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Abstract

In this paper, we introduce an enhanced color palette
characterized by a heightened level of representative-
ness for images. This palette is not only easy to com-
pute but also effectively conveys the distribution of pix-
els across the color space. Based on the proposed color
palette, we present a tailored color palette matching al-
gorithm designed for image color transfer by solving an
optimization problem to transfer colors from a reference
image to the original image. Our algorithm offers the
flexibility to operate in fully automatic mode or provide
various levels of user interactivity, allowing for coarse-
to-fine editing. Moreover, we demonstrate the adapt-
ability of our color palette and color transfer algorithm
to diverse applications, including grayscale image col-
orization and temporally consistent, time-varying video
color transfer. Extensive experiments and comparisons
have been conducted to measure the quality of our re-
sults, employing both visual assessments and evaluation
metrics. These findings demonstrate that our algorithm
efficiently and faithfully transfers color styles from ref-
erence images to both color and grayscale images and
videos.
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1. Introduction

Color transfer involves adjusting the color attributes in
an image or video to align with those found in a reference
image or video. The central objective of color transfer is to
preserve the inherent content and structure of the original
while matching its color to that of the reference. This tech-
nique finds diverse applications across domains, including
image processing [13], computer graphics [3], and multi-
media [46]. For instance, it can be utilized to add color
to grayscale images [4] and alter the ambiance of an image,
such as transforming a daytime photo to a sunset scene [22].

The process of color transfer for images usually involves
establishing a relationship between the color distributions of
the original and reference images. This relation can be es-
tablished through different methods, such as directly creat-

ing mappings between the color distributions of the two im-
ages [29, 14], or by employing manual interaction or image
segmentation to establish color correspondences between
them [4]. With the development of deep learning, neural
networks are often used for color transfer and have made
good progress [26, 17]. While these methods often demon-
strate improved semantic alignment, they require a substan-
tial amount of training data. Moreover, the outcomes ob-
tained are not easily amenable to modification or adjust-
ment, thereby limiting flexibility for subsequent editing.
When directly extending image color transfer to video color
transfer, both traditional and deep learning-based methods
can encounter challenges, such as preserving color consis-
tency across frames.

This paper introduces a novel image color transfer
method that can be easily extended to video based on our
generalized color palettes. Color palettes, referring to a col-
lection made up of a limited number of colors, are consid-
ered as descriptors extracted from an image or video. Due to
its simplicity, intuitiveness, versatility, and ease of compu-
tation, the color palette has been widely used in many fields
in applications such as image color editing [7] or image la-
beling and retrieval [34]. However, color transfer through a
color palette relies on manual color adjustments guided by
the user’s perception. Increasing the number of colors in
the palette for complex images is necessary to convey color
information, but it can make image editing more challeng-
ing for the user. To address this limitation, we introduce
an innovative method for transferring colors from a user-
specified reference image. We enhance color palettes to
improve color representation and then automate the align-
ment of color palettes between the original and reference
images. Importantly, this method is well-suited for extend-
ing to video content while ensuring temporal consistency,
enabling dynamic color editing. The specific contributions
of our work can be summarized as follows:

• We introduce an enhanced color palette with a high
degree of representativeness for images, which effec-
tively conveys the distribution of pixels across the
color space and can be seamlessly extended to videos.

• We have developed an optimization-based algorithm
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for color palette matching that seamlessly transfers
colors from a reference image to a target image. Our
algorithm provides flexibility by operating in fully au-
tomatic mode or by offering user interactivity at vari-
ous levels, facilitating coarse-to-fine editing.

• Our proposed image color palettes and the correspond-
ing color transfer algorithm can be easily extended
to the applications of grayscale image colorization
and time-varying or temporally consistent video color
transfer and achieve faithful and efficient color transfer
from reference to the input.

The paper is organized as follows: Section 2 briefly reviews
several related works. Section 3 introduces the definition of
our color palettes and its computation. Section 4 describes
our image color transfer algorithm. In Section 5, we extend
our image color transfer algorithm to grayscale image col-
orization and temporally consistent and time-varying color
transfer for videos. Section 6 presents the experimental re-
sults and comparisons, and Section 7 concludes the paper.

2. Related work

In this section, we will provide a brief review of related
works in the field of image and video editing, with a specific
focus on palette-based editing and color transfer.

2.1. Palette-based editing

Palette-based image editing is an intuitive way for users
to modify the color of an image. The user can edit the color
of the image by modifying the colors of the palette. These
color palette extraction methods can be categorized as fol-
lows:

Prominant colors-based color palettes. One poten-
tial approach to generating color palettes involves captur-
ing the prominent colors from an image, which are those
that can attract most of human attention. Various methods
can be utilized to attain this objective and can be applied
across a range of image-related applications. For example,
Solli and Lenz [34] used the RGB histogram to export the
color palette of the image for image labeling and retrieval.
Siang Tan and Mat Isa [32] also started with the method
of statistical analysis, using histogram thresholding to ex-
tract the color palette for image segmentation. Chang et
al. [7] used RGB value clustering on image pixels to derive
color palettes, and established a mapping function between
the original and modified palettes, enabling color editing
within images. Zhang et al. [47] obtained the palette’s ba-
sis colors through image segmentation and represented the
entire image’s colors as linear combinations of these basis
colors for image color editing. Aksoy et al. [2] presented
a method to decompose an image into a set of soft color
segments, which can be utilized for various image manip-
ulation tasks. Zheng et al. [48] used Zhang et al. [47]’s

color initialization method to select dominant colors and
employed a color mapping technique to create a palette for
categorical data visualization. Yan et al. [42] introduced a
real-time lightweight convolutional network to quickly ex-
tract a certain number of color sets as an image palette for
editing.

Polyhedron-based color palettes. Polyhedron-based
color palettes employ geometric methods to extract palettes
from the RGB color space of image pixels. Tan et al. [36]
represented the color palette as the vertices of a simplified
convex hull in RGB-space, mapping each pixel in the im-
age to the target palette via nonlinear optimization. Subse-
quently, they introduced a straightforward method for auto-
matically selecting the palette size [35]. However, convex-
hull-based palettes may not effectively represent the dom-
inant colors found in images. To address this limitation,
Wang et al. [39] proposed an improved method for extract-
ing a color palette that better represents the image’s colors
by relaxing the palette’s geometry from a convex hull to a
general polyhedron within the RGB color space. Addition-
ally, Chao et al. [8] focused on expanding the usability of
convex hull-based palettes (e.g., [36]) to support direct and
localized image-space edits.

The above image color palettes cannot be directly ap-
plied to the video due to the need to consider temporal con-
nections between adjacent frames. In [47], the authors ex-
tended image color palettes to videos by computing an av-
erage palette from sampled frames. However, in cases of
substantial color variation among video frames, this aver-
age palette may lose some color information. In [9], the
first palette-based video editing algorithm extended convex
hull-based color palettes from images to spatial-temporal
geometric palettes for videos. This allows users to mod-
ify palette colors for temporal variations. However, manual
editing with palettes requires a small number of colors to
avoid user inconvenience. It also relies on the user’s ability
to perceive colors, posing challenges for achieving desired
color edits in complex images or videos.

2.2. Color transfer

Color transfer involves applying the color style of a refer-
ence image to the original image while preserving its con-
tent and structural information. We mainly focus on the
color transfer algorithms for color images or videos. In this
section, we review previous works by classifying them into
traditional and deep learning-based methods.

Traditional methods. The pioneering algorithm by
Reinhard et al. [31] matches the mean and standard devia-
tion of the original and reference images. Pitie et al. [29]
estimated a continuous transformation between their his-
tograms, while Freedman and Kisilev [12] tackled the map-
ping of histogram distributions using the transport problem,
computing the mean and variance of pixel values in each



bin. An and Pellacini [3] achieved region correspondence
between two images through user-stroke input, enabling
color transfer between the corresponding regions. There are
also methods for automatic image segmentation and region
color matching, such as image segmentation based on tex-
ture information [4] and clustering-based algorithms [18].
Giraud et al. [13] proposed a fast superpixel-based color
transfer method using a fast approximate nearest neigh-
bor matching algorithm. Ferradans et al. [11] and Rabin
et al. [30] solved the problem of color matching between
two images with the optimal transport model. Grogan and
Dahyot [14] represented the color distribution of the im-
age with Gaussian Mixture model (GMM) and solved the
color mapping function by minimizing the L2 distance be-
tween the two distributions. Gu et al. [15] extended GMM
to straightforwardly model the pixel-wise color distribution,
and employ the Expectation-Maximization (EM) optimiza-
tion to directly estimate the transferred pixel values.

Deep learning–based methods. In recent years, there
have been several works using deep learning models to es-
tablish correspondence between images. Luan et al. [26]
achieved photo-realistic transfer by constraining the trans-
formation from the input to output to be locally affine in
the color space and expressing this constraint as a custom
fully differentiable energy term. He et al. [17] estimated
a semantically dense correspondence between two images
to achieve more accurate color transfer. Lee et al. [23]
proposed a deep neural network for color transfer using
histogram color analogy. Afifi et al. [1] proposed a color
histogram-based method for controlling GAN-generated
images’ colors, encouraging the network to preserve the
content of the original image while changing the color ac-
cording to a given target histogram. Fang et al. [10] pro-
posed a novel color transfer method based on the saliency
information with brightness optimization.

Video color transfer. In contrast to image color trans-
fer, video color transfer has received less attention, with
current efforts primarily focusing on temporal consistency.
Bonneel et al. [5] transferred colors between correspond-
ing keyframes of the input and reference videos and then
interpolated the transformations for temporal color consis-
tency. However, due to the incorporation of image seg-
mentation in the color transfer process, certain artifacts
emerged in the outline. Yao et al. [43] used patch match-
ing in the video to maintain temporal consistency, but their
method had problems dealing with large moving objects in
the scene. Considering luminance, color, and contrast, Za-
baleta and Bertalmı́o [46] computed the color transforma-
tion from a selected video frame to the reference image, ap-
plying this transformation to ensure temporal consistency
across all frames. Liu and Zhang [25] achieved temporally
consistent color transfer by combining soft segmentation
with GMM and quaternion. Yaosen et al. [44] generated

a 3D lookup table for the video color transfer based on the
neural network, so as to ensure a temporally consistent color
transfer.

3. Color palette extraction and representation

In this section, we outline preliminary steps before intro-
ducing our color transfer algorithm. In this paper, all col-
ors in the RGB color space have been normalized. We first
describe a concise color palette that effectively represents
the image’s color information and can be easily extended to
videos. Then we provide a brief introduction to generalized
affine barycentric coordinates for image reconstruction.

3.1. Color palette extraction

Our color palette comprises a set of 3D points in the
RGB color space. We construct the palette using the im-
age’s simplified RGB convex hull, incorporating dominant
colors to improve its representativeness of the image.

Simplified RGB convex hull. We adopt the method pro-
posed by Tan et al. [35] to extract the simplified RGB con-
vex hull of the image. This method begins with the convex
hull of all pixel colors represented as points in RGB space
and iteratively simplifies it through edge contractions until
a preset reconstruction error threshold is reached. The re-
construction error of the convex hull H with respect to the
image I is defined as:

L(I,H) =

√
1

|I|
∑
p∈I

∥p− pH∥2, (1)

where p represents the pixel color of the image I, |I| de-
notes the number of pixels in I, and pH is the point in the
convex hull that is closest to p. We can ensure that most
pixel colors in the image are contained within the simpli-
fied convex hull by setting a lower threshold η for the re-
construction error. We assume that the number of vertices
of the convex hull is N . These vertices (i.e., colors) will
serve as the colors in our palette.

Dominant colors. To address the potential neglect of
colors within the hull and avoid a loss of representative
colors in the image, we augment the palette further by in-
corporating dominant colors extracted from the image. We
employ the Canopy clustering algorithm [27] to group col-
ors based on their similarity, initially yielding K clusters.
Given that Canopy clustering may produce unstable results,
we refine this by applying the improved K-means cluster-
ing method proposed by Chang et al. [7], using the number
of clusters identified by Canopy clustering. The resulting K
dominant colors are then incorporated into our palette.

“Clean-up” operation. We denote our initial palette
as a collection of points in 3D color space: Ũ = {ui ∈
[0, 1]3|i = 1, · · · , N + K}. Directly combining the ver-
tices of the convex hull with dominant colors may intro-



duce redundancies. To eliminate redundancies, we con-
duct a “clean-up” process on the extracted initial palette
Ũ. Specifically, for two colors {ui,uj} in Ũ that have
the shortest Euclidean distance, we replace them with their
average color 1

2 (ui + uj). We repeat this clean-up oper-
ation on the updated palette until no color pair {ui,uj}
satisfies ||ui − uj || < ε, where ε is a predefined thresh-
old. We denote the final color palette after “clean-up” as
U = {ui}ni=1, where n is the number of colors in the
palette. An example of color palette extraction is illus-
trated in Fig. 1, where we have set the number of colors
of the palette to be smaller for ease of demonstration. As
depicted, the color of the convex hull vertices fails to cap-
ture the abundance of brown shades in the image, and the
dominant colors compensate for this gap. In addition, our
“clean-up” operation merges the two similar dark colors.

Figure 1: Our color palette of an image.

3.2. Color representation

We can well represent our image colors by using palette
colors and affine generalized barycentric coordinates. Since
our palette is defined as a set of points without topologi-
cal relations in RGB space, we employ affine generalized
barycentric coordinates [37], eliminating the need for con-
nectivity information between points to represent the colors
in the image. In particular, for an image I and its palette
U = {ui}ni=1, the affine generalized barycentric coordi-
nates of any pixel color p with respect to ui is given by

w(ui,p) =
〈
p− c, (XXT )−1xi

〉
+

1

n
, (2)

where c = 1
n

n∑
i=1

ui is average color of U, xi = ui − c,

X = [x1, ...,xn], and ⟨·, ·⟩ denotes the inner product. Then,
the pixel color p can be represented as a weighted linear
combination of all colors in U as follows:

p =

n∑
i=1

w(ui,p)ui,∀p ∈ I. (3)

It is worth noting that, according to Eqn. (2), since
(XXT )−1 is a positive definite matrix, the coordinate
w(ui,p) may take on negative values when ⟨p− c,xi⟩ <
0. However, the presence of negative values in the affine

generalized barycentric coordinates does not affect our re-
coloring process; further analysis is provided in Section 6.2.

4. Image color transfer

By specifying a reference image, our algorithm enables
automatic color transfer. Our algorithm also allows users to
manually select areas and directly edit the color palette for
fine-tuning. This enhances users’ flexibility and provides a
broader array of alternatives in color editing. Examples of
coarse-to-fine editing are shown in Fig. 2.

4.1. Reference image-based color transfer

Given an original image Io and a reference image Ir, our
image color transfer algorithm aims to replicate the color
effects of Ir onto Io. We extract the initial color palette for
both the original image Io and the reference image Ir, de-
noted as Ũo and Ũr, respectively. After performing “clean-
up” operations on each, we obtain the final palettes Uo and
Ur, with the respective color counts no and nr. In this sec-
tion, we automatically match colors between palettes Uo
and Ur by solving a tailored constrained optimization prob-
lem.

We first define non-negative variables Tij ∈ [0, 1], for
i = 1, . . . , no and j = 1, . . . , nr, to indicate the matching
relationships between the colors in Uo and Ur. A value of
Tij = 1 indicates a one-to-one match between the i-th color
uo
i in Uo and the j-th color ur

j in Ur. A color in Uo may
match multiple colors in Ur. In such cases, we require the
sum

∑nr
j=1 Tij equals 1, indicating that uo

i corresponds to a
weighted combination of colors

∑nr
j=1 Tiju

r
j . Additionally,

to ensure that each color in the palette Ur is used as exten-
sively as possible for recoloring, and to avoid the situation
where a color is hardly used, we want the value of

∑no
i=1 Tij

to be as large as possible for each j. According to the con-
straint

∑nr
j=1 Tij = 1, the maximum value of

∑no
i=1 Tij

is no
nr

. Therefore, we set the constraint
∑no

i=1 Tij = no
nr

.
Then, we solve the constrained optimization problem for
Tij , where i = 1, . . . , no and j = 1, . . . , nr, as follows:

min
Tij

{Esim + βEbrt},

s.t.

no∑
i=1

Tij =
no

nr
, j = 1, . . . , nr,

nr∑
j=1

Tij = 1, i = 1, . . . , no,

Tij ≥ 0, i = 1, . . . , no, j = 1, . . . , nr,

(4)

where Esim and Ebrt are two terms, described in detail later,
used to encourage matching between similar colors, achieve
comparable average brightness and variance to the reference
image, and balance these attributes, respectively. The pa-
rameters β are used to balance these terms.



(a) (b) (c) (d) (e)

Figure 2: Color palettes and results of automatic/interactive color transfer. (a) Input image; (b) reference image; (c) automatic
result; (d) result with prioritized matching of the color of the two regions indicated by red boxes; and (e) result with two colors
from the palette updated. The color palettes for the entire images and the selected regions are displayed separately on the
sides.

The color similarity term Esim aims to match similar
colors between the two palettes as effectively as possible,
which is a fundamental principle of our palette matching
approach. This term is designed to encourage the recolored
image to imitate a color style similar to that of the reference
image and is defined as follows:

Esim =

no∑
i=1

nr∑
j=1

Tij

∥∥uo
i − ur

j

∥∥
2
, uo

i ∈ Uo, u
r
j ∈ Ur. (5)

While Esim focuses on color similarity, it does not ensure
that the brightness of the recolored image remains within a
reasonable range. Therefore, the brightness constraint term
Ebrt is used to constrain the distribution of brightness in the
recolored image. This term is defined as:

Ebrt = |Ave(I′o)− Ave(Ir)|+ |Var(I′o)− Var(Ir)|, (6)

where Ave(·) and Var(·) denote the mean and variance of
brightness for all pixels in the image, respectively. The first
part of Ebrt is the difference between average brightness of
the reference image Ir and the recolored image I′o, aiming to
align the overall brightness of Ir as closely as possible with
that of I′o. Considering only the average brightness differ-
ence between two images may cause the recolored image’s
pixel brightness to average out. And the second part of Ebrt,
which is the difference between brightness variance of the
two images, can alleviate this undesirable phenomenon.

We defer the discussion regarding the impact of the
weights β and the effectiveness of the terms Ebrt to Sec-
tion 6.1. We solve this constrained optimization problem
using the Cplex solver [20]. Once the values of Tij are de-
termined, we replace the colors uo

i in Eqn. (3) with their
corresponding weighted combinations

∑nr
j=1 Tiju

r
j , while

retaining the original mixing weights. Namely, each pixel
originally colored p is recolored with the new color p′ as
follows:

p′ =

no∑
i=1

w(uo
i ,p)

nr∑
j=1

Tiju
r
j ,∀p ∈ Io. (7)

Consequently, we recolor each pixel of the original image Io
to obtain the color-transferred result I′o. This image retains
the original structure while adopting the color effects of the
reference image Ir; see Fig. 2(a-c).

4.2. Interaction-based color transfer

We further enhance the user experience by allowing
users to specify areas of the images and match their colors
to achieve more detailed color adjustments; see Fig. 2(d).
Our method also enables users to edit image colors by di-
rectly modifying the palette; see Fig. 2(e).

Local color palette extraction. Suppose the user selects
two regions, So and Sr, from the original and reference im-
ages, respectively. We prioritize the color correspondence
within these specified regions. To achieve this goal, we con-
struct local color palettes Usel

o and Usel
r for the selected re-

gions from the color palettes Uo and Ur. Let u,v ∈ R3 be
two vectors. We introduce an operator such that u ⪯ v de-
notes that the absolute value of each element in u is smaller
than the corresponding element in v. Then, we set

Usel
o = {uo

i | HSV(uo
i )− HSV(S̄o) ⪯ a,uo

i ∈ Uo}, (8)

Usel
r = {ur

i| HSV(ur
i)− HSV(S̄r) ⪯ a,ur

i ∈ Ur}, (9)

where S̄o and S̄r are the average colors of the pixels in the
So and Sr, respectively, HSV(·) converts color from the
RGB space to the HSV space, and a ∈ R3 is a predefined
threshold vector. Intuitively, palettes for selected regions
include colors from the entire palette that resemble the col-
ors and hues in chosen areas. Note that Usel

o and Usel
r may

consist of different numbers of colors, denoted as nsel
o and

nsel
r , respectively. We sort the colors in Usel

o (resp. Usel
r ) in

ascending order according to their Euclidean distance to S̄o
(resp. S̄r).

Local color palette matching. First, let’s consider the
color matching between Usel

o and Usel
r . If nsel

o > nsel
r , we

divide the sorted colors in Usel
o into nsel

r parts as evenly as
possible and then match the corresponding colors in Usel

r .
If nsel

o ≤ nsel
r , we sequentially match the colors in Usel

o
to the first nsel

o colors in Usel
r in order. Next, we consider



(a) (b) (c) (d)

Figure 3: An example of our grayscale image colorization.
(a) Grayscale image, (b) reference image, (c) result without
transition region processing, and (d) result with transition
region processing.

the matching of the remaining colors in the palettes. We
incorporate the established matching relationships between
selected colors Usel

o and Usel
r as hard constraints into the op-

timization problem in Eqn. (4). For instance, if nsel
o > nsel

r
and

{
uo
ik

}m

k=1
⊂ Usel

o matches the color ur
jl

in Usel
r , then

we add the following constraint:

m∑
k=1

Tikjl =
no

nr
. (10)

By solving Eqn. (4) with the new constraints added, we can
determine the matching relationships for all colors in the
palettes. So far, each color in the original image’s palette
corresponds to some colors in the reference image’s palette.
We can then recolor our image using Eqn. (7).

5. Applications to grayscale images and
videos

Our image color palette extraction and matching method
can easily be extended to grayscale image colorization and
video color transfer. In this section, we describe the details
of these applications.

5.1. Grayscale image colorization

For effective color transfer from a colorful reference im-
age Ir to a grayscale image Io, we utilize the matting net-
work [24] to extract foreground and background, creating
a mask with values ranging in [0, 1], where 1 denotes fore-
ground, 0 denotes background, and in-between values in-
dicate ambiguous ownership; see the upper right corner
of Fig. 3(a&b). We colorize the foreground and back-
ground separately. We extract the foreground and back-
ground palettes using the method outlined in Section 3.1,
setting N = 0. In order to enhance the informativeness
of the extracted palette, we take into account the pixel posi-
tions on the image when extracting the palette of a grayscale
image. In particular, we represent each pixel p in Io with
a 3D point (pg, ωx, ωy). Here, pg denotes its gray value,
(x, y) represents the pixel’s position in the image, and ω
is a parameter experimentally set to be 0.2. We establish
an optimization problem between two foreground palettes

for automatic color matching, where the energy function fo-
cuses solely on Esim and substitutes color differences with
brightness differences between two pixels. The same pro-
cess is then applied to the background. Finally, to achieve
a smooth foreground contour in the result, the color of p is
determined as:

p = pmaskcf + (1− pmask) cb,

where pmask ∈ [0, 1] is the corresponding value in the mask,
cf and cb are the color reconstructed using the foreground
palette and the background palette. The comparison results
in Fig. 3(c&d) validate the effectiveness of our transition
region processing.

5.2. Video color transfer

We extend the single-image color transfer framework to
video color editing. Similar to the algorithm on images, our
video color transfer is also example-based. We propose two
video editing modes: temporally consistent color transfer
and time-varying color transfer.

5.2.1 Temporally consistent color transfer

Video frames may exhibit color variations due to scene
or lighting changes. Temporally consistent color transfer
seeks to maintain color consistency across frames, ensur-
ing uniform editing effects throughout the video, applicable
to tasks such as movie color grading [5]. To ensure tem-
porally consistent color transfer in videos, a common ap-
proach is to apply a shared color palette for all frames, as
demonstrated in [47]. Without specific geometric require-
ments for our palette colors, we simply choose the one with
the largest variance among all frame palettes as the com-
mon color palette. In videos with continuous scene changes,
our extended approach maintains consistent colors across
all frames, yielding satisfactory color transfer results, as
discussed in Section 6.4 and illustrated in Figs. 13&14 and
videos in the Supplementary Materials.

5.2.2 Time-varying color transfer

Time-varying color transfer enables color effects that
change over time between adjacent frames, which can bring
richer and more interesting edits [9]. Our time-varying
color transfer enables users to specify reference images for
any frame, achieving color transfer and ensuring continuity
in color changes between edited frames.

First, we extract the keyframe sequence from the
video frame set {Fi} using the inter-frame difference
method [33], which provides a concise representation of
the content. Given the similar color distribution between
adjacent keyframes Fp and Fq (where q > p), we set
the color palette for the intermediate frames Fp+k (for
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Figure 4: Comparison of the results before and after adding
the energy terms Ebrt. (a) Original image, (b) reference im-
age, (c) result without Ebrt, and (d) result with Ebrt.

k = 1, . . . , q−p−1) to match that of keyframe Fp. Specifi-
cally, we extract the initial color palette for Fp as described
in Section 3.1. The intermediate frames Fp+k are assigned
palettes with the same number of colors from the simpli-
fied convex hull and dominant colors as in the keyframe
Fp. Finally, a “Clean-up” operation is applied to Ũp+k

(for k = 0, . . . , q − p − 1) until no further adjustments are
needed, with the final palette for the i-th frame denoted as
Ui.

For any two adjacent keyframes Fp and Fq (where q >
p), we establish correspondence between the palettes Up

and Up+k, k = 1, 2, . . . , q − p, by solely minimizing the
color similarity term Esim. Assume that the user specifies
a reference image for the frame Fj between Fp and Fq .
We obtain the updated color palette U′

j through automatic
color transfer. Palettes for other frames are computed by
using linear interpolation between the color palettes of Up

(Uq) and U′
j . This process updates the palettes for frames

between keyframes Fp and Fq . Finally, We recolor the cor-
responding frames using Eqn. (7); see Fig. 15.

6. Experiments

In this section, we present experimental results for im-
age and video color transfer, along with grayscale image
colorization. We compare our algorithm against traditional
and state-of-the-art methods to demonstrate its efficacy. The
experiments were conducted on a PC with a 2.6 GHz CPU
and 16 GB RAM. In our experiments, without additional
explanation, we set parameters in our algorithm to the fol-
lowing default values: η = 0.001, ε = 0.1 in Section 3.1,
and a = [0.2, 0.4, 0.3]T in Section 4.2.

6.1. Ablation experiment on the brightness constraint
term Ebrt

In this section, we discuss the energy term Ebrt of the
optimization problem presented in Section 4.1. We demon-
strate the effectiveness of the brightness constraint term
Ebrt in Fig. 4. Since we perform non-interactive color trans-
fer, we focus here solely on the overall color effect of the
recolored results. As shown in Fig. 4, the colors obtained
from solving the optimization problem with complete en-
ergy terms are more in line with the contrast of the reference
image. Next, we will discuss the weight β with respect to

Ebrt.
When establishing the optimization problem, we aim to

satisfy the matching between similar colors as much as pos-
sible, with the brightness constraint term serving merely
as auxiliary to further optimize the brightness of the re-
sults. By the definition of Esim and Ebrt, the value of Esim
is roughly no times that of Ebrt. In order to make the term
Esim the primary focus of the optimization, the weight β of
Ebrt cannot be too large. Otherwise, when solving the opti-
mization problem, the principle of matching similar colors
will be violated in an attempt to reduce the difference of
the mean and variance of brightness between images, as an
example shown in Fig. 5. When β is set to no, the blue in
the original palette starts to match the black in the reference
palette, which is not the result we expect. And it has been
found through multiple experiments that setting β to around
0.4no generally produces stable and robust results.

6.2. Results of image color transfer

The color palettes in this paper integrate convex hull-
based representation in RGB space with dominant colors
extracted from the image. Fig. 6 demonstrates that rely-
ing solely on either representation fails to faithfully trans-
fer the color style. Our example-based method automat-
ically transfers colors and eliminates the need for tedious
manual editing. If users are unsatisfied with the automati-
cally generated results, they can achieve more tailored out-
comes through interaction, as described in Section 4.2 and
shown in Fig. 2(c&d). We present additional interaction-
based color transfer results in Fig. 7.

Comparison with traditional methods. The optimal
transport-based methods [11, 30] primarily employ opti-
mal transport between color distributions, resulting in ar-
tifacts when there is a significant distribution difference be-
tween two images. In contrast, our method produces a more
natural and artifact-free outcome; see Fig. 8. In Fig. 9,
the statistics-based method [31] and the color distribution-
based method [29] struggle to effectively transfer the color
information from the reference image to the original im-
age, resulting in noticeable discrepancies between the trans-
ferred and target colors. The superpixel-based method [13]
may also falter in representing the dominant color of the
reference image, as evidenced in the flower’s color in the
first row of Fig. 9. Grogan and Dahyot [14] employs GMM
to represent the color distribution, leading to artifacts along
object boundaries, such as the contour of the flower.

Comparison with deep learning-based methods. We
compare our method with three state-of-the-art deep
learning-based methods [26, 17, 44, 10] in Fig. 10. These
deep learning-based methods fail to transfer colors effec-
tively between images with no obvious semantic correspon-
dence. As demonstrated in the second row of Fig. 10, where
the input and reference images differ significantly in seman-
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Figure 5: Comparison of results under different values of β. (a) Original image; (b) reference image; and (·, ·) represents the
values of Esim and Ebrt, respectively.

(a) (b) (c) (d)

Figure 6: Comparison of color transfer results with differ-
ent color palettes. (a) Original image and reference image
shown in the right-top corner; (b) recolored image with con-
vex hull vertices; (c) recolored image with dominant colors;
and (d) recolored image with our palette.

(a) (b) (c) (d)

Figure 7: Results of interaction-based image color transfer.
(a) Original image; (b) reference image; (c) automatic color
transfer results; (d) interactive color transfer results.

tic content, the method in [26] introduces artifacts across the
entire image, while the results by [17] and [44] display an
unnatural halo around the tree on the left side of the im-
age. Additionally, Fang et al. [10] performed color trans-
fer based on saliency detection. However, when the salient
areas of the image are unclear, this approach can lead di-
rectly to failures in color transfer. Even when the input and
reference images exhibit better semantic similarity, artifacts
such as un-transferred regions, missed structures, and un-
natural colors still occur, as shown in the buildings in the
fifth row of Fig. 10. While our method cannot guarantee
color transfer between semantically corresponding objects,

(a) (b) (c) (d) (e)

Figure 8: Comparisons with optimal transport-based color
transfer methods. (a) Original image; (b) reference image;
(c) Ferradans et al. [11]; (d) Rabin and Papadakis [30]; and
(e) ours.

it consistently produces more natural results compared to
deep learning-based methods.

Quantitative comparisons. We employ the structure
similarity index measure (SSIM) [40] as our quantitative
metric to measure structural similarity between the origi-
nal and recolored images. It indicates the extent of arti-
facts introduced during color transfer, with values ranging
from 0 to 1—higher values denote greater structural simi-
larity. Table 1 compares SSIM values for recoloring results
in Figs. 9&10 between traditional and deep learning-based
methods. Our method notably achieves a higher SSIM in
most cases, indicating fewer artifacts and more stable result
quality. Note that higher SSIM values, as demonstrated by
Pitie et al. [29] in Table 1(a), do not necessarily ensure visu-
ally better transfer results. For instance, as shown in Fig. 9,
they did not successfully transfer the color of the reference
image to the original image in some examples, such as the
tree in the third row.

User study. To assess the color transfer results’ qual-
ity more effectively, we conducted a user study, evaluating
our method and others in terms of perceptual realism and
faithfulness to reference color. Perceptual realism refers to
the absence of unnatural colors, artifacts, noise and halos in
the image, while faithfulness to reference color refers to the
similarity between the color style of the resulting image and
the reference image. We use 7 different examples for each
of the four traditional methods and four deep learning-based
methods, and collect the responses from 30 participants.
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Figure 9: Comparisons with traditional color transfer methods. (a) Original image; (b) reference image; (c) Reinhard et
al. [31]; (d) Pitie et al. [29]; (e) Giraud et al. [13]; (f) Grogan and Dahyot [14]; and (g) ours.

SSIM Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 5 Ex. 6
[31] 0.69 0.81 0.96 0.97 0.97 0.99
[29] 0.56 0.81 0.97 0.98 0.97 0.99
[13] 0.43 0.73 0.94 0.96 0.92 0.89
[14] 0.68 0.59 0.89 0.96 0.78 0.95
Ours 0.50 0.91 0.96 0.99 0.99 0.98

(a)
SSIM Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 5 Ex. 6
[26] 0.56 0.31 0.67 0.22 0.34 0.77
[17] 0.55 0.70 0.86 0.28 0.60 0.70
[44] 0.52 0.83 0.73 0.80 0.56 0.96
[10] 0.26 0.32 0.72 0.39 0.94 0.96
Ours 0.52 0.99 0.91 0.65 0.99 0.92

(b)

Table 1: Comparison of SSIM on color transfer results. (a)
Comparison with traditional methods. (b) Comparison with
the methods based on deep learning.

We randomly showed participants the results of different
approaches and asked them to rate the results on the two
aspects. The rating scale ranged from 1 to 5, with higher

scores for results that are more consistent with perceptual
realism or more faithful to the color of the reference image.
We give the average and standard deviation of the scores for
each method in Table 2. Our method has a larger average
score and a smaller standard deviation than both classes of
methods. We also asked participants to choose the results
they thought were best in terms of perceptual realism and
faithfulness to reference color, and the column C.B. in Ta-
ble 2 shows the percentage of each method chosen as best.
The results indicate a preference for our method over both
traditional and deep learning-based methods.

The effect of negative coordinates on recoloring. In
our calculations of affine generalized barycentric coordi-
nates, negative values may arise. When these coordinates
are utilized for recoloring with the reference palette, there
is a potential risk of generating colors that fall outside the
convex hull of the reference image, which could compro-
mise the quality of the color transfer. To assess this im-
pact, we employ Eqn. (1) to compute the reconstruction er-
ror between the simplified convex hull of the reference im-
age and the resulting recolored image across all examples
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Figure 10: Comparisons with deep learning-based color transfer methods. (a) Original image; (b) reference image; (c) Luan
et al. [26]; (d) He et al. [17]; (e) Yaosen et al. [44]; (f) Fang et al. [10] and (g) ours.

P.R. F.R.C. C.B.
[31] 2.84±0.36 2.69±0.38 7.62%
[29] 3.01±0.52 3.14±0.56 12.86%
[13] 2.60±0.57 2.86±0.69 7.62%
[14] 2.79±0.39 3.23±0.33 12.86%
Ours 3.86±0.28 4.01±0.20 59.52%

(a)
P.R. F.R.C. C.B.

[26] 2.81±0.73 3.51±0.59 12.38%
[17] 3.26±0.40 3.66±0.41 29.52%
[44] 2.83±0.81 2.80±0.71 4.76%
[10] 2.54±0.21 2.14±0.35 1.43%
Ours 4.07±0.28 3.83±0.35 51.90%

(b)

Table 2: User study results: (a) Comparison with traditional
methods. (b) Comparison with deep learning-based meth-
ods. P.R.: perceptual realism, F.R.C.: faithfulness to refer-
ence Color, C.B.: choice of the best. The second and third
columns display the average and standard deviation of the
scores, and the fourth column indicates the percentage of
times each method is chosen as the best by participants.

in this section. Our analysis reveals an average reconstruc-
tion error of 0.005± 0.005 and a maximum error of 0.017.
These results indicate that the reconstruction error remains
minimal when using the calculated coordinates for recolor-
ing. Consequently, while negative values may occur in our
coordinates, they do not adversely affect the visual quality
of the results.

Time consumption. Our color transfer algorithm does
not require the training process associated with deep learn-
ing methods. To perform color transfer, we first pre-extract
the image’s color palette, with the extraction of the simpli-
fied convex hull being the most time-intensive step. This
duration varies depending on the number of initial con-
vex hull vertices, which correlates with the image’s color
distribution. For the examples in this section, extracting
the final palette of an image takes approximately 3 to 28
seconds. Once the palettes are obtained, our subsequent
color transfer operations are comparable in time to tradi-
tional methods. For instance, in the second example shown
in Fig. 9, the processing times for our method and those
of [31, 29, 13, 14] are 1.62, 4.68, 0.02, 3.31, and 7.49 sec-
onds, respectively. While our method requires additional
time for palette extraction, it consistently delivers higher



quality color transfer results.

6.3. Results of grayscale image colorization

In Fig. 11, we compare our grayscale image colorization
results with five traditional methods, including the pioneer-
ing global statistics-based method [41], the user interaction-
based method [21], the superpixel-based method [16],
and two pixel-level methods [6, 28]. Observing the re-
sults, traditional methods may introduce noticeable artifacts
(Fig. 11(c&f)) and struggle to transfer colors well between
towers (Fig. 11(c,d,f&g)) or clouds (Fig. 11(e)). In contrast,
our method adeptly transfers foreground and background
colors to grayscale images. Additionally, we compare our
method with three recent deep learning-based approaches,
including [45], [19], and [38], in Fig. 12. Once again, these
methods struggle to effectively transfer colors, especially
in cases where the original and reference images are se-
mantically distinct, as seen in the last row of Fig. 12. It
is worth noting that while our method successfully transfers
foreground and background colors to grayscale images with
clear foreground objects, as shown in this section, it may en-
counter challenges with images where the foreground is in-
tentionally blurred. To address this limitation and enhance
versatility across various images, integrating a more ad-
vanced segmentation and correspondence method into our
approach is a potential avenue for future improvement.

6.4. Results of video color transfer

Due to the robustness of our method, we have no special
requirements for the test videos. Achieving temporally con-
sistent video editing involves maintaining consistent colors
for the same object across different frames. Fig. 13 show-
cases our editing results on a video. With a changing back-
ground, the clothes of the portrait maintain the same color
style as the corresponding reference image. We compare
our temporally consistent video color transfer results with
those from [5] and [44] in Fig. 14. Notably, [5], which uses
foreground-background segmentation during color transfer,
exhibits artifacts in the contour of the character, as shown
in the zoomed-in regions in Fig. 14(c). On the other hand,
the method in [44] requires semantic correspondence be-
tween frames and the reference image; otherwise, it may
result in unnatural artifacts in the background, as seen in
the zoomed-in regions in Fig. 14(d). In contrast, our method
achieves consistency in the color style across all frames and
is free of artifacts or unnatural colors.

We apply time-varying editing to videos to achieve the
effect of the same scene evolving over time and showcase
examples in Fig. 15. Our goal is to transition the scene in
the video from spring to winter, darkening the trees in the
summer and reddening them in the fall. The results of [9]
were generated by manually adjusting the color palette col-
ors to closely match the colors of the video frames with

those of the corresponding reference image, where the edit-
ing may not be as straightforward and requires a certain
level of color perception from the user. Our result suc-
cessfully achieves the desired effect by simply specifying
the reference images, and the color from the reference im-
age smoothly propagates to adjacent frames, resulting in a
gradual color transition without abrupt changes. In addition,
both [9] and we need to pre-process the video to generate
the video color palette before editing the video. The com-
putation of our video color palette is simple and efficient,
hence is less time-consuming.

7. Conclusion and discussion

In this paper, we present an innovative color palette de-
signed with a heightened level of representativeness, effec-
tively conveying pixel distribution across the color space.
This advanced palette seamlessly extends its applicability to
videos. Additionally, we introduce a tailored algorithm for
transferring colors from a reference image to the original,
providing operational versatility. Our algorithm can func-
tion in a fully automatic mode or offer user interactivity at
varying levels, accommodating coarse-to-fine editing. Fur-
thermore, our approach easily extends to grayscale image
colorization, temporal consistency and time-varying video
color editing. Experimental results demonstrate the effec-
tiveness of our method in achieving faithful color transfer
from reference to input.

Our current method has certain limitations. Firstly, the
palette extraction process is relatively slow and we plan
to speed it up in the future. Secondly, utilizing a color
palette for automatic color transfer may not effectively ac-
count for variations in image brightness or contrast. An al-
ternative solution involves exploring different color spaces,
such as Lab space, which reduces channel correlation and
effectively represents the lightness channel. Handling the
lightness channel separately during color transfer allows for
improved control over the resulting image’s brightness and
contrast. Furthermore, in the results of our color transfer,
the recoloring of certain examples exhibits good seman-
tic correspondence. However, our automatic color transfer
algorithm, primarily centered on global color information,
does not have the capacity to ensure a match in semantic
details between two images. While user interaction can al-
leviate this limitation to some extent, achieving complete
semantic correspondence remains a challenge for the cur-
rent algorithm. Future efforts may focus on enhancing se-
mantic matching by integrating image texture information
into our approach.
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Figure 11: Comparison with traditional grayscale image colorization methods. (a) Original image; (b) reference image; (c)
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image; (c) Yin et al. [45]; (d) Huang et al. [19]; (e) Wang et al. [38]; and (f) ours.
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