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Abstract

We introduce RMAvatar, a novel human avatar rep-
resentation with Gaussian splatting embedded on mesh
to learn clothed avatar from a monocular video. We uti-
lize the explicit mesh geometry to represent motion and
shape of a virtual human and implicit appearance ren-
dering with Gaussian Splatting. Our method consists of
two main modules: Gaussian initialization module and
Gaussian rectification module. We embed Gaussians
into triangular faces and control their motion through
the mesh, which ensures low-frequency motion and sur-
face deformation of the avatar. Due to the limitations
of LBS formula, the human skeleton is hard to con-
trol complex non-rigid transformations. We then design
a pose-related Gaussian rectification module to learn
fine-detailed non-rigid deformations, further improving
the realism and expressiveness of the avatar. We con-
duct extensive experiments on public datasets, RMA-
vatar shows state-of-the-art performance on both ren-
dering quality and quantitative evaluations. Please see
our project page at https://rm-avatar.github.io.

Keywords: 3D Reconstruction, Human Avatar, Monoc-
ular Video Reconstruction, Gaussian Splatting

1. Introduction

High-fidelity animatable human avatar modeling from
videos has been a longstanding challenge in computer vi-
sion. The rendering of photorealistic avatars from arbitrary
views is important due to its wide applications in telepres-
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ence [18], movie making and AR/VR [51]. Modeling hu-
man avatars from video requires fusing multiple 2D obser-
vations to synthesize a 3D consistent human model. Tra-
ditional methods usually rely on dense multi-view supervi-
sion to reconstruct the avatar, in most actual scenarios, such
a complex multi-view camera system [17, 55] is not readily
available. The under-constrained nature of monocular ob-
servation makes the task of reconstructing the unseen poses
and viewpoints of human avatars more challenging. In ad-
dition, the distortion of clothes, hair and hand movements
are also difficult to reconstruct, and the rendering quality of
these parts will affect the realism of the avatar.

Recent methods [11, 16, 38, 53] based on implicit neural
fields [32, 35, 36] usually learn a canonical avatar repre-
sentation by mapping camera rays from observation space
to canonical space. In NeRF framework [41, 53], the in-
verse mapping may project multiple points from the ob-
servation space onto same point in the canonical space.
This ambiguous correspondence affects the rendering qual-
ity, especially for objects with significant motion or high-
frequency details. In addition, the heavy MLPs used to
model the underlying neural radiation fields are compu-
tationally expensive, resulting in long training and infer-
ence time. Other than implicit neural representations, point-
based methods [54, 66, 23, 62] are efficient and can capture
flexible topology, but may produce incomplete surface ge-
ometries.

The recent 3D Gaussian Splatting method [19] surpasses
NeRF in both rendering quality and efficiency by optimiz-
ing discrete 3D Gaussian primitives to learn explicit repre-
sentation of the scene. Follow-up works [6, 13] utilize the
strong representation ability of 3D Gaussians and recon-
struct human avatar via pose-dependent appearance mod-
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eling. Although the current work has made substantial
progress, the authenticity of avatar needs to be further im-
proved. Existing human model reconstruction works can be
roughly divided into two categories. One is implicit neural
avatar based on Gaussian Splatting [13, 43]. Given initial
Gaussian primitives of avatar, these methods first learn 3D
Gaussians in the canonical space, and transform Gaussians
to the observation space based on the guidance of human
pose and LBS [25] . These methods adopt the multi-layer
perceptrons (MLP) for motion control [43, 58, 56], which
is inferior to mesh-based representation to capture surface
deformation. The other category is the hybrid avatar rep-
resentation [45, 42, 52], which combines rendering qual-
ity of Gaussian splatting with geometry modeling of de-
formable meshes. Specifically, a Gaussian is attached to
a mesh face and deformed with the face. The hybrid repre-
sentation enables a compact and topology complete avatar,
thus providing better regularization for Gaussians in novel
poses. This representation is beneficial for learning avatars
under monocular observation. However, the flexibility of
the model needs to be improved. In addition to obtaining
the avatar in the observation space based on the mesh guid-
ance, the Gaussian primitives need to be further fine-tuned
to enhance the ability to learn complex personal characters,
such as twisted clothes and wispy hair.

To address these issues, we introduce a novel 3D avatar
representation which is designed to model personalized hu-
man avatar with complex identity and motion. Our model,
namely RMAvatar, is a hybrid 3D representation with Gaus-
sians embedded on a mesh. The use of the mesh can more
accurately represent body motion and surface deformation,
providing accurate positioning of the Gaussians in obser-
vation space. Our method consists of two main modules:
Gaussian initialization module and Gaussian rectification
module. At the first, we load a template mesh and deform it
to obtain posed mesh at a certain frame. Our method binds
3D Gaussian splats to the posed mesh locally and transform
the splats to global space. The Gaussian splat now has a
good initial position and other default properties. We opti-
mize the Gaussians by minimizing color loss on the render-
ing. However, methods based on LBS formula deformation
cannot capture the motion of fine non-surface regions, such
as cloth distortions, hair and skin winkles. Thus the repre-
sentation ability of Gaussians on posed mesh need to be fur-
ther improved. We then propose the Gaussian rectification
strategy, which is a pose-dependent non-rigid deformation
module based on MLP. This module allows us to predict
further positional adjustments and covariance shifts, signif-
icantly boosting the avatar’s realism and expressiveness.

In summary, the contributions of our method are as fol-
lows:

• We propose RMAvatar to model personalized high-
fidelity human avatar from monocular videos based on

mesh-embedded Gaussian splats.

• We design Gaussian rectification module to accurately
capture complex non-rigid deformation relate to pose
to improve the realism of the avatar.

• We conduct extensive experiments on public datasets
to demonstrate the superior reconstruction ability of
our method on both rendering quality and quantitative
evaluations.

2. Related Work

Reconstruction of animable human avatars from monoc-
ular videos is challenging to capture high-quality geometry
deformation and appearance. Early works take parametric
template models, e.g., FLAME [26] and SMPL [30, 37],
which provide vertices with fixed connectivity as an ex-
plicit prior of the 3D human avatar. By unwrapping them
to a unified UV space, texture atlas can be obtained through
differentiable rendering [35]. These explicit mesh-based
models can be easily fit into existing rendering pipeline and
the vertices of mesh templates can be easily deformed to
capture pose-dependent geometry deformation. However,
since the mesh templates don’t model clothes and have
fixed topology, these methods often suffer from capturing
fine-scale deformation of the human body, especially the
distortion and color changes of clothes, hairs and faces.
To address these problems, researchers have investigated
ways, e.g., via learning 3D vertex offsets [1, 33, 49, 67]
for clothes, or resorting to implicit representations, e.g.,
neural radiance fields (NeRF) [16, 53, 14] and Gaussian
fields [13, 6, 43, 7, 29].

2.1. Implicit function-based human avatar

Implicit models normally encode the 3D human avatar
with implicit surface functions [39], e.g., SDF [65, 60], oc-
cupancy field [31, 5, 28] and NeRF [14, 53, 16, 38, 15, 61,
4]. NeRF-based methods learns the neural radiance fields
of human from videos and render novel views with dif-
ferentiable volumetric rendering. These methods present
a deformable NeRF representation by unwrapping differ-
ent poses to a shared canonical space with inverse kine-
matic transformations as well as residual deformations for
modelling animatable human avatar from videos. Espe-
cially, HumanNeRF [53] models human motion by decom-
posing it into skeletal and non-rigid deformations and re-
fines texture details by aggregating color and depth infor-
mation from neighboring views. Anim-NeRF [4] learns
pose conditioned inverse LBS field to capture the fine
details of human. However, the implicit function-based
methods usually adopt pure MLPs to model the human
avatar, yielding smooth and blurry quality and low render-
ing speed [38]. To address the expensive computation of



Figure 1: Overview of RMAvatar. Given a sequence of monocular images and a neutral SMPL template, we first obtain
the deformed mesh under current pose of the person via SMPL tracking. Our initialization strategy is to embed Gaussian
splats on mesh in the local coordinates of each triangle and then transform them to world space based on triangle’s shape.
To improve the representation ability of Gaussian splats for non-rigid cloth deformation, the rectification module is designed
to further adjust Gaussians to learn pose-dependent appearance details of avatar. Finally, the Gaussians in observation frame
and their respective color values are accumulated via differentiable Gaussian rasterization to render the image.

NeRF-based avatar, efforts has been made in accelerated
data structures [48, 64, 15, 11, 22]. However, some works
rely on dense multi-view inputs [48, 64, 22, 27, 3, 9, 59] to
achieve good rendering quality of animatable human avatar.
Instant-NVR [11] use iNGP [34] as the underlying repre-
sentation for articulated NeRFs, and modelling non-rigid
deformations in the UV space for fast training. However,
it generates blurring renderings on the non-rigid deforma-
tions [43].

2.2. Point-based human avatar

Point cloud is also a commonly used 3D representation.
DPF [40] and NPC [46] apply Point-NeRF [57] for pro-
ducing explicit surface points and learning non-rigid defor-
mation of human avatars. However, with the MLPs used
in Point-NeRF, these methods still struggle with the blurry
rendering and the computation efficiency. Point-based ren-
dering [68, 66, 19] has been adopted as an effective alter-
native to NeRF in digital human reconstruction. PointA-
vatar [66] takes advantage of explicit point primitives in
forward rasterization and learns a forward deformation from
canonical to pose space, generating high-fidelity 3D avatars.
As an explicit point-based 3D representation, 3D Gaus-
sian Splatting (3DGS) [19] has shown its efficiency in real-
time photo-realistic rendering of static scenes. Concurrent
works [21, 24, 27, 42, 43, 44, 47] introduce 3DGS into an-
imatable human avatars. GaussianAvatar [13] introduces
3D Gaussians to model digital humans, and jointly opti-
mizes motion and appearance in the avatar modeling pro-

cess. 3DGS-Avatar [43] leverages Gaussian splats and ex-
plicitly learns a non-rigid transformation network to model
the pose-related Gaussian deformations, improving the re-
construction quality of clothed human avatars.

2.3. Hybrid human avatar

Hybrid 3D representations have also been used in mod-
elling human avatars from videos [12, 8]. HDHumans [12]
learns the deformation embedded as NeRF by the parame-
terized pose and embedded graph of template mesh prior.
DELTA [10] propose to hybridly model human avatar with
textured mesh for body and NeRF for hair and clothing.
SplattingAvatar [45] proposes a hybrid avatar representation
of 3D Gaussians and mesh to disentangle the human motion
and appearance. Specifically, the pose-dependent deforma-
tion are explicitly defined by mesh, and the geometry and
appearance details are modeled by the Gaussians. Similarly,
GoMAvatar [52] introduces the Gaussian-on-Mesh repre-
sentation that leverages 3D Gaussians for real-time render-
ing. GaussianAvatars [42] reconstructs head avatars by rig-
ging 3D Gaussians to a parametric morphable face model
with the binding inheritance strategy in which the Gaus-
sian is parameterized with the index of its parent triangle.
However, in SplattingAvatar [45] and GaussianAvatars [42],
the Gaussian attributes are independent of the specific pose
or expression of the avatar, so non-rigid deformations re-
lated to pose cannot be modeled. To solve this problem,
based on mesh-embedded Gaussians, we design a Gaussian
rectification module to help Gaussians represent areas that



SMPL [30] cannot model, such as clothes.

3. Method

Figure 1 shows the framework of our method RMAvatar.
Given a sequence of monocular images and a SMPL tem-
plate, we deform the mesh to a certain pose of a person via
LBS. Each Gaussian function is embedded in a triangular
face of the mesh and moves with the triangle. Except for
position, each gaussian has its attributes of rotation, scal-
ing, opacity and color. To reconstruct personalized high-
fidelity avatars, we add pose-dependent transformations to
each Gaussian to learn details caused by non-rigid transfor-
mations of the human avatar.

3.1. Preliminary

3D Gaussian Splatting [19] employs a set of anisotropic
Gaussian primitives to explicitly represent a static 3D
scenes. Each Gaussian splat is characterized by a covari-
ance matrix Σ at position µ, which is referred as the mean
of Gaussian:

G(x) = e−
1
2 (x−µ)TΣ−1(x−µ). (1)

To ensure positive semi-definite nature of the covariance
matrix, it can be decomposed into a scaling matrix S and
a rotation matrix R:

Σ = RSSTRT . (2)

In practice, we store diagonal vector s ∈ R3 of scaling ma-
trix S and a quaternion vector r ∈ R4 of rotation matrix R
for a Gaussian.

During the rendering, the 3D Gaussians are projected to
2D image plane and accumulated via alpha blending. As
introduced by [69], using a viewing transform matrix W
and the Jacobian matrix J of the affine approximation of
the projective transformation, the covariance matrix Σ′ in
2D camera space can be computed as:

Σ′ = JWΣWTJT . (3)

The color of a pixel is then calculated by blending 3D Gaus-
sian splats that overlap at that pixel, and these Gaussians are
sorted according to their depth:

C =
∑
i∈N

ciαi

i−1∏
j=1

(1− αj). (4)

Here, αi is blending weight calculated by opacity σi multi-
plied with the probability density of projected 2D Gaussian
at the target pixel location. ci is the view-dependent color
of Gaussian Gi represented by spherical harmonic coeffi-
cients.

We denote Gaussian properties as G = {µ, r, s, σ, c}.
After rasterization, the Gaussian properties are optimized

through appearance and other losses to obtain a 3D repre-
sentation of the scene. In addition, the adaptive control of
the Gaussian can improve its representation ability, mainly
including three operations: splitting, cloning and pruning.
Splitting and cloning are performed on Gaussians with large
position gradients, which augments the number of Gaus-
sians. Pruning operation periodically eliminates Gaussians
with excessively small opacity to suppress floating artifacts.

3.2. Gaussian initialization on mesh

Our method is a hybrid representation of avatar with
Gaussians embedded on mesh [42, 45, 52]. Given a set
of monocular images, the registered mesh corresponding to
each frame can be obtained by deforming the neutral SMPL
template via shape and pose parameters. The mesh consists
of a set of vertices V = {vi}n1 and faces F = {fj}m1 .

Given a triangle with vertices (va, vb, vc) and normal n,
we bind a Gaussian to the triangle. Specifically, we con-
struct a local coordinate system with the mean position M
of three vertices as the origin. The local coordinate system
is determined by an edge vector e = vb − va, the normal of
the triangle n, and their cross product e × n. These three
vectors constitute a rotation matrix R of the triangle in the
global space, describing the orientation of the triangle. The
scaling w of triangle is measured by the mean length of one
edge e and its perpendicular ep.

We initialize the position of the Gaussian on triangle to
the local origin, the rotation r to identity matrix, and the
scaling to unit vector. We then convert these properties from
local coordinate system of the triangle to the global coordi-
nate system. The global position, rotation and scaling of the
Gaussian µ∗, r∗ and s∗ are computed by:

µ∗ = wRµ+M , (5)
r∗ = Rr, (6)
s∗ = ws. (7)

Assigning a single Gaussian to each triangle is not
enough to capture complex details. For example, there may
be only one triangle under the distorted clothing or curly
hair, and a single Gaussian splat on it is not enough to rep-
resent such complex appearance. We adaptively adjust the
density of Gaussian splats on mesh using strategies such as
splitting, cloning and pruning. Specifically, the splitting op-
eration is performed on Gaussians with magnitude of scal-
ing matrix larger than a threshold, and cloning operation is
performed with magnitude of scaling matrix smaller than
a threshold. The pruning operation is periodically applied
to reset the opacity of all Gaussians close to zero and re-
moves Gaussians with opacity below a threshold. A Gaus-
sian stores the index of its parent triangle, and we make sure
that every triangle has at least one Gaussian attached to it.



3.3. Gaussian rectification for non-rigid deformation

Gaussian motion guided by triangle mesh can capture
rough human movements, but constrained by the linear rep-
resentation of LBS, Gaussians that move with the mesh are
insufficient for capturing non-rigid distortions and intricate
dynamic textures. We decompose complex human motion
to rigid transformation guided by human skeleton and non-
rigid transformation caused by pose-dependent cloth distor-
tions [53]. It is necessary to design a separate module for
non-rigid deformation to further adjust the Gaussian prop-
erties dependent on poses.

Given a human pose P in current observation and Gaus-
sian positions µ∗ on the posed mesh, we formulate the non-
rigid deformation module Fθ based on MLP as:

(δµ, δr, δs) = Fθ(γ(µ
∗),P ). (8)

We use an embedding function γ(·) to encode Gaussian
positions with a specific frequency. The change of Gaussian
attributes is related to the pose of each frame, which enables
Gaussian to learn the non-rigid changes caused by pose,
making up for the shortcomings of LBS direct linear repre-
sentation and further improving the realism of avatar. Based
on the predicted offset, the rectified Gaussian attributes are
calculated as follows:

µ′ = µ∗ + δµ, (9)
r′ = r∗ · δr, (10)
s′ = s∗ + δs. (11)

Here, the updated µ′, r′ and s′ are in global space, and
r∗ is the quaternion vector corresponding to the rotation in
Equation 6. Applying · operation to the quaternion vectors
is equivalent to multiplying the corresponding rotation ma-
trices. Combined with opacity and color, we get the Gaus-
sian property set G = {µ′, r′, s′, σ, c} for subsequent ras-
terization.

Based on above analysis, the motion guidance of the
mesh ensures that Gaussians learn the geometry of the
avatar, while the pose-based recitification enables the Gaus-
sians to model the appearance changes dependent on pose.
By modeling both rigid and non-rigid deformations, our ap-
proach is able to reconstruct more realistic avatars.

3.4. Optimization

We utilize RGB loss Lrgb, SSIM loss [50] Lssim and
LPIPS loss [63] Llpips with the corresponding weights λrgb,
λssim and λlpips to optimize the rendered images:

Lcolor = λrgbLrgb + λssimLssim + λlpipsLlpips. (12)

Note that Lrgb, Lssim and Llpips are L1-norm losses. Be-
sides, we apply some regularization terms to constrain the
position and covariance learning for Gaussians.

At initialization, we bind a Gaussian to the local origin
of the triangle. During training, the position of Gaussian
splat is optimized and may deviate away from its parent tri-
angle. Large drifts do not affect rendering quality from vis-
ible perspectives, but may cause artifacts when animating
the Gaussians to a new pose via SMPL. Following [42], we
regularize the local position of each Gaussian by:

Lpos = ∥max (µ− ϵpos, 0) ∥2, (13)

where ϵpos is set to 1 to constrain the Gaussians around their
parent triangles and give them certain freedom to adjust po-
sition. In addition to the position, the scaling of the Gaus-
sian also affects the rendering quality. A Gaussian that is too
large compared to the parent triangle is sensitive to the mo-
tion of triangle, thus can easily introduce jitter and artifacts
when rotating with the mesh. We regularize the scaling of
each Gaussian and utilize the threshhold ϵscaling to prevent
it from shrinking excessively:

Lscaling = ∥max (s− ϵscaling, 0) ∥2, (14)

where ϵscaling is set to 0.6 for the maximum allowable scal-
ing. When µ and s are below these thresholds, the corre-
sponding loss terms are disabled.

The Gaussians on the mesh are able to capture the rough
motion and appearance of the avatar, and the rectification
module is proposed only to slightly adjust the Gaussian
properties to support its learning of complex details caused
by non-rigid deformations. Thus we design a regularization
term Loffset to constrain the values of δµ, δr and δs:

Loffset = ∥(δµ, δr, δs)∥2. (15)

Taking the color losses and regularization losses together,
we define the final loss function as follows:

L = λrgbLrgb + λssimLssim + λlpipsLlpips

+ λposLpos + λscalingLscaling + λoffsetLoffset.

(16)

Here, the Lpos, Lscaling and Loffset are L2-norm losses
with corresponding weights λpos, λscaling and λoffset.

4. Experiments

In this section, we evaluate RMAvatar on PeopleSnap-
shot dataset [2], ZJU-MoCap dataset [39], and Dyn-
Video [13] dataset by comparing with the state-of-the-art
human avatar modeling methods in monocular videos, and
systematically ablate each component of RMAvatar.

4.1. Datasets and metrics

PeopleSnapshot [2] dataset. We select 4 sequences of
the PeopleSnapshot dataset as in InstantAvatar [15] and fol-
low the same data split. We compare our approach with



Figure 2: Comparison of novel view synthesis on PeopleSnapshot [2]. Our method is able to reconstruct intricate texture
details.



Table 1: Train/test split of the ZJU-MoCap [39] dataset.

train test train test

377 1-456 457-617 386 1-456 457-646
387 1-456 457-654 392 1-456 457-556
393 1-456 457-658 394 1-656 657-859

Anim-NeRF [4], InstantAvatar [15], GaussianAvatar [13]
and SplattingAvatar [45] on this dataset. Like SplattingA-
vatar, we use the poses optimized by Anim-NeRF [4].

ZJU-MoCap [39] dataset. We use six subjects (377, 386,
387, 392, 393, and 394) [53] of the ZJU-MoCap dataset. We
select a video from a camera viewpoint and use a segment of
the video during training. Specifically, we select a clip that
contains a complete turning action of the avatar for training.
We show the training/test split in Table 1 and use the same
split in comparison with other methods. Note that due to
the small motion of the characters, we select 1 frame out of
every 4 frames during training. We use Anim-NeRF [38] to
obtain the refined poses of ZJU-MoCap.

DynVideo [13] dataset. DynVideo dataset proposed by
GaussianAvatar records humans via a mobile phone with
loose clothing and large movements, which serves as a valu-
able resource for evaluating reconstruction quality.

Evaluation metrics. We consider three metrics: PSNR,
SSIM and LPIPS to evaluate the reconstruction quality,
which measure the pixel intensity similarity, structural sim-
ilarity, and perceptual image patch similarity between the
rendered and ground truth images.

4.2. Implementation details

Our model is trained for 50,000 iterations on a sin-
gle NVIDIA RTX 3090 GPU. During training, we use
Adam [20] to optimize our model. We set the learning rate
to 0.008 for the position and exponentially decay it with a
factor of 0.01 to 10−5. The learning rate for the scaling,
rotation and opacity of 3D Gaussians are 0.017, 0.001 and
0.05 respectively. The learning rate for the Gaussian rec-
tification module is 10−4. For densification and pruning
for the 3D Gaussians, we apply density control operations
every 500 iterations, and reset the opacity of Gaussians ev-
ery 5,000 iterations from iteration 10,000, and turn off the
density controller as well as the opacity-rest operation at
iteration 35,000. For the target loss, we set the parame-
ters of different loss terms to λrgb = 1.5, λssim = 0.2,
λlpips = 0.05, λpos = 0.01, λscaling = 1 and λoffset = 1,
respectively.

For the Gaussian rectification module, we designed a 5-
layer MLP to predict the offsets of Gaussian attributes such
as position, rotation, and scaling. The MLP network takes
the encoded Gaussian position and the pose parameters as
input, which contains 105 channel features. The input chan-

nels for subsequent hidden layer are (128, 164, 128), and
contains a skip connection in the fourth layer. The output of
the last layer of the MLP is a 10-dimensional feature, which
contains the position offset δu, scale offset δs, and quater-
nion offset δr. In order to limit the offset value to be small,
we design offset loss for these three attributes.

4.3. Comparisons on human avatar reconstruction

We evaluate the reconstruction quality of human avatars
by novel view synthesis and avatar animation experiments
on two datasets. In Table 2 and Table 3 we report quan-
titative results of different methods on novel view syn-
thesis on PeopleSnapshot and ZJU-MoCap, respectively.
Our method far exceeds the SoTA methods in terms of
PSNR, SSIM, and LPIPS, which reflect rendering quality
of avatars, indicating that our method can learn the complex
textures more clearly.

Novel view synthesis. We show the novel view synthesis
results of GaussianAvatar, SplattingAvatar and our method
in Figure 2. From the zoomed-in details of the face and
hands, it is obvious that our method produces clear details
and smooth boundaries. The contour of the reconstructed
human avatar of GaussianAvatar [13] is obviously larger
than the ground truth, which indicates that the position of
the Gaussians it learned are not accurate, and it is diffi-
cult to capture big motion and intricate textures, such as
human face and cloth wrinkles. The rendering images of
SplattingAvatar [45] are better than GaussianAvatar, which
shows the advantages of hybrid avatar representation with
Gaussians on mesh. SplattingAvatar embeds Gaussians on
canonical mesh and guides the motion of Gaussians by
mesh warping from canonical space to posed space. As
pointed out by SplattingAvatar, the quality of its reconstruc-
tion is highly dependent on the motion accuracy of the un-
derlying mesh. Due to the lack of cloth and hair meshes,
they failed to learn clear texture of head and cloth. In ad-
dition, this method produces obvious artifacts on the avatar
surface due to inaccurate Gaussian positions, which is prob-
ably because Walking on mesh strategy does not constrain
the amplitude of Gaussian motion effectively. In contrast,
our approach designs a separate module to learn non-rigid
cloth and hair deformations, which makes up for the defect
that Gaussians on SMPL cannot represent clothes, thereby
improving the reconstruction accuracy of rendered avatars.

The comparison of novel view synthesis on the ZJU-
MoCap dataset can better reflect the advantages of our
method. The avatars have large movements and there are
certain errors in estimated poses, which leads to poor vi-
sual effects of hybrid methods combining mesh and Gaus-
sian, such as SplattingAvatar. Our method further adjusts
the Gaussian properties on the basis of mesh guidance, re-
duces the reconstruction error caused by inaccurate pose,
and ensures the high quality of Avatar.



Figure 3: Comparison of novel view synthesis on ZJU-MoCap [39]. Our method reconstructs complicated cloth textures.

Figure 4: Comparison of animation on out-of-distribution poses on PeopleSnapshot [2]. Our method generates consistent
representations for avatars on novel poses.



Table 2: Quantitative comparison on PeopleSnapshot [2]. Compared with state-of-the-art methods, our method achieves
significant improvement in rendering quality of novel view synthesis on all evaluation metrics. The best results are in bold.

male-3-casual male-4-casual female-3-casual female-4-casual
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Anim-NeRF [4] 29.37 0.970 0.017 28.37 0.960 0.027 28.91 0.974 0.022 28.90 0.968 0.017
InstantAvatar [15] 30.91 0.977 0.022 29.77 0.980 0.025 29.73 0.975 0.025 30.92 0.977 0.021
GaussianAvatar [13] 30.98 0.979 0.015 28.78 0.975 0.023 29.55 0.976 0.023 30.84 0.977 0.014
SplattingAvatar [45] 32.31 0.978 0.031 30.51 0.978 0.041 30.42 0.976 0.044 31.12 0.976 0.032

Ours 34.12 0.985 0.013 31.23 0.983 0.022 31.42 0.980 0.021 33.06 0.982 0.013

Table 3: Quantitative comparison on ZJU-MoCap [39]. Our method achieves best reconstruction quality on novel view
synthesis of avatars with large motions. The best results are in bold.

377 386 387 392 393 394
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

GaussianAvatar [13] 24.86 0.944 0.063 27.10 0.923 0.074 25.63 0.947 0.043 26.18 0.929 0.088 23.90 0.919 0.099 26.11 0.925 0.084
SplattingAvatar [45] 32.24 0.977 0.028 30.31 0.953 0.073 30.69 0.967 0.045 33.41 0.975 0.040 30.02 0.962 0.047 32.36 0.965 0.044

Ours 32.68 0.982 0.015 30.61 0.955 0.055 31.01 0.973 0.021 34.30 0.979 0.024 31.09 0.969 0.025 32.70 0.969 0.025

Table 4: Quantitative comparison on DynVideo [13]. Our
method achieves better reconstruction for avatars with loose
clothes and large motions. The best results are in bold.

Male Female
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

GaussianAvatar [13] 24.42 0.9505 0.0247 22.69 0.9335 0.0445
SplattingAvatar [45] 23.58 0.9329 0.0778 23.06 0.9311 0.0943

Ours 24.92 0.9511 0.0356 23.11 0.9336 0.0707

Table 5: Training and running time comparisons.

Methods Training Time Running Time

Anim-NeRF [4] ∼ 25 hs ∼ 0.03 FPS
InstantAvatar [15] ∼ 2 mins ∼ 3.5 FPS
GaussianAvatar [13] ∼ 38 mins ∼ 15 FPS
SplattingAvatar [45] ∼ 40 mins ∼ 270 FPS
Ours ∼ 50 mins ∼ 210 FPS

Table 4 presents the comparative results for novel view
synthesis on the DynVideo dataset, with pose parameters
sourced from GaussianAvatar. The results indicate that our
method achieves superior performance in terms of PSNR
and SSIM. However, the LPIPS metric of our method
and SplattingAvatar are inferior to GaussianAvatar. This
is mainly due to the inaccurate pose estimation for hu-
mans with large motions. Hybrid Gaussian representa-
tions [42, 45] utilize SMPL parameters as the geometric
prior of the Gaussians, the perceptual consistency of the
rendered image is affected in parts with inaccurate postures
such as hands, feet, and head.

Efficiency. Here we compare the inference speed of
RMAvatar with other methods. As shown in Table 5, we

measure the training and running time in the PeopleSnap-
shot dataset. Our method achieves an ultra-high rendering
frame rate of 210 FPS with a training time 50 minutes. Our
time cost is similar to SplattingAvatar, but produces higher
reconstruction quality.

Avatar animation. In Figure 4, we show the avatar an-
imation results for out-of-distribution poses generated by
SplattingAvatar and our method. It is clear that our method
demonstrates a more consistent 3D appearance and shape
of avatars under challenging novel poses, while Splattin-
gAvatar generates obvious wrong positioned Gaussians and
non-smooth boundaries for large motion sequence.

4.4. Ablation study

We conduct ablation studies by comparing the full model
with 1) removing the Gaussian rectification module, de-
noted as “w/o GauRec”, 2) only removing the regulariza-
tion term Loffset, denoted as “w/o OffsetLoss” and 3) only
removing the scaling loss term Lscaling , denoted as “w/o
ScalingLoss”. The “w/o GauRec” model fixes the position
of the Gaussian to its parent triangle, and properties such
as rotation and scale of the Gaussian remain consistent in
all poses. Specifically, the rectification MLP is removed
in “w/o GauRec” model. The “w/o OffsetLoss” and “w/o
ScalingLoss” models contain rectification MLP but discard
the regularization loss Loffset and scaling loss Lscaling, re-
spectively.

The ablation results are shown in Table 6 and Figure 5.
The results in Table 6 show that the GauRec module can
significantly improve PSNR and SSIM by adjusting Gaus-
sian properties to learn more accurate non-rigid distortions
and complex dynamic textures (such as clothes and hair).
The result in the second column of Figure 5 shows that re-
moving the GauRec module results in burr textures on loose



Figure 5: Ablation on female-3-casual of PeopleSnapshot. Our full model mitigates rendering artifacts with Gaussian recti-
fication module and regularization losses.

Table 6: Ablation Study on PeopleSnapshot [2]. The
Gaussian rectification module and regularization losses im-
prove reconstruction quality of clothed avatars. The best
results are in bold.

Metric: PSNR↑ SSIM↑ LPIPS↓
w/o GauRec 31.92 0.974 0.017
w/o OffsetLoss 32.48 0.983 0.017
w/o ScalingLoss 32.45 0.983 0.017
Full model 32.51 0.983 0.017

clothing. However, large offsets predicted by the GauRec
module may affect the consistency of the dynamic avatar
representation. To address this issue, we introduce the offset
regularization loss. The comparison between the “w/o Off-
setLoss” model and our full model in Figure 5 shows that
with the offset loss, our method can generate subtle Gaus-
sian offsets to maintain the consistency of Gaussian splats
and more accurately capture deformation details, resulting
in improved rendering quality and color fidelity.

The scaling loss is to regularize the scaling of Gaussians
and reduce Gaussians with elongated shapes. As shown in
Table 6, without scaling loss, the PSNR on PeopleSnapshot
decreases. The fourth column in Figure 5 shows that elon-
gated Gaussian splats cause severe rendering artifacts.

5. Conclusion and Discussion

In this paper, we have proposed a hybrid representation
for human avatar from monocular video based on mesh-
embedded Gaussian splats. We utilize the explicit repre-
sentation of the mesh to ensure correct shape and motion
of avatar, and the implicit Gaussian splats located on mesh
to render photorealistic appearance. To compensate for the
limitation of linear transformations of LBS, we design a
non-rigid deformation module that takes pose and Gaussian
positions as input to further optimize the Gaussian proper-
ties, thereby learning the dynamic effects of flexible mate-
rials such as clothing and hair. Compared with the SoTA
methods, our method achieves the best performance in both

rendering quality and measurement indicators, and the re-
construction based on monocular video can further promote
the application of avatars in multiple fields such as tele-
presentation and virtual reality.

Our method learns non-rigid deformation based on
mesh-guided Gaussian motion, and reduces reconstruction
errors caused by inaccurate poses. However, due to the lack
of meshes for clothing and facial expressions, our method
has limited ability to model these details. In the future, we
consider combining layered meshes and Gaussians to fur-
ther improve the reconstruction of complex details such as
the head, clothing, and hands.
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