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Abstract

This work presents VolumeDiffusion, a novel feed-
forward text-to-3D generation framework that directly
synthesizes 3D objects from textual descriptions. It
bypasses the conventional score distillation loss based
3D optimization or text-to-image-to-3D approaches. To
scale up the training data for the diffusion model, a
novel 3D volumetric encoder is developed to efficiently
acquire feature volumes from multi-view images. The
3D volumes are then trained on a diffusion model
for text-to-3D generation using a 3D U-Net. This re-
search further addresses the challenges of inaccurate
object captions and high-dimensional feature volumes.
The proposed model, trained on the public Objaverse
dataset, demonstrates promising outcomes in produc-
ing diverse and recognizable samples from text prompts.
Notably, it empowers finer control over object part char-
acteristics through textual cues, fostering model creativ-
ity by seamlessly combining multiple concepts within a
single object. This research significantly contributes to
the progress of 3D generation by introducing an effi-
cient, flexible, and scalable representation methodology.

Keywords: Text-to-3D, 3D Generation, Diffusion Mod-
els

1. Introduction

In recent years, feed-forward generation has proven to
be very successful in the fields of text-to-image [46, 43]
and text-to-video [42] generation. They have demonstrated
their power for the efficient generation of visual content that
aligns with textual descriptions. However, the task of text-
to-3D generation is mainly dominated by iterative 3D op-
timization guided by 2D diffusion models [44, 55, 6, 8] or
utilizing a sequential text-to-image-to-3D conversion [29,
18, 30, 57] which is a more circuitous generation process as
shown in Figure 1.

We believe that the key to unlocking the full potential

of feed-forward text-to-3D generation lies in the scalabil-
ity of training data. To achieve the goal, we need to de-
velop a 3D representation that is efficient to compute from
the massive data sources such as images and point clouds,
and meanwhile flexible to interact with text prompts at fine-
grained levels. Despite the increasing efforts in 3D gen-
eration, the optimal representation for 3D objects remains
largely unexplored. Commonly adopted approaches in-
clude Tri-plane [54, 16] and implicit neural representations
(INRs) [22]. However, Tri-plane have been only validated
on objects with limited variations such as human faces and
the global representation in INR makes it hard to interact
with text prompts.

In this work, we present VolumeDiffusion, a novel feed-
forward text-to-3D generation framework. It applies volu-
metric representation that characterizes both the texture and
geometry of small parts of an object using features in each
voxel, similar to the concept of pixels in images. Differing
from previous approaches such as [32, 5], which require ad-
ditional images as input, our method allows us to directly
render images of target objects using only their feature vol-
umes. Meanwhile, the feature volumes encode generaliz-
able priors from image features, enabling us to use a shared
decoder for all objects. The above advantages make the rep-
resentation well-suited for generation tasks.

To scale up the training data for the subsequent diffu-
sion model, we propose a lightweight network to efficiently
acquire feature volumes from multi-view images, bypass-
ing the expensive per-object optimization process required
in previous approaches [54]. In our current implementation,
this network can process 30 objects per second on a single
GPU, allowing us to acquire 500K models within hours.
It also allows extracting ground-truth volumes on-the-fly
for training diffusion models which eliminates the storage
overhead associated with feature volumes. In addition to
the efficiency, this localized representation also allows for
flexible interaction with text prompts at fine-grained object
part level. This enhanced controllability paves the way for
creative designs by combining a number of concepts in one
object.
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Figure 1. Comparison of different text-to-3D framework. (a) Text-to-image-to-3D approaches which generate 2D image or multi-view
images first and then generates 3D data from images, e.g., Instant3d [25], One-2-3-45 [29] and One-2-3-45 [28]. (b) 3D generation
guided by 2D diffusion models, e.g., DreamFusion [44] and Fantasia3D [6]. (c) Feed-forward text-to-3D generation (ours) which directly
synthesizes 3D objects from textual descriptions.

We train a diffusion model on the acquired 3D volumes
for text-to-3D generation using a 3D U-Net [47]. This is a
non-trivial task that requires careful design. First, the object
captions in the existing datasets [11, 10] are usually inac-
curate which may lead to unstable training if not handled
properly. To mitigate their adverse effects, we carefully
designed a novel schedule to filter out the noisy captions,
which notably improves the results. Second, the feature vol-
umes are usually very high-dimensional, e.g. C × 323 in our
experiments which potentially pose challenges when train-
ing the diffusion model. We adopted a new noise sched-
ule that shifted towards larger noise due to increased voxel
redundancy. Meanwhile, we proposed the low-frequency
noise strategy to effectively corrupt low-frequent informa-
tion when training the diffusion model. We highlight that
this structural noise has even more important effects than
that in images due to the higher volume dimension.

We train our model on the public dataset Objaverse [11]
which has 800K objects (100K after filtering). Our model
successfully produces diverse and recognizable samples
from text prompts. Compared to Shap·E [22], our model
obtains superior results in terms of controlling the charac-
teristics of object parts through text prompts, although we
only use less than 10% of the training data (Shap·E trained
on several million private data according to their paper). For
instance, given the text prompt “a black chair with red legs”,
we observe that Shap·E usually fails to generate red legs.
We think it is mainly caused by the global implicit neural
representation which cannot interact with text prompts at
fine-grained object part level. Instead, our localized vol-
umetric representation, similar to images, can be flexibly
controlled by text prompts at voxel level. We believe this
is critical to enhance the model’s creativity by combining a
number of concepts in one object.

2. Related Work

Differentiable Scene Representation. Differentiable
scene representation is a class of algorithms that encodes
a scene and can be rendered into images while maintain-
ing differentiability. It allows scene reconstruction by op-
timizing multi-view images and object generation by mod-

eling the representation distribution. It can be divided into
implicit neural representation (INR), explicit representation
(ER), and hybrid representation (HR).

Neural Radiance Field (NeRF) [35] is a typical INR that
encodes a scene as a function mapping from coordinates
and view directions to densities and RGB colors. Densities
and RGB colors of points along camera rays are integrated
to render an image, and the function mapping can be trained
to match the ground-truth views. While NeRF uses Multi-
Layer Perceptron (MLP) to encode the underlying scene,
its success gave rise to many follow-up works that explored
different representations.

Plenoxels [14] is an ER that avoids a neural network de-
coder and directly encodes a scene as densities and spher-
ical harmonic coefficients at each grid voxel. TensoRF [4]
further decomposes the voxel grid into a set of vectors and
matrices as an ER, and values on each voxel are computed
via vector-matrix outer products.

Instant-NGP [38] is an HR that uses a multi-resolution
hash table of trainable feature vectors as the input embed-
ding of the neural network decoder and obtains results with
fine details. [3] proposed a Tri-plane HR that decomposes
space into three orthogonal planar feature maps, and fea-
tures of points projected to each plane are added together
to represent a point in space. DMTet [48] is also an HR
that combines a deformable tetrahedral grid and Signed Dis-
tance Function (SDF) to obtain a precise shape, and the un-
derlying mesh can be easily exported by Marching Tetrahe-
dra algorithm [12].
Text-to-3D Generation. In Figure 1 we compare three
mainstream text-to-3d frameworks. A class of methods first
generate 2D image or multi-view images first and then gen-
erates 3D data from images [29, 18, 30, 57, 31]. e.g., One-2-
3-45++ [28] and LGM [50] generate multi-view images us-
ing a fine-tuned 2D diffusion model, and reconstruct a 3D
model from them. In comparison, without detailed refer-
ence images, our approach is inherently more challenging,
but holds the potential to streamline 3D-consistent genera-
tions from textual descriptions.

Some recent works escalate to text-to-3D generation via
the implicit supervision of pretrained 2D diffusion mod-
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Figure 2. Training framework of VolumeDiffusion. It comprises the volume encoding stage and the diffusion modeling stage. The encoder
unprojects multi-view images into a feature volume and do refinements. The diffusion model learns to predict ground-truths given noised
volumes and text conditions.

els [44, 55, 6, 8, 34, 51] or vision-language models [21,
36, 56], as shown in Figure 1(b), e.g., DreamField [21] use
a contrastive loss of CLIP [45] text feature and rendered
image feature to optimize a 3D representation. DreamFu-
sion [44] develop the Score Distillation Sampling (SDS)
method, leveraging the semantic understanding and high-
quality generation capabilities of text-to-image diffusion
models. [52, 58] further combine CLIP, SDS, reference
view, and other techniques to push the quality. Though
these optimization-based methods yield outstanding visual
fidelity and text-3D alignment, they suffer from the cost of
time-consuming gradient back-propagation and optimiza-
tion, which could take hours for each text prompt.

Our work is also related to diffusion-based 3D genera-
tion [9, 26, 37, 1, 49, 60], such as DiffTF [2] and Rodin [54]
which directly generate 3D representations with diffusion
models. However, all of them need optimize and save NeRF
parameters in the cost of a time-consuming fitting prepara-
tion and expensive storage. In constrast, our volume en-
coder efficiently acquire feature volumes from multi-view
images, bypassing the expensive per-object optimization
process.

3. Method

The training of our text-to-3D generation framework
comprises two main stages: the encoding of volumes and
the diffusion modeling phase. In the volume encoding
stage, as discussed in Section 3.1, we have chosen to
use feature volume as our 3D representation and utilize a
lightweight network to convert multi-view images into 3D
volumes. The proposed method is very efficient and by-
passes the typically costly optimization process required by
previous methods, allowing us to process a substantial num-
ber of objects in a relatively short period of time. In the dif-
fusion modeling phase, detailed in Section 3.2, we model
the distribution of the previously obtained feature volumes
with a text-driven diffusion model. This stage of the process
is not without its challenges, particularly in relation to the

high dimensionality of the feature volumes and the inaccu-
racy of object captions in the datasets. We have therefore
developed several key designs to mitigate these challenges
during the training process.

3.1. Volume Encoder

3.1.1 Volume Representation

One of the key points to train 3D generation models is the
selection of appropriate 3D representations to serve as the
latent space. The 3D representation should be able to cap-
ture the geometry and texture details of the input object and
be flexible for fine-grained text control. Furthermore, the
3D representation should be highly efficient in obtaining
and reconstructing objects for scalability.

Previous representations such as NeRF [35],
Plenoxel [14], DMTet [48], TensoRF [4], Instant-NGP [38],
and Tri-plane [3] all have their limitations to serve as the
latent space. For instance, the globally shared MLP
parameters across different coordinates in NeRFs cause
them inflexible and uncontrollable to local changes. Rep-
resentations storing an explicit 3D grid, like Plenoxel and
DMTet, require high spatial resolutions, resulting in large
memory costs for detailed scene representation. TensoRF,
Instant-NGP, and Tri-plane decompose the 3D grid into
multiple sub-spaces with lower dimension or resolution to
reduce memory costs but also introduce entanglements.

In this work, we propose a novel representation that
merges a lightweight decoder with a feature volume to de-
pict a scene. The lightweight decoder comprises a few lay-
ers of MLP, enabling high-resolution, fast, and low-memory
cost rendering. The feature volume, instead of storing ex-
plicit values, houses implicit features and effectively re-
duces memory costs. The features of a spatial point are tri-
linearly interpolated by the nearest voxels on the volume.
The decoder inputs the interpolated feature and outputs the
density and RGB color of the point. The feature volume is
isometric to the 3D space, providing extensive controllabil-
ity over each part of an object.



3.1.2 Feed-forward Encoder

Unlike previous works [2, 37, 54] that iteratively optimize
the representation for each object in a time-consuming way,
we use an encoder that directly obtains the feature volume
of any object within a forward pass.

As shown in Figure 2, the encoder takes a set of
multi-view photos of an object (x,d,p), where x,d ∈
RN×3×H×W represents the image and depth of N views,
p = {p(i)}Ni=1 represents the corresponding camera param-
eters, including the camera poses and field of view (FOV).
We first extract features from 2D images with a small net-
work F composed of two layers of convolution. We then
unproject the features into a coarse volume vc according to
depths and camera poses, i.e.,

vc = Φ(F(x),d,p), (1)

where Φ represents the unproject operation. For each point
on camera rays, we first calculate its distance to the camera,
then obtain a weight wi = exp (−λ∆di) where ∆di is the
difference of calculated distance and ground-truth depth.
The feature of each voxel is the weighted average of fea-
tures unprojected from different views.

Secondly, we apply a 3D U-Net [47] module to refine the
aggregated feature volume to produce a smoother volume

vf = Ψ(vc). (2)

Then ray marching and neural rendering are performed to
render images from target views. In the training stage, we
optimize the feature extracting network, the 3D U-Net, and
the MLP decoder end-to-end with L2 and LPIPS [59] loss
on multi-view rendered images.

The proposed volume encoder is highly efficient for two
primary reasons. Firstly, it is capable of generating a high-
quality 3D volume with 32 or fewer images once it is
trained. This is a significant improvement over previous
methods [54], which require more than 200 views for ob-
ject reconstruction. Secondly, our volume encoder can en-
code an object in approximately 30 milliseconds using a sin-
gle GPU. This speed enables us to generate 500K models
within a matter of hours. As a result, there’s no need to
store these feature volumes. We extract ground-truth vol-
umes for training diffusion models on-the-fly. It effectively
eliminates the expensive storage overhead associated with
feature volumes.

3.2. Diffusion Model

3.2.1 Devil in High-dimensional Space

Unlike the conventional text-to-image diffusion models, our
text-to-3D diffusion model is designed to learn a latent dis-
tribution that is significantly more high-dimensional. This

(a) Diffusion with common noise schedule

(b) Diffusion with low-frequency noise
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Figure 3. Renderings of noised volumes. Volumes with common
i.i.d. noise are still recognizable at large timesteps, while low-
frequency noise effectively removes information.

is exemplified in our experiments where we utilize dimen-
sions such as C × 323, in stark contrast to the 4× 642 em-
ployed in Stable Diffusion. This heightened dimensionality
makes the training of diffusion models more challenging.

Figure 3(a) provides illustrations of how noised volumes
appear at various timesteps. Utilizing the standard noise
schedule employed by Stable Diffusion, the diffusion pro-
cess cannot effectively corrupt the information. This is ev-
ident as the renderings maintain clarity and recognizability,
even at large timesteps. Also, it’s important to note that
there is a huge gap in the information between the noised
samples at the final timestep and pure noise. This gap can
be perceived as the difference between the training and in-
ference stages. We believe it is due to the high-dimensional
character of volume space.

We theoretically analyze the root of this problem. Con-
sidering a local patch on the image consisting of M =
w×h×c values, denoted as x0 =

{
x1
0, x

2
0, . . . , x

M
0

}
. With-

out loss of generality, we assume that {xi
0}Mi=1 are sampled

from Gaussian distribution N (0, 1). With common strat-
egy, we add i.i.d. Gaussian noise {ϵi}Mi=1 ∼ N (0, 1) to each
value by xi

t =
√
ᾱtx

i
0+

√
1− ᾱtϵ

i to obtain the noised sam-
ple, where ᾱt indicates the noise level at timestep t. Thus
the expected mean L2 perturbation of the patch is

E
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1

M
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0 −

√
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i
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=
2
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(
1−

√
ᾱt

)
.

(3)

As the resolution M increases, the i.i.d. noises added
to each value collectively have a minimal impact on the



patch’s appearance, and the disturbance is reduced signif-
icantly. The rate of information distortion quickly declines
to 1

M . This observation is consistent with findings from
concurrent studies [7, 15, 19]. In order to train diffusion
models effectively, it’s essential to carefully design an ap-
propriate noise that can distort information. So we propose
a new noise schedule and the low-frequency noise in the
training process.

3.2.2 New Noise Schedule

The primary goal of our text-to-3D diffusion model is to
learn a latent distribution, which is significantly more di-
mensional than the text-to-image model. As discussed in
the previous section, a common noise schedule can lead to
insufficient information corruption when applied to high-
dimensional spaces, such as volume.

During the training stage, if the information of objects
remains a large portion, the network quickly overfits to the
noised volumes from the training set and ignores the text
conditions. This essentially means that the network leans
more towards utilizing information from noised volumes
rather than text conditions. To address this, we decided
to reduce ᾱt for all timesteps. Thus we reduced the final
signal-to-noise ratio from 6×10−3 to 4×10−4, and evenly
reduced ᾱt at the intermediate timesteps. Without this, the
network may fail to output any object when inference from
pure Gaussian noise due to the training and inference gap.

We performed a series of experiments using different
noise schedules with various hyper-parameters. These in-
cludes the commonly used linear [17], cosine [39], and sig-
moid [20] schedules. After comprehensive testing and eval-
uations, we determined the linear noise schedule to be the
most suitable for our experiments.

3.2.3 Low-Frequency Noise

Images or feature volumes are typical digital signals, which
can be seen as a combination of digital signals of differ-
ent frequencies. When adding i.i.d. Gaussian noise to each
voxel of a volume, the signal is essentially perturbed by a
white noise. The i.i.d. noise evenly corrupts the information
of all components through the diffusion process. However,
the amplitude of low-frequent components is usually larger
and a white noise cannot powerfully corrupt them. Thus,
the mean of the whole volume as the component with the
lowest frequency is most likely unnoticed during the diffu-
sion process, causing information leaks. And so are patches
and structures of different sizes in the volume.

Hence, we proposed the low-frequency noise strategy to
effectively corrupt information and train diffusion models.
We modulate the high-frequency i.i.d. Gaussian noise with
an additional low-frequency noise, which is a single value

drawn from normal distribution shared by all values in the
same channel. Formally, the noise is

ϵi =
√
1− α ϵi1 +

√
α ϵ2, (4)

where {ϵi1}Mi=1 ∼ N (0, 1) is independently sampled for
each location and ϵ2 ∼ N (0, 1) is shared within the patch.
We still add noise to data by xi

t =
√
ᾱtx

i
0 +

√
1− ᾱtϵ

i, but
the noise ϵi is mixed via Equation 4 and no longer i.i.d. .

With the low-frequency noise, the expected mean L2 per-
turbation of the patch is

E

(
1

M

M∑
i=0

(
xi
0 − xi

t

))2

=
2

M

(
1−

√
ᾱt

)
+ (1− 1

M
)(1− ᾱt)α,

(5)

where α ∈ [0, 1] is a hyper-parameter. The proof is in
the supplemental material. By this approach, we introduce
additional information corruption that is adjustable and re-
mains scale as the resolution grows, effectively removing
information of objects as shown in Figure 3(b).

The low-frequency noise can be seen as altering
the variance of [17] from I to Σ =

√
1− αI +√

αJ. The closed form of the forward process from
x0 to xt holds since we can alternatively iterates
q(xt|xt−1) = N (xt;

√
αtxt−1, (1 − αt)Σ) to q(xt|x0) =

N (xt;
√
ᾱtxt−1, (1 − ᾱt)Σ), and the estimation of poste-

rior mean in [17] is still valid. We leave the proof in the
appendix.

3.3. Refinement

The diffusion model is able to generate a feature volume,
but its inherent limitation lies in its output of low-resolution,
which restricts texture details. To overcome this, we lever-
aged existing text-to-image models to generate more de-
tailed textures, enhancing the initial results obtained from
the diffusion model.

Specifically, we introduced the third stage involving fine-
tuning the results. Given the good initial output from the
diffusion model, we incorporated SDS [44] in this stage to
optimize results, ensuring better image quality and reduced
errors. Considering our initial results are already satisfac-
tory, this stage only requires a few iterations, making our
entire process still efficient.

Our methodology makes full use of existing text-to-
image models to generate textures that are not covered in
the original training set, enhancing the details of texture and
promoting diversity in the generated images. Simultane-
ously, our method also addresses the issue of multiple-face
problems encountered in [44].



3.4. Data Filtering

We find that data filtering is extremely important to the
training. Objaverse is mainly composed of unfiltered user-
uploaded 3D models crawled from the web, including many
geometry shapes, planer scans and images, texture-less ob-
jects, and flawed reconstruction from images. Moreover,
the annotation is usually missing or not related, the rotation
and position vary in a wide range, and the quality of 3D
models is relatively poor compared to image datasets.

Cap3D [33] propose an approach for automatically gen-
erating descriptive text for 3D objects in the Objaverse
dataset. They use BLIP-2 [24], a pre-trained vision-
language model, to caption multi-view rendered images of
one object and summarize them into a final caption with
GPT-4 [41]. However, considering the significant variation
in captions from different views, even GPT-4 confuses to
extract the main concept, hence the final captions are still
too noisy for the text-to-3D generation. With these noisy
captions, we find that the diffusion model struggles to un-
derstand the relation between text conditions and objects.

We generate our own captions with LLaVA [27] and
Llama-2 [53] and filter out objects with low-quality or in-
consistent multi-view captions in the Objaverse dataset.
Similar to Cap3D, we first generate captions of 8 equidis-
tant views around the object and then summarize them into
an overall caption with Llama-2. After that, we calculate
the similarity matrix of every pair among these 9 captions
using CLIP text embedding. We believe that a high-quality
3D object should be visually consistent from different view-
points, i.e., the captions from different views should be sim-
ilar. Thus, we use the average and minimal values of the
similarity matrix to represent the quality of the object. And
manually set two thresholds to filter out objects with low
average/minimal similarity scores.

We use a selected subset of objects with the highest qual-
ity to train the diffusion model. We find that the diffusion
model is able to learn semantics relations from text condi-
tions. On the contrary, when we use the whole Objaverse
dataset for training, the model fails to converge.

4. Experiments

4.1. Implementation Details

Dataset We use the Objaverse [11] dataset in our ex-
periments and rendered 40 random views for each object.
For the volume encoder, we filter out transparent objects
and train with a subset of 750K objects. For the diffusion
model, we caption and filter as described in Section 3.4 and
train with a subset of 100K text-object pairs.
Volume encoder In the first stage, we train a volume en-
coder that efficiently converts multi-view RGBD images
into a feature volume. Each image xi are fed into a
lightweight network F to extract the feature F(xi). The net-

Ground Truth Reconstruction Ground Truth Reconstruction
Figure 4. Reconstruction results of the volume encoder.

work F merely includes 2 layers of 5×5 convolution. Then
features of images are unprojected into the coarse volume
vc and weighted averaged. λ is set to 160N in our exper-
iments, where N = 32 is the spatial resolution of volume.
After unprojection, the volume is refined with a 3D U-Net
module and rendered with an MLP. The MLP has 5 layers
with a hidden dimension of 64. The volume encoder and
the rendering decoder in total have 25M parameters. The
model is trained with the Adam [23] optimizer. The learn-
ing rate is 10−4 for the volume encoder and 10−5 for the
MLP. The betas are set to (0.9, 0.99) and no weight decay
or learning rate decay is applied. The input and rendered
image resolution is 2562 and the batch size of volume is
1 per GPU. We first optimize the model with only L2 loss
on the RGB channel. We randomly select 4096 pixels each
from 5 random views as supervision. After 100K iterations,
we add an additional LPIPS loss with a weight of 0.01. Due
to GPU memory limitation, the LPIPS loss is measured on
128 × 128 patches. The training takes 2 days on 64 V100
GPUs.
Diffusion model In the second stage, we train a text-
conditioned diffusion model to learn the distribution of fea-
ture volumes. The denoiser network is a 3D U-Net adopted
from [40]. Text conditions are 77 × 512 embeddings ex-
tracted with CLIP ViT-B/32 [13] text encoder and injected
into the 3D U-Net with cross-attentions at middle blocks
with spatial resolution N

4 and N
8 . We use a linear [17]

noise schedule with T = 1000 steps and βT = 0.03. We
train with the proposed low-frequency noise strategy and
the noise is mixed via Equation 4 with α = 0.5 in our ex-
periments. The model has 340M parameters in total and is



Data Views PSNR ↑ SSIM ↑ LPIPS ↓

10K

8 27.14 0.855 0.288
16 27.50 0.867 0.282
32 27.61 0.871 0.281
64 27.64 0.870 0.280

750K (Ours) 32 27.69 0.874 0.279
Table 1. Ablation on input view numbers and training data size of
the volume encoder.

optimized with the Adam optimizer. The model is super-
vised by only L2 loss on volumes and no rendering loss is
applied. The batch size of volume is 24 per GPU, the learn-
ing rate is 10−5, the betas are (0.9, 0.99), and the weight
decay is 2× 10−3. The training takes about 2 weeks on 96
V100 GPUs.

4.2. Volume Encoder

We first quantitatively study the reconstruction quality of
the volume encoder. We set the spatial resolution N = 32
and channel C = 4 for efficiency. In Table 1, we measure
the PSNR, SSIM and LPIPS loss between reconstructions
and ground-truth images.

To analyze the correlation between the number of differ-
ent input views and the quality of reconstruction, we train
encoders with different input views on a subset of 10K data.
It is observed that the quality of reconstruction improves as
the number of input views increases. However, once the
number of input views surpasses 32, the enhancement of
quality becomes negligible. Therefore, we opted to use 32
as the default number of input views in our subsequent ex-
periments. Additionally, the quality of reconstruction is also
enhanced with the use of more training data.

We show the reconstruction results of the volume en-
coder in Figure 4. The volume encoder is capable of recon-
structing the geometry shape and textures of objects. Exper-
iments involving higher resolution and larger channels will
yield more detailed reconstructions. However, these adjust-
ments will also result in increased training costs and com-
plexity in the second stage. Please refer to the supplemental
material for additional ablation studies.

4.3. Diffusion Model

We compare our method with other text-to-3D genera-
tion approaches, including Shap·E [22], DreamFusion [44],
and One-2-3-45 [29]. Since One-2-3-45 is essentially an
image-to-3D model, we use images generated with Stable
Diffusion as its input.

Figure 5 demonstrates that our methods yield impres-
sive results, whereas both Shap·E and One-2-3-45 struggle
to generate complex structures and multiple concepts. For
simpler cases, such as a teapot, Shap·E, and One-2-3-45 can
only produce a rough geometry, with surfaces not so smooth

Method Similarity ↑ R-Precision ↑
DreamFusion [44] 0.243 47.3%
One-2-3-45 [29] 0.228 39.1%
Shap-E [22] 0.287 58.9%
Ours 0.288 63.8%

Table 2. Quantitative comparison with other text-to-3D methods.
Similarity and R-Precision are evaluated with CLIP between ren-
dered images and text prompts.

Stage Method Time

1 (Encoding)
Fitting ∼35min
Shap-E [22] 1.2sec
Ours 33ms

2 (Generation)

DreamFusion [44] ∼12hr
One-2-3-45 [29] 45sec
Shap-E [22] 14sec
Ours (w/o refine) 5sec
Ours ∼5min

Table 3. Inference speed comparison. Evaluated on A100 GPU.

and continuous as those created by our method. For more
complex cases, our model excels at combining multiple ob-
jects in a scene and aligning better with the text prompts,
whereas other methods can only capture parts of concepts.

Both our method and Shap·E are native methods, i.e. di-
rectly supervised on 3D representation and trained with 3D
datasets. It’s noteworthy that these native methods generate
clearer and more symmetrical shapes (for example, boxes,
planes, and spheres) than methods based on image-to-3D
reconstruction or distillation. Furthermore, the results of
One-2-3-45 are marred by many white dots and stripes,
which we believe is due to the inconsistency between im-
ages generated by the pre-trained Zero-1-to-3 [30] model.

In Table 2, we compute the CLIP Similarity and CLIP
R-Precision as a quantitative comparison. For each method,
we generated 100 objects and rendered 8 views for each ob-
ject. Our method outperforms others on both visual quality
an text alignment.

We present more results in Figure 6. These prompts
include cases of concept combinations and attribute bind-
ings. The critical drawbacks of distillation-based methods,
including the Janus problem and over-saturated color, are
not observed in our results.

4.4. Inference Speed

In Table 3, we report the inference speed of both stages
of our method against other approaches. The first stage en-
codes multi-view images into a 3D representation and is
important for scaling up the training data. Shap·E uses a
transformer-based encoder that takes both 16K point clouds
and 20 RGBA images augmented with 3D coordinates as in-



a wooden desk with a chair

a yellow hat with a bunny ear on top

OursDreamFusion One-2-3-45 Shap E Ours (w/o refine)

a blue teapot with a spout and handle

Figure 5. Comparison with other text-to-3D methods.

Method Similarity ↑ R-Precision ↑
Baseline 0.198 11.3%
+ Low-Frequency Noise 0.201 11.7%
+ New Noise Schedule 0.264 50.7%
+ Both (Ours) 0.279 56.5%

Table 4. Quantitative comparison between different noise strategy.

put. It is much slower than our lightweight encoder based
on convolution. Fitting means to separately optimize a rep-
resentation for each object with a fixed rendering MLP, and
consumes much more time and storage. The second stage
refers to the conditional generation process. Optimization-
based DreamFusion needs hours for each object. One-
2-3-45, on the other hand, necessitates several diffusion-
denoising processes, such as text-to-image and multi-view
images generation, and is slower than native 3D methods.
For both stages, our method proves to be highly efficient.

4.5. Ablation

We conducted ablation experiments on noise schedule
and the low-frequency noise in Table 4. We trained diffu-
sion models on a subset of 5K data and compares CLIP
Similarity and R-Precision. The results demonstrate the ef-
fectiveness of our noise strategy.

On noise schedule, we find the baseline method which
utilizes the noise schedule employed by Stable Diffusion
performs poorly, as the models fail to output any objects
while inferencing from pure Gaussian noise. We believe it
is due to the information gap between the last timestep and

pure noise, which is illustrated in Figure 3(a). Meanwhile,
models trained with the proposed new noise schedule elim-
inate the training-inference gap and are able to draw valid
samples from pure noise.

On noise types, we find the model trained with i.i.d.
noise has lower scores, as it tends to exploit the remain-
ing information of noised volume and confuses when start-
ing from Gaussian noise. In the contrary, the model trained
with the low-frequency noise is forced to learn from text
conditions and produces results that are more preferable and
consistent to text prompts.

5. Conclusion

In conclusion, this paper presented a novel method for
efficient and flexible generation of 3D objects from text
prompts. The proposed lightweight network for the acqui-
sition of feature volumes from multi-view images has been
shown to be an efficient method for scaling up the train-
ing data required for the diffusion model. The paper also
highlighted the challenges posed by high-dimensional fea-
ture volumes and presented a new noise schedule and low-
frequency noise for improved the training of diffusion mod-
els. In experiments, the superior performance of this model
in terms of the control of object characteristics through text
prompts has been demonstrated. Our future work would
focus on refining the algorithm and the network architec-
ture to further speed up the process. We would also involve
testing the model on more diverse datasets, including those
with more complex objects and varied text prompts.
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a candle holder with three 
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a stone water well with a 
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Figure 6. Text-to-3D generations by VolumeDiffusion.
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Figure 7. Patch L2 perturbation of noised images at timestep t =
200. α = 0 refers to i.i.d. noise. As image resolution increases,
the L2 distortion with our proposed noise is almost unaffected and
remains at a high level.

Appendix

A. Low-Frequency Noise

A.1. Derivation of Equation 3 and Equation 5

In this section, we present a detailed derivation of the
expected mean L2 perturbation of a patch in Section 3.2.

Consider a patch x0 =
{
x1
0, x

2
0, . . . , x
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0

}
. We add noise

{ϵi}Mi=1 to each value by xi
t =
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i
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√
1− γtϵ

i to ob-
tain the noised sample, where γt indicates the noise level at
timestep t. The expected mean L2 perturbation of the patch
x0 with i.i.d. Gaussian noise {ϵi}Mi=1 ∼ N (0, 1) is
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Figure 8. Noised images with different resolutions. All images are
noised with xt =

√
γx0 +

√
1− γϵ and γ = 0.65, ϵ ∼ N (0, 1).

With the proposed low-frequency noise strategy, we mix
the noise by ϵi =

√
1− α ϵi1 +

√
α ϵ2 (Equation 4), where

{ϵi1}Mi=1 ∼ N (0, 1) is independently sampled for each lo-
cation and ϵ2 ∼ N (0, 1) is shared within the patch. We
still add noise by xi

t =
√
γtx

i
0 +

√
1− γtϵ

i and only ϵi is
changed. So we have
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In conclusion, the expected mean L2 perturbation of the
patch x0 with the low-freqency noise is
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Here we assume that {xi
0}Mi=1 are also sampled from

Gaussian distribution N (0, 1), which may be not true on
real data. Thus we report the mean L2 perturbations on real
images with different resolutions in Figure 7 as a further
demonstration. As illustrated, the L2 perturbation of i.i.d.
noise decays exponentially as resolution increases, while
our proposed low-frequency noise is slightly affected and
converges to larger values proportional to α.

A.2. Justification for patchwise mean L2 loss

To validate the reasonableness of our adoption of patch-
wise mean L2 perturbation, we follow [7] and present an
intuitive example using 2D images in Figure 8. The red
rectangle highlights the same portion of the object across
different resolutions, and we calculate the patchwise L2 loss
for each. We observe that as the image resolution increases,
the loss diminishes even though these images maintain the
same noise level (γ = 0.65), making the denoising task
easier for networks. Consequently, we believe it is essen-
tial to reassess noises from the local patch perspectives and
propose the expected mean L2 perturbation of a patch as a
metric.

A.3. Can adjusting the noise schedule also resolve the
issue in Figure 3?

In relation to the issue of incomplete removal informa-
tion in Figure 3 of the main paper, we rely on the low-
frequency noise schedule to solve it. However, the question
arises: can this issue also be addressed solely by adjusting
the noise schedule as mentioned in Section 3.2.2?

The answer is negative. Let’s consider a scenario where
we modify the noise schedules γt and γ′

t for spaces with
resolution M and M ′ respectively, ensuring that the L2 per-
turbation remains constant:

2
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2
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(10)

We take the default setting in Stable Diffusion, where
βT = 0.012 as an example, leading to γT = 0.048. The
volumn resolution (where M ′ = 323) is 8 times larger than
default resolution (M = 642). Substituting these values

into Equation 10, we find that there is no solution for γ′
t.

This suggests that adjusting noise schedule alone is not a
viable solution for high-dimensional spaces.

A.4. Forward process

In Section 3.2.3, we propose a novel process from x0 to
xt with low-frequency noise

xi
t =

√
ᾱtx

i
0 +

√
1− ᾱtϵ

i

=
√
ᾱtx

i
0 +

√
(1− ᾱt)(1− α)ϵi1 +

√
(1− ᾱt)αϵ2,

(11)
where {ϵi1}Mi=1 ∼ N (0, 1) is independently sampled for
each location and ϵ2 ∼ N (0, 1) is shared within the
patch. This leads to the conditional density q(xt|x0) =
N (xt;

√
ᾱtx0, (1− ᾱt)Σ), where Σ =

√
1− αI+

√
αJ.

Alternatively, we can define the one-step transition from
xt−1 to xt with low-frequency noise as

xi
t =

√
αtx

i
t−1 +

√
1− αtϵ

i

=
√
αtx

i
t−1 +

√
(1− αt)(1− α)ϵi1 +

√
(1− αt)αϵ2,

(12)
which leads to q(xt|xt−1) = N (xt;

√
αtxt−1, (1− αt)Σ).

We find the definitions in Equation 11 and Equation 12 are
essentially equivalent, as we can iterate Equation 12 and
derive
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√
αtx

i
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√
(1− αt)ϵ

i
t−1

=
√
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√
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√
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√
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√
(1− αt−1)αϵ2,t−2

)
+
√
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+
√
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=
√
αtαt−1x
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√
1− α
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√
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)
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(√
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√
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)
=

√
αtαt−1x

i
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√
(1− αtαt−1)(1− α)ϵ̃i1,t−2

+
√
(1− αtαt−1)αϵ̃2,t−2

= · · ·

=
√
ᾱtx

i
0 +

√
(1− ᾱt)(1− α)ϵ̃i1,0 +

√
(1− ᾱt)αϵ̃2,0

(13)
where ϵ1 ∼ N (0, 1) and ϵ̃1 ∼ N (0, 1) are indepen-
dently sampled for each location and ϵ2 ∼ N (0, 1) and
ϵ̃2 ∼ N (0, 1) is shared within the patch.

A.5. Posterior estimation

[17] proposed a training loss for diffusion models



Eq

[
DKL(q(xT |x0)∥p(xT ))− log pθ(x0|x1)

+
∑
t>1

DKL(q(xt−1|xt,x0)∥pθ(xt−1|xt))

]
,

(14)

where q and p are the forward and reverse process of diffu-
sion models, and provided an estimation of the posteriors

q(xt−1|xt,x0)

=N
(
xt−1;

√
ᾱt−1(1− αt)x0 +

√
αt(1− ᾱt−1)xt

1− ᾱt
,

(1− ᾱt−1)(1− αt)

1− ᾱt
I

) (15)

based on q(xt|xt−1) = N (xt;
√
αtxt−1, (1 − αt)I) to be

isotropic Gaussian. Here we prove that the estimation still
holds with the proposed low-frequency noise

q (xt−1|xt,x0)

=
q (xt|xt−1) q (xt−1|x0)

q (xt|x0)
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√
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1− ᾱt−1

)⊤

Σ−1xt−1 + C (xt,x0)

]}

= exp

{
−1

2

(
xt−1 −

√
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αt (1− ᾱt−1)xt

1− ᾱt
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(16)

exp N C PSNR ↑ SSIM ↑ LPIPS ↓
#1 32 32 27.83 0.874 0.276
#2 32 4 27.69 0.874 0.279
#3 64 4 29.21 0.886 0.228
#4 32 → 64 4 28.68 0.883 0.167

Table 5. Ablation experiments on resolution N and channel C of
the volume encoder.

where C (xt,x0) is constant up to xt,x0, Σ =
√
1− αI+√

αJ, I is identity matrix and J is all-one matrix. There-
fore, we can train diffusion models with the proposed low-
frequency noise.

B. Volume Encoder

In Table 5, we conducted ablation experiments to study
how resolution N , channel C and loss term affects the per-
formance of the volume encoder.

We find the channel C of volume is a minor factor of the
performance of the volume encoder. In contrast, increasing
the resolution N greatly improves the reconstruction perfor-
mance. However, N = 64 brings a computation and GPU
memory cost that is 8 times larger than N = 32, which
causes significant difficulty for training diffusion models.

In order to increase volume resolution without large
overhead, we introduce a super-resolution module before
we feed the generated volume into the refinement mod-
ule. We increase the spatial resolution of the volume from
N = 32 to N = 64. The super-resolution module com-
posed of few layers of 3D convolution is served as a post-
process and is performed on the outputs of the diffusion
model. In our experiments, the super-resolution approach
achieves close performances comparing to native N = 64
volumes. The diffusion model is trained on the volumes
with lower resolution N = 32, and the rendering is per-
formed on the upsampled volumes with higher resolution
N = 64. Therefore, we can enjoy both a lower dimen-
sion for easier training of diffusion models as well as a
higher resolution for rendering more detailed textures with-
out much overhead.

C. More results

We kindly present more detailed illustrations in the sup-
plementary files and video. We render more results gener-
ated with our method in Figure 9 and Figure 10. We em-
phasize the diversity in Figure 11 and the flexibility in Fig-
ure 12 of our method. Also, we provide more comparisons
with other text-to-3D approaches in Figure 13.



a blue and white umbrella a brown paper bag a wooden skateboard ramp a brown cowboy hat a white helmet with a strap

a bald head of a man a key with a chain attached a rusty padlocka man sitting on a chair a brown couch

a green toy dinosaur a red and gold robot figure a castle made of stonea large tree stump a purple bat with wings

a red and yellow action 
figure of Iron Man

a tall brown lighthouse 
with a light on top

a colorful bird with a long 
tail and green wings

a yellow toy tractor with a 
shovel on the front

a cartoon tiger wearing a 
red shirt

a black fish with blue eyes a white boot a red cup with a yellow lida gray plate with food in it a tank with a gun on top

a stone fountain with a 
spout

a man wearing a blue shirt 
and gray pants

a red toy airplane with a 
pilot inside

a green turtle holding a 
spear

a small statue of a man 
holding a sword

Figure 9. More text-to-3D generations of VolumeDiffusion.



a purple dragon toy with 
horns

a single red rose in a 
brown pot

a blue elephant with a long 
trunk

a dog with a backpack on 
its back

a small Christmas tree 
made of Legos

a high-rise building with 
multiple floors

a dragon with a crown on 
its head and wings

a racing car with a silver 
body and black wheels

a statue of a knight riding 
a horse

a green robot statue with a 
sword in its hand

a black and grey camera 
with a lens

an orange cell phone with 
black buttons

a blue diamond on a white 
pedestal

a red motorcycle with a 
black seat

a white chair with a cross 
on the back

a yellow robot with four 
legs and a round body

a yellow robot with a head 
and arms

a plant with green leaves 
and yellow flowers

a blue crystal with a black 
base

a blue house with a door 
and windows

a statue of a man holding a 
child

a blue and white vase with 
a lid a small yellow airplanea blue robot with a 

humanoid body
a wooden church with a 

cross on top

a white and black police 
SUV car a tank with a gun on top a red and white striped 

candy cane
a white bust of a man with 

a stern expression
a palm tree with a brown 
trunk and green leaves

Figure 10. More text-to-3D generations of VolumeDiffusion.



a pair of sunglasses

a car

a toy cannon

a chair

Figure 11. Diverse text-to-3D generations of VolumeDiffusion.



a golden ring with 
… 

a wooden table 
with …

a man wearing …

red shirt and white short blue shirt and purple shortwhite shirt and red short

a teddy bear on top a basketball on topa yellow barrel on top

blue gemstone on it green gemstone on itred gemstone on it

Figure 12. Flexible text-to-3D generations of VolumeDiffusion.



a yellow helicopter

a white shovel with red handle

OursDreamFusion One-2-3-45 Shap E Ours (w/o refine)

a white letter I

a yellow sink with a faucet

a flag of Netherlands

a pair of swords

a white watering can with a handle

Figure 13. Comparison with other text-to-3D methods.


