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Abstract

When utilizing digital cameras to capture the videos
on screen, the occurrence of moiré patterns can lead to
color distortions, significantly degrading the quality of
both images and videos. Considering the escalating de-
mand for video acquisition, it becomes necessary to de-
sign algorithms for video demoiréing. In this paper, we
introduce a novel attention-based network for this task,
named Temporal-Spatial Fusion Transformer (TSFT).
By introducing Temporal and Spatial Attention Encoder
and multi-scale feature fusion method, TSFT can learn
the dynamic variations of moiré patterns in both tempo-
ral and spatial dimensions. In the decoding phase, the
self-attention mechanism is employed to learn the tem-
poral dependencies at both image-level and video-level,
enhancing model performance in moiré removal. Exper-
imental results demonstrate a significant improvement
in the performance of the proposed model compared
to existing methods on public datasets. Furthermore,
TSFT can output visual attention maps for analyzing
the distribution of moiré and the focus of model learn-
ing. The outstanding performance in the video derain-
ing task also proves the robustness of our model, high-
lighting its enormous potential for application in other
restoration tasks.

Keywords: Video demoiréing, deep learning, trans-
former, attention mechanism.

1. Introduction

With the advancement of electronic devices such as cam-
eras, computers, and LCD, there is a growing demand for
capturing videos. In our daily lives and work, videos are
frequently required for documenting and disseminating in-
formation. However, there will be colored stripes when cap-
turing videos on screens, known as moiré, this is caused
by the overlapping of color filter arrays (CFA) and sub-
pixels on the screen. These patterns can significantly de-
grade video quality and result in information loss. For ex-
ample, when display devices are tested for quality control
in industrial settings, eliminating moiré effects is essential

Figure 1. Moiré example on Video Demoiréing Dataset, the moiré
intensity of different frames changes significantly.

to avoid obscuring defects; during the video rendering pro-
cess, moiré may arise, thereby impacting the quality of the
rendered video; for some spatial computing devices, such as
Apple Visual Pro, moiré can adversely affect the device’s
imaging capabilities. There are a lot of studies on single-
image demoiréing, including traditional and deep learning
methods, but only a few studies attempt to address video
demoiréing problem. Considering that video is an essen-
tial carrier of information in real life, the research on video
demoiréing is of great significance. But only a few studies
attempt to address video demoiréing problem.

From the perspective of the moiré pattern, in com-
parison to other video restoration tasks such as video
deraining[53, 55] and denoising[30, 40], moiré exhibits dif-
ferent characteristics (shape, color, and distribution varia-
tions) when there are changes in shooting angles and de-
vices. This variability increases the difficulty of moiré re-
moval. From the perspective of videos, compared to single-
image demoiréing, the model can leverage information
from adjacent frames for restoration in video demoiréing
task. However, moiré shows dynamic changes over time,
causing difficulties in feature alignment and information ex-
traction. Furthermore, the variations in moiré patterns do
not align with the illumination of video scenes, they show
different intensities that are correlated with the filming en-
vironment, as shown in Fig. 1. Factors such as changes
in focal length can also influence the intensity of moiré,
causing information fluctuations across different frames of
moiré videos. Effectively leveraging video information to
remove moiré is still a challenging problem.
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Existing methods for single image demoiréing
mainly include multi-scale[39, 7, 54], frequency do-
main processing[60, 15, 28], and moiré classification
methods[14]. However, these methods are not suitable for
video demoiréing task as they fail to utilize video informa-
tion to enhance restoration efficiency. In Video Restoration,
the key point is the registration of multiple frames, so as to
effectively use the information of auxiliary frames. Existing
methods[2, 26, 41] mainly focus on using optical flow[1] or
deformable convolution[8] for feature alignment, but they
do not effectively use spatial information of noise images.
Due to the significant spatial variations of moiré over time,
which are more complex compared to other noise, it is
necessary to integrate spatial and temporal information to
model the moiré distribution. Existing video demoiréing
methods[9, 34, 27, 32] primarily employ feature alignment
techniques and adjacent frame information learning for
restoration. However, the irregularities of stripes and color
variations in moiré video still make it hard for performance
improvement.

In this paper, we propose an attention-based deep neu-
ral network for Video Demoiréing, named Temporal-Spatial
Fusion Transformer (TSFT). TSFT primarily utilizes Tem-
poral and Spatial Attention Encoders (TAE and SAE) to
learn information from multiple frames and spatial domain,
employing Feature Fusion Network (FFN) and multi-head
self-attention modules to implicitly learn variations in moiré
intensity. TSFT is built upon self-attention mechanisms and
demonstrates high efficiency in video demoiréing task. Our
model addresses this task by leveraging the information of
temporal and spatial dimensions. In the encoder stage, the
network transforms moiré video frames into a series of deep
features that encapsulate the intrinsic content and structural
information. Our model utilizes two types of encoders to
extract features at different scales. Notably, unlike other
types of noise, moiré patterns often exhibit irregular color
variations across different spatial regions. The spatial en-
coder is designed to fit the diverse moiré textures across
regions and apply weighting to scales with dense moiré pat-
terns. Besides, the temporal attention encoder extracts fea-
tures from adjacent frames while mitigating the interference
of redundant information, thereby improving the model’s
learning efficiency. Moreover, TSFT employs an efficient
single-stage end-to-end training method during the train-
ing phase without the need for extra adjustments while also
demonstrating outstanding performance in this task.

We analyze the characteristics of moiré patterns and pro-
vide an intuitive modeling method. Based on the analysis,
we constructed TSFT to remove moiré stripes and recon-
struct high-frequency details by considering three aspects:
information from adjacent frames, spatial distribution of
noise, and variations in moiré intensity.

The role of Temporal Attention Encoder (TAE) is to ex-

tract features of different frames and integrate them, thereby
learning temporal attention and weighting the original fea-
tures. TAE utilizes the additional information provided by
temporal consistency and reduces the contribution of un-
necessary features. Spatial Attention Encoder (SAE) shares
a similar structure as TAE but focuses on learning the spa-
tial features of multi-scale. Given the complex distribution
of moiré across different scales, SAE aims to learn spatial
attention of various scales to effectively model the spatial
distribution of moiré patterns.

After the encoder phase, the features are input into
the Temporal-Spatial Fusion Decoder. Firstly, the Feature
Fusion Network (FFN) is utilized to merge the encoded
features. Subsequently, multi-head self-attention is em-
ployed to learn the correlations between different tempo-
ral and spatial positions in the features, extracting video-
level and image-level information from multiple frames.
Finally, Feed-Forward and Detail Reconstruction are con-
ducted in the last stage to obtain the moiré-free image for
each frame. Self-attention mechanism is particularly suit-
able for modeling the variations of moiré textures in both
temporal and spatial dimensions. Existing demoiréing algo-
rithms have not considered the application of self-attention
mechanisms in this field. Therefore, we introduce the self-
attention methods and construct a deep network for Video
Demoiréing task.

Extensive experiments on public video demoiréing
datasets validate the superiority of TSFT. Compared to
existing state-of-the-art methods, our algorithm achieves
0.9dB improvement in PSNR while also leading in other
metrics. Our model can also generate interpretable atten-
tion weight maps, facilitating the analysis of the approxi-
mate distribution of moiré patterns. Moreover, TSFT can
be effectively extended to other low-level tasks. Further ex-
periments demonstrate the model’s excellent performance
in Video Deraining as well.

In summary, the contributions of our paper can be sum-
marized as follows:

• Based on the Transformer architecture, we introduce a
video demoiréing model named Temporal-Spatial Fu-
sion Transformer. Our model utilizes multi-scale in-
formation combined with TAE and SAE to learn the
dynamic variations of moiré, then employs modules
based on self-attention mechanisms to learn correla-
tions between different frames and image areas. Our
model achieves superior performance and introduces
self-attention in Video Demoiréing, which is rarely
seen in previous demoiréing methods.

• We propose TAE and SAE to model the distribution of
moiré across different scales. These two modules inte-
grate multi-scale methods and attention mechanisms,
weighting features from two dimensions to enhance



learning efficiency. Our model can also generate vi-
sual attention maps to analyze moiré variations.

• The results of quantitative and qualitative evaluations
on the video demoiréing dataset show that TSFT out-
performs existing methods in this task. Addition-
ally, our model demonstrates excellent performance in
other low-level tasks, such as Video Deraining, show-
casing its applicability.

2. Related Work

2.1. Image Demoiréing

Moiré effect often appears when filming videos on the
screen and degrades video quality. This is due to the
aliasing of the camera’s color filter array (CFA) and the
screen’s subpixel. Early research primarily focused on im-
age filtering[49, 38] and image decomposition[25, 52] al-
gorithms to remove moiré on single-image. These methods
aim to construct optimized algorithms based on the spatial
and frequency characteristics of moiré patterns. However,
the restored images may lose texture details during the pro-
cess, leading to issues such as excessive smoothness.

In recent years, many learning-based demoiréing net-
works have been proposed. Sun et al.[39] introduced a
multiresolution convolutional neural network to remove
moiré at different scales and constructed a large demoiréing
dataset (TIP2018) for subsequent demoiréing research.
Cheng et al.[7] proposed a deep model (MDDM) using a
multi-scale feature encoding module to remove moiré pat-
terns. MopNet[14] used edge detectors and convolution
modules of different color channels to detect and classify
moiré. MBCNN[60] divides the demoiréing process into
two parts, texture removal and color restoration, and pro-
poses a learnable bandpass filter to learn the distribution of
moiré texture. WDNet[28] uses wavelet transform to sep-
arate the spectrum distribution of moiré from the original
image.

Most recently, He et al.[15] proposed a demoiréing
network (FHDe2Net), containing multi-branch to remove
moiré and reconstruct details. Yu et al.[54] proposed a base-
line model ESDNet, which used the semantic-aligned scale-
aware module to deal with the scale changes of moiré, and
created a 4K resolution demoiréing dataset. AMSDM[10]
employed the Adaptive Multispectral Encoding Module to
encode and remove moiré of different scales. Niu et al.[31]
proposed PMTNet and introduced a progressive texture
complementation block to correct color shifts gradually.
There is also algorithm[58] that considers lightening exist-
ing demoiréing models and enabling models to inference on
mobile devices.

The existing methods primarily aim to remove moiré pat-
terns on single images. However, for video data, these ap-
proaches fail to leverage information from adjacent frames

and do not consider the dynamic changes of moiré over
time. The advantage of our approach is that the TAE and
self-attention modules can utilize the sequential informa-
tion of videos to assist in restoration and adaptively reduce
the interference of redundant information.

2.2. Video Restoration

Video Restoration aims to utilize information from
nearby frames, as they can provide additional informa-
tion. The key point of multi-frame feature utilization is
to align different frames to reduce information interfer-
ence caused by pixel deviations. Early methods[37, 43, 22]
primarily used optical flow[1] for multi-frame alignment,
while in recent years, some methods[47, 9, 41, 42, 6] em-
ployed deformable convolutions[8] to align features from
various frames implicitly. Existing demoiréing method pro-
posed a baseline video demoiréing network (VDN) with
implicit feature space alignment and selective feature ag-
gregation to utilize complementary information from adja-
cent frames. VDN employs a two-stage training approach,
where the first stage focuses on moiré removal, and the sec-
ond stage adjusts the loss function to enhance restoration
effects. CIDNet[34] proposed a compact invertible dyadic
network that progressively decouples the frame and moiré.
DTCENet[27] presented an invertible network to align dis-
tortion color patches in the embedding framework. How-
ever, the performance of these methods can be affected
by the dynamic changes of moiré videos and leave room
for improvement. STDNet[32] leverages temporal corre-
lation and attention mechanisms to learn the spatial struc-
ture of moiré patterns, but it introduces a level of compu-
tational cost. In this paper, we drew inspiration from ex-
isting methods[47, 9] and used deformable convolutions for
multi-frame alignment. Our approach adopts an encoder-
decoder structure. In the decoder stage, TSFT reconstructs
details and employs self-attention mechanisms to learn cor-
relations between different frames and image regions, then
reconstructs high-frequency details. Our model achieves
excellent performance with single-stage training, thus en-
hancing training efficiency.

2.3. Attention Mechanism

Attention mechanism plays an important role in human
perception. Some methods[7, 60, 54] use attention for Im-
age and Video Demoiréing tasks. However, these methods
do not consider the integration of temporal and spatial in-
formation, thereby failing to enhance the model’s learning
efficiency. We analyzed the characteristics of moiré patterns
that the temporal and spatial variations of moiré differ from
the video content. The dynamic changes of moiré are influ-
enced by shooting angles and devices. We construct a novel
attention-based model that integrates temporal and spatial
attention methods to learn the distribution of moiré.



In recent years, Vision Transformer (ViT)[13] has
demonstrated tremendous potential in computer vision
tasks, surpassing CNN-based models in some tasks. ViT
utilizes patch-wise linear embedding to project image
patches into token sequences before inputting them into the
transformer architecture. However, the shortages of ViT
are its lack of inductive bias and relatively high computa-
tional cost. Consequently, some studies have introduced
inductive bias by incorporating convolutional[50, 11, 21]
or pyramid structures[45, 46]. Among these works, Swin
Transformer[29] divides image patches into different win-
dows and computes self-attention within each window. This
method (shifted windows) enhances the network’s model-
ing and representation capabilities while reducing compu-
tational costs. Many studies[44, 4, 12] improved the shifted
windows operation and achieved impressive results in vari-
ous visual tasks.

There are also some works using the Swin Transformer
architecture in the restoration field. SwinIR[23] applied
Swin transformer blocks to low-level tasks, which consists
of three parts: shallow feature extraction, deep feature ex-
traction, and high-quality image reconstruction. Wang et
al.[48] built a hierarchical encoder-decoder network using
the Transformer block for image restoration tasks, named
Uformer. Xu et al.[51] present a bidirectional transformer
network to exploit the long-range informative dependency
for video deblurring. Transformer architecture enjoys a
high capability for capturing both local and global depen-
dencies for this task, and it is also very suitable for learning
complex variations of moiré in temporal and spatial dimen-
sions. Based on Swin Transformer block, we make modifi-
cations and innovations of transformer architecture accord-
ing to the characteristics of moiré, which significantly im-
proves the performance of TSFT in Video Demoiréing.

3. Method

3.1. Characteristics of moiré video

Firstly, we analyze of the moiré video sequences. The
dynamic variations of moiré patterns are rather complex,
influenced by the device and shooting angle. Conversely,
the changes displayed in the video on the screen are solely
related to the content of the original video. The variation of
moiré between adjacent frames also provides an opportunity
for multi-frame restoration. This is because the changes in
the positions of moiré stripes between nearby frames can
be utilized to extract valuable information and to differenti-
ate between various moiré regions. So it’s crucial to learn
the spatial and temporal changes of moiré. Our model, par-
ticularly in the encoder section, also focuses on the feature
extraction of these two aspects.

Moreover, it is noted that most moiré videos are gener-
ated by filming screens, and the use of video-capturing de-

Figure 2. Noise diagram.

vices inevitably leads to automatic changes in focus length.
This results in variations in the moiré intensity in specific
frames, which may also cause distortion, blurring, and other
issues. Such intensity changes can affect the restoration ef-
fectiveness of the model.

For a n-frames moiré video sequence {Imt }nt=1, the ob-
jective of video demoiréing task is to get a moiré-free video
sequence {Ict }nt=1. The moiré video sequence can be mod-
eled as follows:

~Im = (Im1 , I
m
2 , · · · , Imn )

~Ic = (Ic1 , I
c
2 , · · · , Icn)

~Im = G(~Ic) + ~Nt

(1)

where ~Nt represents the moiré noise, and G represents com-
plex, non-linear variations beyond moiré artifacts, including
blurriness and tonal shifts. These variations are primarily
caused by changes in focal length and shooting environment
during video recording. Therefore, to obtain a moiré-free
video, the restoration process can be expressed as:

~Ic = G−1(~Im − ~Nt) (2)

We make a intuitionistic decomposition of the moiré
noise sequence as shown in Eq.3:

~Ic = G−1(~Im − (N+ ~nt)) (3)

where N = (N,N, · · · , N) represents the base noise of a
video sequence, and ~nt = (n1, n2, · · · , nn) is the variations



Figure 3. The architecture of Temporal-Spatial Fusion Transformer (TSFT). Our network comprises a CNN-based encoder and a Temporal-
Spatial Fusion Decoder. The encoder uses consecutive moiré frames as input, extracting deep features along both temporal and spatial
dimensions. The decoder integrates a Feature Fusion Network to remove moiré artifacts and reconstruct textures, ultimately producing
moiré-free video frames.

of noise sequence. For simple noises such as rain, Gaus-
sian noise, etc., their variations over t are typically constant,
periodic, or linear. However, the variation of moiré ~nt is
more complex and irregular, as shown in Fig.2. Therefore,
accurately estimating the moiré noise N and the variation
~nt is important. This complexity underscores the challenge
in video demoiréing, as it requires not only identifying the
underlying noise accurately but also adapting to its unpre-
dictable changes over time.

Based on existing research in multi-frame restoration,
the remaining frames can be utilized as model inputs to as-
sist in restoring the current frame. For the output Ict , its
structure can be illustrated as follows:

Ict = G−1( ~αt · ~Im − (N + nt))

~Ic = G−1(A · ~Im − (N+ ~nt))
(4)

where A represents a time-correlated weight tensor ma-
trix. This matrix encapsulates the varying impact of dif-
ferent frames on the restoration. According to intuitive hu-
man visual perception, it is evident that frames more tempo-
rally distant from the current frame exhibit lower relevance.
Therefore, leveraging frames that are closer to the current

frame for assistance in restoration emerges as a preferable
strategy, offering the dual benefits of reduced computational
demand and minimized information redundancy. Without
loss of generality, our model employs three consecutive
frames as inputs for the restoration.

Modeled in this way, we conducted a qualitative analysis
for the construction of our model. For Video Demoiréing,
the model needs to approximate the unknown transfor-
mations represented in the formula, encompassing several
components: the utilization of temporal information (A),
the approximation of spatial noise distribution (N), the vari-
ation of noise over time (~nt), and non-linear variations
(G−1). So, our model is designed with multiple modules
that extract information across temporal and spatial dimen-
sions to fit A and N during the encoding phase. Then, our
model utilizes Feature Fusion Network to integrate infor-
mation from two dimensions and implicitly learns the varia-
tion of noise ~nt. Finally, self-attention module is employed
to learn the non-linear variations G−1. This comprehen-
sive approach enables the model to effectively address the
complex interplay of factors contributing to the presence
of moiré patterns, ensuring an efficient restoration of video
quality. The overall structure of Temporal-Spatial Fusion



Figure 4. The structure of Temporal Attention Encoder (TAE).

Transformer (TSFT) is shown in Fig.3.

3.2. Network Architecture

3.2.1 Feature alignment and extraction

Our model utilizes three frames (Imt−1, I
m
t , I

m
t+1) as input

and outputs the moiré-free prediction Ict . Initially, the multi-
frame images are input into the Pyramid Cascading De-
formable (PCD) alignment module[47], which is used for
extract deep features. Subsequently, a convolutional layer
is employed to expand the feature channels. Finally, a
convolution-based downsampling layer is applied to extract
multi-scale features, as shown in Eq.5:

(F s0
t−1,t,t+1, F

s1
t−1,t,t+1, F

s2
t−1,t,t+1)

=Down(Conv(PCD(Imt−1, I
m
t , I

m
t+1)))

F si
T ∈R

n× h

2i
× w

2i , T = t− 1, t, t+ 1, i = 0, 1, 2

(5)

where h and w represent the height and width of the fea-
ture maps produced by the PCD. Down(·) and Conv(·)
represent the downsampling and convolutional layers, re-
spectively. Each frame is expanded through the convolu-
tional network to n channel features. The PCD alignment
module, which is composed of a pyramid structure and de-
formable convolutions[8], is designed to implicitly align
multiple frames in the feature space without estimating opti-
cal flow. The purpose of this stage is to extract and generate
multi-scale deep features.

3.2.2 Temporal and Spatial Attention Encoder

The Temporal Attention Encoder (TAE), as illustrated in
Fig. 4, focuses on learning temporal attention weights from

Figure 5. The structure of Spatial Attention Encoder (SAE).

aligned features to minimize the interference of redundant
information. Additionally, temporal weighting helps miti-
gate the effects of video illumination changes on the restora-
tion process. For multi-scale input features, they are divided
along the temporal dimension t into three groups, as shown
in Eq.6:

FT = (F s0
T , F s1

T , F s2
T ), T = t− 1, t, t+ 1 (6)

Subsequently, global average pooling (Avg-Pool) and
concatenation (Fusion) are used to obtain three different 1D
global features based on the temporal dimension. Then, the
features are input into a Multilayer Perceptron (MLP) and
split into three groups of temporal weights. Each temporal
weight is applied to the corresponding scale of input fea-
tures to enhance them:

vt−1, vt, vt+1 = Avg(Ft−1), Avg(Ft), Avg(Ft+1)

wt−1, wt, wt+1 = σ(MLP(vt−1, vt, vt+1))

FT = wT ⊗ FT , wT ∈ Rn, T = t− 1, t, t+ 1

(7)

The Spatial Attention Encoder (SAE), as shown in Fig. 5,
has a similar structure to the Temporal Attention Encoder
(TAE). However, SAE focuses on learning the spatial dis-
tribution of moiré patterns. For multi-scale features, the in-
puts are divided along the spatial dimension, as shown in
Eq.8:

Fsi = (F si
t−1, F

si
t , F

si
t+1), i = 0, 1, 2 (8)

Then, global average pooling (Avg-Pool) and concatena-
tion (Fusion) are used to obtain three different 2D global
features based on the spatial dimension. These are input
into Convolutional Neural Networks (CNNs) to obtain three



spatial weights at different scales. Finally, the multi-scale
spatial attention weights are respectively multiplied with the
corresponding feature maps:

vs0 , vs1 , vs2 = Avg(Fs0), Avg(Fs1), Avg(Fs2)

ws0 , ws1 , ws2 = σ(CNNs(vs0 , vs1 , vs2))

Fsi = wsi ⊗ Fsi , wsi ∈ R
h

2i
× w

2i , i = 0, 1, 2

(9)

In summary of the encoding phase, the multiple frames
are input to extract the aligned features Msi

F . Then, TAE
and SAE are utilized for encoding and weighting to get out-
put features Msi

T and Fsi
T . The encoding component in-

tegrates skip-connection, which is crucial for maintaining
gradient stability and enhancing the model’s generalization
ability, as shown in Eq.10:

Msi
T = F si

T + wT ⊗ F si
T

Fsi
T =Msi

T + wsi ⊗M
si
T

T = t− 1, t, t+ 1, i = 0, 1, 2

(10)

3.2.3 Temporal-Spatial Fusion Decoder

Rethinking the structure of Swin Transformer [29] and
SwinIR [23], we introduce patch partition and patch merg-
ing operations in the decoding phase (Fig. 3). The shifted
window approach is also employed to introduce cross-
window connections and reduce computational cost.

Firstly, the Feature Fusion Network (FFN) is used to ex-
tract the features and integrate the outputs from both tem-
poral and spatial attention encoders. Composed of con-
volutional layers, FFN employs multiple cross-connections
to merge features across different scales and temporal se-
quences. During the encoding phase, residual connections
are employed to retain the original features from various
stages, which are inputs to FNN. Unlike the fusion of fea-
tures at different scales in TAE and SAE modules, FFN con-
centrates on the integration of weighted features from dis-
tinct stages. The convolutional layers at multi-scale capture
different sizes of receptive fields, enabling a better fit to the
distribution of moiré. This module is beneficial for identi-
fying and eliminating moiré patterns of various shapes and
sizes.

Secondly, the features are input into a multi-head self-
attention module, which has two leading roles: 1. The
self-attention mechanism is capable of learning the corre-
lations between different image patches and frames, captur-
ing the impacts on the video caused by variations in moiré
intensity and other factors. Window-based self-attention
can introduce local inductive bias, enhancing training ef-
ficiency. Specifically, self-attention allows the model to au-
tonomously determine the shape and type of its receptive
field through the attention weight map in computer vision
tasks, thereby offering superior generalization and learning

capabilities. 2. MLP and convolutional layers within the
module are utilized for learning image textures and recon-
structing high-frequency details. The process of the decod-
ing phase is shown in Eq. 11:

Fffn = FFN(Fs0
t−1,t,t+1,F

s1
t−1,t,t+1,F

s2
t−1,t,t+1)

Fmsa = Attention(Fffn)

Fout = MLP(LN(Fmsa)) + Fmsa

Os0
t , O

s1
t , O

s2
t = Up(PM(Fout))

(11)

where FFN(·), Attention(·), Up(·) and PM(·) represents
feature fusion network, multi-head attention mechanism,
upsampling layer and patch merging, respectively. The en-
hanced features are input into the FFN to fuse the attention
information of two dimensions. In this step, the image is
divided into non-overlapping patches to facilitate the subse-
quent learning of self-attention weights.

The model can efficiently reconstruct high-frequency de-
tails in combination with the Feed-Forward and Detail Re-
construction layer. Specifically, this framework is com-
posed of Multi-Layer Perceptron (MLP), Layer Normal-
ization (LN) layers, Patch Merging (PM), and Upsampling
(Up) layers. MLP(·) employs two fully connected layers
with GELU nonlinearity in between for advanced feature
transformation. LN(·) are incorporated into both the Multi-
Head Self-Attention (MSA) and MLP to ensure gradient
stability. PM(·) is designed to interact with the preceding
patch partition layer, enabling information exchange and
integration of features across different frames. This mod-
ule utilizes linear layers and concatenation operations while
controlling the dimensionality of the output features. Fi-
nally, Up(·) is used to obtain the restored imageOs0

t . TSFT
also outputs images of different sizes (Os1

t , O
s2
t ) for multi-

scale supervised strategy.

3.2.4 Analysis

Our model is specifically designed to remove moiré patterns
by learning temporal information, spatial noise distribution,
and other factors. TSFT effectively addresses the limitation
of existing demoiréing methods that fail to fully leverage
temporal information. After using PCD to generate deep
features, the introduction of TAE primarily aims to mitigate
the impact of disruptive information in nearby frames. SAE
utilizes the multi-scale method and takes account of various
receptive fields, enabling it to learn about the overall shape
and detailed patterns of moiré. Spatial attention allows the
model to focus more intensely on areas with higher moiré
intensity, thereby enhancing the efficiency of model restora-
tion.

The decoding phase comprises the Feature Fusion Net-
work (FFN) and self-attention module. FFN learns the in-
formation extracted by TAE and SAE and interacts with



features across different scales to model the spatial distribu-
tion of moiré over time. The self-attention mechanism takes
into account the correlation of the features, further utilizing
information from adjacent frames and various patches of
the image. Compared to traditional convolutional methods,
the self-attention mechanism can effectively fit the complex
distribution of moiré due to its superior adaptability and
learning capabilities.

The architecture design of our model comes from our re-
search on video demoiréing task. Through the analysis of
video moiré patterns, we identified that the inherent chal-
lenges of these patterns make them more difficult to re-
move than other classic types of noise. Based on these
characteristics, we develop an intuitive approach to explic-
itly model moiré patterns in videos. We decompose the
video demoiréing task into two main components: tempo-
ral and spatial feature learning and the restoration of de-
graded content. Experimental results validate the advan-
tages of our model. However, considering the complexity
of moiré patterns—such as their varying texture shapes, lo-
cal color shifts, and color tone deviations—efficiently mod-
eling moiré is still a challenging problem. One of our future
research directions is to improve and optimize the model-
ing approach, enabling the designed model to better balance
computational complexity and feature learning efficiency.

3.3. Loss Function

Existing researches[24, 59] has confirmed the efficacy
of L1 loss for restoration tasks. However, L1 loss focuses
on pixel-level differences and overlooks the role of deeper
structural information. The texture and structural informa-
tion of moiré patterns on a larger scale also indicate the ne-
cessity of learning deep structural information. Moreover,
we use the deep supervision strategy to supervise the out-
put images of different sizes (Os0

t , O
s1
t , O

s2
t ) and assist the

model training. Building on existing algorithms [33, 9], we
incorporate perceptual loss[19] into the training loss func-
tion to supervise deep features and the structural informa-
tion, as shown in Eq. 12:

L(Osi
t , G

si
t ) = L(Osi

t , G
si
t )+λ·Lp(O

si
t , G

si
t ), i = 0, 1, 2

(12)
Os0

t represents the restored image, and Os1
t , O

s2
t repre-

sent the multi-scale output of TSFT. Gs0
t , G

s1
t , G

s2
t repre-

sent the corresponding ground truth that downsampled to
the same size. λ is the hyper-parameter used to balance two
losses. The final training loss Ltrain is the sum of multi-
scale losses:

Ltrain =

2∑
i=0

L(Osi
t , G

si
t ) (13)

4. Experiments

4.1. Experimental Setup

In this paper, we conduct experiments on the Video
Demoiréing Dataset (VDD)[9], which comprises 290 moiré
videos and the corresponding clean videos. Each video
contains 60 frames, with the resolution of 720p (1280 ×
720). The source videos were displayed on a monitor and
recorded using a handheld camera to capture the moiré
videos. Following the existing methods, VDD is divided
into 247 training videos and 43 testing videos. The TSFT
model uses sequences of three consecutive frames as input
to predict a single restored frame.

We set the weight of the perceptual loss (λ) to 1, the
number of heads in the self-attention component to 4, and
the size of the shifted windows to 10 after extensive ex-
perimental research. The inputs are randomly cropped to
400 × 400 for patch embedding during the training phase.
We used the Adam[20] optimizer with an initial learning
rate set to 0.0002 and a batch size of 1. We train 60 epochs
in the Pytorch framework on the Nvidia RTX 3090. Similar
to other Transformer-based models, the self-attention mod-
ule in Temporal-Spatial Fusion Decoder can be stacked to
enhance model performance. We achieved significant re-
sults in Video Demoiréing task with a single-layer decoder.
Experimenting with a multi-layer decoder for input images
with higher resolutions could be beneficial.

4.2. Quantitative Comparison

We compare our approach with state-of-the-art
demoiréing methods (DMCNN[39], MBCNN[60],
VDN[9], ESDNet[54], CIDNet[34], DTCENet[27] and
STDNet[32]) and the foundational backbone network
in the restoration field (U-Net[36]), to demonstrate the
effectiveness of TSFT. Other image demoiréing networks
are also utilized adjacent frames as inputs and employ
the PCD module to extract deep features for horizontal
comparison.

In Quantitative Comparison, we evaluate the restoration
performance of the models from three perspectives: frame-
level quality, video-level quality, and human perceptual
quality. Frame-level quality primarily assesses the pixel-
level differences between the output images and ground
truth, as well as the effectiveness of moiré texture removal.
We adopt widely used metrics PSNR and SSIM for com-
parison. For video-level quality, we adopt FID (Fréchet In-
ception Distance) metric to measure the overall quality of
the output video sequences, where FID utilizes a pretrained
I3D[3] to extract features and calculate differences. For hu-
man perceptual quality, we utilize LPIPS[57] as the evalu-
ation metric to assist in analyzing the quality of the output
images, as it aligns more closely with human visual percep-
tion.



Figure 6. Qualitative comparisons on VDD.

Table 1. Quantitative comparisons with state-of-the-art methods
on VDD, the best results are highlighted with bold.

Methods PSNR↑ SSIM↑ LPIPS↓ FID↓
U-Net 20.348 0.720 0.225 0.204
DMCNN 20.321 0.703 0.321 0.265
MBCNN 21.534 0.740 0.260 0.212
VDN S 21.772 0.729 0.212 0.094
VDN 21.725 0.733 0.202 0.084
ESDNet 21.812 0.731 0.206 0.101
ESDNet-L 22.003 0.739 0.203 0.097
CIDNet 22.270 0.735 0.184 -
DTCENet 21.881 0.744 0.181 0.078
STDNet 22.075 0.740 0.196 -
Ours 22.653 0.752 0.189 0.063

Table 1 presents the restoration metrics of different mod-
els on VDD, where VDN S is a variant of VDN that inputs
three repeated frames. By comparing the performance with
existing methods, the results show that TSFT significantly
outperforms state-of-the-art methods across most of the
metrics. This demonstrates that our method not only pos-
sesses superior demoiréing capabilities but also effectively
restores image details, enhancing the frame-level quality,
video-level quality, and human perceptual quality. Further-
more, our research provided a baseline framework suitable
for moiré analysis and removal. This framework holds po-
tential for future expansion in constructing large-scale pre-
trained models.

Further analysis of existing methods, U-Net and DM-
CNN utilize stacked pooling and convolution layers to pro-
gressively reduce the size of feature maps, thereby con-
structing multi-scale features. However, they overlook the
interaction between features at different scales, which re-
duces the efficiency of the models. TAE, SAE and FFN in
our model all incorporate interactions across various scales.
Our model can fit the distribution of moiré more effectively

and improve its performance.
MBCNN, VDN and ESDNet extract multi-scale infor-

mation, but neither has an effective architecture for learning
the temporal trends of moiré patterns in video sequences.
In contrast, TAE allows the model to focus on the temporal
distribution of moiré. As the intensity of moiré varies across
different frames, areas with less intense patterns can provide
more information of source videos, aiding the restoration of
the current frame. The decoding stage focuses on learn-
ing the correlations in image-level and video-level, which
proves more effective in demoiréing.

Due to the dynamic changes in moiré stripes and colors,
cross-frame correlation plays an essential role in modeling
moiré patterns and preserving temporal consistency. CID-
Net and DTCENet, which are based on convolutional net-
works, leverage complementary information from nearby
frames. However, they still lack the capability to learn tem-
poral correlations, resulting in sub-optimal performance.
STDNet also uses the self-attention method and decoupled
spatio-temporal manner for video demoiréing. The key dif-
ference between STDNet and TSFT is that STDNet empha-
sizes learning moiré textures in the decoder stage by im-
proving multi-head attention. While this architecture en-
hances performance, it also increases computational cost,
and the feature extraction network of STDNet is relatively
simple, limiting its ability to deeply learn moiré features.
Our method performs multi-level information extraction
and interaction during the encoder phase, greatly enhancing
feature extraction capabilities. This structure enables the
model to to improve performance while maintaining com-
putational efficiency (TSFT having about one-third of the
parameters of STDNet).

We also show the parameters and running time of our
model and state-of-the-art methods in Table 2. TSFT ex-
hibits a significantly lower number of parameters compared
to U-Net, MBCNN, and STDNet. This indicates that our



Table 2. Computational efficiency of different methods.
Metric U-Net DMCNN MBCNN VDN ESDNet-L CIDNet DTCENet STDNet Ours
Params(M) 17.26 1.40 14.19 5.98 10.62 4.57 5.17 27.96 10.46
Time(s) 0.089 0.110 0.264 0.261 0.252 - - 0.300 0.197

model also possesses certain advantages in computational
efficiency. Although multi-head self-attention in TSFT in-
creases computational complexity and network size, the
novel architectural design allows our model to achieve a sig-
nificantly lower parameter count than other attention-based
methods. Besides, our model demonstrates superior per-
formance and generalization capabilities while maintaining
comparable parameters and inference times to most state-
of-the-art CNN-based approaches. Another advantage of
attention-based methods is that they can achieve superior
performance for large-scale datasets, and the stacking of
self-attention modules can enhance the model’s restoration
applicability.

4.3. Qualitative Comparison

Fig. 6 shows the images restored by different methods,
and TSFT demonstrates superior performance. It is evi-
dent that TSFT is more effective in removing moiré and is
more accurate in restoring colors and high-frequency de-
tails, such as the sky and reflections in the water. For the
picture above, U-Net, MBCNN and VDN show less effi-
ciency in color restoration, with the overall image color no-
ticeably brighter, while DMCNN still has some remaining
moiré textures. For the picture below, the other comparison
models exhibit the same issues and don’t effectively remove
moiré artifacts.

In contrast, our method excels in color restoration, tex-
ture removal, and detail reconstruction. This success is at-
tributed to the architectural design of our model, which con-
siders the characteristics of moiré patterns. TSFT utilizes
auxiliary information from temporal and spatial dimensions
to construct attention weights, thus fitting the distribution of
moiré across different scales effectively. Moreover, the de-
coding phase uses feed-forward network to reconstruct the
image’s high-frequency details, making the restored images
visually superior to those produced by existing methods.

5. Ablation Study

The ablation study consists of three parts: First, we in-
vestigate the roles of different components of TSFT to an-
alyze their contributions. Second, we study the effect of
the loss function by adjusting the hyper-parameter λ to find
an appropriate balance. Third, we utilize visualization of
feature weight maps to understand the role of the fused at-
tention method in our model.

5.1. Components of TSFT

The comparative experiment included three variants of
TSFT, each lacking a key component: the Temporal Atten-
tion Encoder (w/o TAE), the Spatial Attention Encoder (w/o
SAE), and the Multi-head Self-Attention (w/o MSA). We
also add the experimental results of the baseline(without
core modules) and full model for comparison. To en-
sure that the reduction in parameter count didn’t affect the
overall model’s performance, the removed modules were re-
placed with residual convolutional networks[16] of approx-
imately the same parameter count. As shown in Table 3, the
removal of these components resulted in varying degrees of
performance degradation. Fig. 8 shows that our network
lacking certain modules are inferior in color restoration and
texture removal compared to the original model.

Table 3. Quantitative comparison among different variants of
TSFT.

Network PSNR↑ SSIM↑ LPIPS↓ Loss↓
Baseline 21.670 0.735 0.205 1.374
w/o TAE 22.016 0.741 0.200 1.328
w/o SAE 22.413 0.745 0.196 1.342
w/o MSA 22.425 0.745 0.190 1.359
Ours 22.653 0.752 0.189 1.306

TAE efficiently utilizes information provided by adjacent
frames, SAE is primarily used to fit the spatial distribution
of moiré patterns, focusing the model learning on areas with
higher intensity of moiré, and the decoder’s role is to ef-
fectively fuse the multi-scale features learned by TAE and
SAE and to learn the temporal variation of moiré based on
correlations. The results from the figure and table clearly
demonstrate that each component of TSFT plays a crucial
role in Video Demoiréing.

5.2. Effect of perceptual loss

Table 4. Quantitative comparison of TSFT trained with different
loss functions, λ represents the weight of perceptual loss.

Metrics λ = 0 λ = 0.25 λ = 0.5 λ = 1 λ = 1.5
PSNR↑ 22.001 22.345 22.343 22.653 22.587
SSIM↑ 0.743 0.747 0.746 0.752 0.749
LPIPS↓ 0.251 0.197 0.195 0.189 0.190

The loss function plays an important role in guiding the
model training. L1 loss is commonly used in image and
video restoration tasks because it helps learn the differences
between pixels. Unlike traditional noise, moiré patterns
vary in shape and color across different regions. Percep-
tual loss can help to align the deep global information of



Figure 7. The attention maps on VDD, the attention maps are scaled up to the same size to better compare the results of different scales,
red areas show the original size of the attention maps.

Table 5. Quantitative comparisons with state-of-the-art methods on NTURain dataset.
Metrics Rainy FastDeRain PreNet SpacCNN SLDNet MPRNet S2VD ESTINet Ours
PSNR↑ 30.41 30.54 32.99 33.11 34.89 36.11 37.37 37.48 37.88
SSIM↑ 0.902 0.925 0.952 0.947 0.954 0.963 0.968 0.970 0.972

Figure 8. Visual comparison among different variants of TSFT.

the restored frame and the ground truth by computing dis-

tances in the feature space, thus increasing the efficiency of
video restoration.

We employ both L1 loss and perceptual loss during the
training phase and use a coefficient λ to balance these two
loss functions (Sec. 3.3). The value of λ being either too
high or too low will affect the effectiveness of model train-
ing. So, we conduct the experiment with different values of
λ. According to the results presented in Table 4, the best
training outcomes were achieved when λ = 1. Moreover,
the application of perceptual loss (λ > 0) significantly re-
duced the value of LPIPS, enhancing the human visual qual-
ity of the restored videos.

5.3. Attention visualization

In this chapter, we visualize the attention weight maps
that are used for feature enhancement to demonstrate the
role of the attention mechanism in TSFT. As shown in
Fig. 7, the attention mechanism of TSFT effectively cap-
tures the spatial distribution of moiré artifacts, such as
moire stripes in the sky. For image regions where moiré pat-
terns are less prominent, such as the darker-colored trees,
the weight of the corresponding regions is small, thereby
enhancing the efficiency of parameter utilization. Large-
scale weight maps focus on the overall distribution of moiré
across the entire frame, and small-scale weight maps focus
on the detailed textures in local areas. By integrating multi-
scale features, the modeling capability of our network is



Figure 9. Visual results on NTURain dataset.

enhanced. The figure illustrates that our model learns the
differences between various frames through the attention
weights and increases the efficiency of utilizing information
from adjacent frames.

6. Discussion

To validate the potential of our model in other video
restoration tasks, we conducted experiments on Video De-
raining task to assess the robustness of TSFT in low-level
tasks. Rain is a common weather condition that reduces the
visibility in videos. The primary causes of degradation are
rain streaks and rain accumulation (or rain veiling effect).
Rain streaks obscure parts of the background scene, altering
the appearance of the video and making the scene appear
blurry. Rain accumulation dilutes the scene’s colors, lowers
overall contrast, and produces a masking effect. Both rain
streaks and rain accumulation decrease the visibility of the
scene. Particularly in videos, rain accumulation becomes
more pronounced over time. Therefore, to obtain better vi-
sual information of the background scene, it is necessary to
remove rain from videos. Similar to moiré, Rain and moiré
noise both affect the source video in terms of color and tex-
ture. However, the difference between the two noises is that
rain doesn’t have complex streaks and colors, and the vari-
ation of rain over time is more monotonous compared to
moiré.

The experiments validate the restoration capabilities of
TSFT on a public video deraining dataset. We choose the
NTURain dataset[5] for this study, which consists of videos
taken by a camera with slow and fast movements. The
training set includes 24 rainy sequences and clean sequence
videos, while the testing set comprises 8 pairs. We compare
the restoration performance of the state-of-the-art video

deraining methods, including FastDeRain[18], PreNet[35],
SpacCNN[5], SLDNet[53], MPRNet[17], S2VD[55] and
ESTINet[56]. We compare the average metrics in testing
set, as shown in Table 5. The results indicate that our model
surpasses existing methods in video deraining and achieves
excellent performance.

Fig. 9 shows the comparison between the frames re-
stored by TSFT and the source frames. TSFT effectively
removes rain noise from the videos while reconstructing the
details and areas obscured by rain. We analyze that other
video restoration process also utilizes information in nearby
frames like Video Demoiréing. The texture and dynamics
of rain noise are relatively simple and can be considered as
a particular form of noise (based on the study of Sec.3.1).
Therefore, our model is also applicable in Video Derain-
ing task. The results demonstrate the generalization ability
of TSFT and prove the model’s capability to handle other
video restoration tasks.

7. Conclusion

In this paper, we proposed an attention-based DNN ar-
chitecture to solve the problem of video demoiréing through
better qualitative and quantitative results. Based on the
characteristics of moiré patterns, we intuitively model the
moiré videos and decompose the task into several steps to
construct targeted modules. Considering the efficiency of
Vision Transformer and the gaps in existing demoiréing re-
search, we introduce the transformer architecture into this
field and construct an efficient model named TSFT. First,
multiple frames are input into TSFT for multi-scale feature
alignment and extraction. In the encoding phase, the model
learns the variations of moiré in both spatial and tempo-
ral dimensions across consecutive frames while minimizing



the interference of redundant information. In the decod-
ing phase, our model captures temporal correlations to learn
the impact of moiré intensity changes and reconstructs the
texture details. Extensive experiments demonstrate that our
method outperforms the state-of-the-art methods on video
demoiréing dataset. Our method also achieves outstanding
results in video deraining, proving that TSFT can be ef-
fectively generalized to another low-level vision task. The
experiments show the potential of our model in the video
restoration field.
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Textured image demoiréing via signal decomposition and
guided filtering. IEEE Transactions on Image Processing,
26(7):3528–3541, 2017. 3

[53] W. Yang, R. T. Tan, S. Wang, and J. Liu. Self-learning video
rain streak removal: When cyclic consistency meets tempo-
ral correspondence. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
1720–1729, 2020. 1, 12

[54] X. Yu, P. Dai, W. Li, L. Ma, J. Shen, J. Li, and X. Qi. To-
wards efficient and scale-robust ultra-high-definition image
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