinci was
generated using ChatGPT and TTS. MagicTalk created cor-
responding emotional dialogue videos with input speech.

Original
Image

Contempt a Contempt

Figure 9: Different emotions animation. MagicTalk ani-
mates three faces with various emotions (Angry, Sad, Sur-
prised, and Contempt) using the same audio input.

Real and AI-Generated faces animation MagicTalk ex-
hibits strong generalization capabilities. Although trained
on real human data, it can animate various types of images,
including real human faces, portraits, and images generated
by text-to-image models such as DALL-E3 [1]. As illus-
trated in Fig. 10, we first use DALL-E3 to generate face
images based on text inputs. Then, MagicTalk can generate
different talking videos based on arbitrary audio input.

5. Limitation and Social Impact
5.1. Limitations

Emotions in the dataset. We utilized the MEAD [51]
dataset, which consists of artificially acted emotional ex-
pressions. Consequently, the emotional styles we gener-
ate tend to reflect acted emotions rather than the sponta-
neous flow of genuine emotions. Therefore, surpassing the
limitations of these performed emotions in our generated
emotional styles remains a challenge. A potential direc-



Emotion

Figure 10: Real and Al-Generated faces animation. Mag-
icTalk animates various image types, from real human faces
to portraits and images created by text-to-image models like
DALL-E3. Video results can be found on

Project Page.

tion for future exploration is extracting emotions from real-
life videos and incorporating them into our training process.
This approach could lead to the creation of more natural and
authentic emotional talking videos. We aim to enhance the
emotional realism in our outputs, capturing the subtleties
of true human emotions, thereby bridging the gap between
artificial and genuine emotional expressions in synthesized
video content.

5.2. Social Impact

With the widespread application of large-scale models,
creating realistic talking videos has become extremely pop-
ular. There is significant demand for generating emotion-
ally authentic talking videos. Our work is poised to have a
profound impact on both the academic and industrial sec-
tors. However, due to the potential for misuse of our tech-
nology in creating convincing talking videos, we restrict its
use to academic purposes only. Additionally, any outputs
generated using our technology should be clearly labeled
as synthetic videos. On the other hand, our generation of
emotional videos can also expand the dataset of synthetic
videos, which will be beneficial for the further development
of deep fake video detection.

6. Conclusion

In this paper, we present MagicTalk, a novel framework
for generating emotionally expressive talking faces with
precise lip synchronization. Our approach employs collab-
orative implicit-explicit correlation learning to model im-
plicit and explicit relationships between audio inputs and
emotional talking heads. By integrating audio conditions
with emotional style embeddings into the diffusion process,
we capture the implicit correlation between audio and emo-
tional expressions. Furthermore, our lip-sync explicit cor-
relation learning, along with refined mouth parameter opti-
mization, ensures acoustically aligned lip motion with ex-

pressive emotional talking faces. Our method outperforms
existing techniques, demonstrating improved facial emo-
tional expressiveness while maintaining high video quality.
MagicTalk represents a significant advancement in emo-
tional talking face generation, enabling the creation of re-
alistic and emotionally engaging digital human representa-
tions across various applications.
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