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Abstract

Despite the material point method (MPM) provides
a unified particle simulation framework for coupling of
different materials, MPM suffers from sticky numerical
artifacts, which is inherently restricted to sticky and
no-slip interactions. In this paper, we propose a novel
transfer scheme called Decomposed Compatible Affine
Particle in Cell (DC-APIC) within the MPM frame-
work for simulating the two-way coupled interaction
between elastic solids and incompressible fluids under
free-slip boundary conditions on a unified background
grid. Firstly, we adopt particle-grid compatibility to
describe the relationship between grid nodes and par-
ticles at the fluid-solid interface, which serves as the
guideline for subsequent particle-grid-particle trans-
fers. Then we develop a phase-field gradient method
to track the compatibility and normal directions at the
interface. Secondly, to facilitate automatic MPM col-
lision resolution during solid-fluid coupling, in the pro-
posed DC-APIC integrator, only the tangential com-
ponent is transferred between incompatible grid nodes
to prevent velocity smoothing in other phases, while
the normal component is transferred without limita-
tions. Finally, our comprehensive results confirm that
our approach effectively reduces diffusion and unphys-

ical viscosity compared to traditional MPM.

Keywords: material point method, solid-fluid cou-
pling

1. Introduction

Simulations of fluid flow and solid deformation are
crucial in the visual effects industry. In computer
graphics, complex governing equations are typically
discretized onto particles or grids. Particle methods,
like smoothed particle hydrodynamics (SPH), are pop-
ular for simulating liquids and deformable solids due to
their simplicity in tracking topological changes. How-
ever, SPH suffers from instability issues, density fluc-
tuations, complex boundary handling and high compu-
tational cost in neighbour searching step. Grid-based
methods show better stability and convenience on gra-
dient calculation which is suitable for simulating smoke
and elastic solids. However, grid-based methods expe-
rience significant numerical dissipation and have diffi-
culty in accurately tracking geometric boundaries.

The need for combining advantages of both particle-
based and grid-based methods has led deep research
and application toward hybrid Lagrangian/Eulerian
methods to achieve better topology tracking and nu-
merical stability. In this paper, we focus on the Ma-
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terial Point Method (MPM), which is a generalized
framework from Particle In Cell (PIC) and Fluid Im-
plicit Particle Method (FLIP) to solid mechanics [26].
MPM employs a B-Spline kernel to facilitate the trans-
fer of physical attributes between particles and grids.
Particles are tasked with carrying essential physical
quantities, including mass, velocity, position, and de-
formation gradient. Meanwhile, the grid is utilized for
performing gradient computations and managing colli-
sion processing. This division of responsibilities allows
MPM to leverage the strengths of both particles and
grids, resulting in more accurate and stable simula-
tions. PIC and FLIP can also be seen as MPM trans-
fer scheme, which controls the procedure of transferring
between particles and grids. The most important fea-
ture of these transfer schemes is that it ensures the con-
servation of mass and momentum during the transfer
process. Several transfer schemes have been proposed
in recent years. Jiang et al. [17] proposed the affine
particle-in-cell (APIC) transfer scheme to overcome the
dissipation problem in PIC and the stability issue in
FLIP. Although APIC does make particle more ener-
getic in most cases, it still suffers from severe numeri-
cal viscosity problem which results in the phenomenon
that fluids and solids are difficult to separate. Fei
et al. [8] revisited the intrinsic dissipation problem in
MPM and designed a new transfer scheme ASFLIP to
release particles adhering within the same scope of im-
pact. Although ASFLIP is easy to implement, it suffers
from instability for positional adjustment term modify-
ing positions of particles in an Lagrangian way which
should be governed by the energy equation. Mean-
while, Fang et al. [6] addressed MPM dissipation in an-
other manner. They designed a monolithic solid-fluid
governing equations solver and discretize the equations
based on MPM pipeline to enforce free-slip condition in
solid-fluid interface. However, this approach demands
two different background grids and suffers from addi-
tional computation consumption.

In this paper, our ambitious goal is to design a novel
and stable transfer scheme that tackles unphysical vis-
cosity problem in traditional MPM on just one unified
background grid. We call it Decomposed Compatible
Affine Particle in Cell method(DC-APIC). It is impor-
tant for our new transfer scheme to get precise geome-
try information like interface normals of both particles
and grid nodes. The level-set method has a significant
advantage in handling the complex geometry bound-
ary and topology change in solid-fluid coupling ani-
mation, but its time cost is unacceptable. As a result,
we develop a high-performance and easily-implemented
phase-field gradient method for calculating compatibil-
ity, along with a precise normal estimation technique.

Moreover, to maximize the utilization efficiency of our
MPM method, we make a further enhanced workflow
by advanced GPU parallelization. In particular, our
salient contributions in this paper include:

(1) Decomposed Compatible APIC transfer scheme
that overcomes the limitation of numerical vis-
cosity in traditional MPM methods on a uni-
fied background grid. We modify the traditional
MPM pipeline with Decomposed Compatible
APIC (DC-APIC) integrator to enforce the free-
slip boundary condition in tangential directions as
well as separation condition in normal directions,
which is further verified by various complex simu-
lations with interactions between fluid and elastic
solids.

(2) Phase-field gradient method for compatibility cal-
culation. In order to find the solid-fluid bound-
ary and compatibility between particles and grid
nodes, we design a novel phase-field partition
method with high precision and computational ef-
ficiency.

2. Related Work

2.1. Material Point Method

MPM is a hybrid method that unifies the treat-
ment of solids and fluids by using Lagrangian parti-
cles to carry material information and an Eulerian grid
for force computations. First introduced to computer
graphics for the simulation of snow [24], MPM was
later extended to handle phase transitions in multi-
material simulations [25]. MPM can manage a variety
of materials, including elastic-viscoplastic bodies and
non-Newtonian fluids. Jiang et al. [17] proposed the
affine particle-in-cell transfer scheme, reducing dissipa-
tion and offering greater stability than FLIP. Klar et
al. [18] discretized the Drucker-Prager plastic model
within MPM to simulate sand flow, which was fur-
ther extended to sand-water coupling [27]. Jiang et
al. [16] also modified the MPM workflow to support
cloth simulation. Gao et al. [10] developed an adap-
tive MPM framework for sub-grid boundary process-
ing and improved collision handling. One of the no-
table strengths of MPM is its ability to effectively han-
dle fracture phenomena, making it particularly useful
in simulations involving material breakage and failure.
Wolpher et al. [31] presented continuum damage ma-
terial point methods for animating dynamic fractures
involving large elastoplastic deformations.

2.2. Two-way Fluid-Solid Coupling

Various approaches have been proposed in previous
work for two-way coupling between solid bodies with



incompressible fluids.
Batty et al. [3] developed a method for two-way cou-

pling of Cartesian Eulerian fluids with Lagrangian rigid
bodies having irregular geometry by casting the pres-
sure solve as an energy minimization problem. Wolper
et al. [19] proposed a method for animating fluid
using unstructured dynamic tetrahedral meshes which
can be coupled with lagrangian rigid bodies. Chen-
tanez [5] formulated a monolithic non-symmetric linear
system for simulating interaction between fluids and
deformable solids; it was further extended to solving a
symmetric positive definite (SPD) system by Zarifi [33].
Lagrangian particle based methods can also achieve
stable solid-fluid coupling. Akinci et al. [2] proposed
a coupling method of SPH fluids and arbitrary rigid
objects based on hydrodynamic forces, which was later
extended to support elastic solids [1].

After FLIP was introduced to the graphics commu-
nity by Zhu [34], considerable research has been dedi-
cated to hybrid particle-grid methods. Gao et al. [12]
present a hybrid algorithm for simulating gaseous fluids
that efficiently captures both low-speed and high-speed
behaviors by combining grid and particle approaches.
Losasso et al. [20] proposed a two-way coupled simula-
tion framework combining the particle level set method
for dense liquids and a novel SPH method for diffuse
regions, enabling efficient modeling of both dense and
diffuse water volumes with seamless mixing and in-
teraction. Raveendran et al. [21] presented a hybrid
method for enforcing incompressibility in SPH.

Although there are various methods for fluid-solid
coupling, our focus is on MPM methods. MPM inher-
ently supports the coupling of various materials and
handles collisions on a grid. However, this also leads
to issues with numerical viscosity. It’s difficult for par-
ticles in the same B-Spline kernel width to separate
from each other. As a consequence, solid-fluid interface
in traditional MPM has a no-slip boundary condition.
Han et al. [13] divide collision resolution into two as-
pects: the hyperelastic energy model, which provides
a penalty for collisions, and the particle-grid-particle
transfer scheme, which functions like a smooth kernel.
Many people have previously dedicated efforts to solv-
ing this problem. Different grids for different mate-
rial is the most common approach to solving this prob-
lem. After tracking the solid-fluid interface, the colli-
sion force is calculated based on grid velocity difference
between solid phase and two phase, which is used to
prevent particle collision between two phases. [32, 13].
However, this method is limited to explicit time inte-
gration and suffers from instability problem. Fang et
al.[6] proposed a novel scheme for simulating strongly
two-way coupled interactions between elastic solids and

fluids using two different background grids, which uses
ghost matrix operator-splitting and interface quadra-
ture (IQ) discretization for free-slip boundary condi-
tions. There are also solutions using a single grid in
MPM. Hu et al. [15] proposed CPIC transfer scheme
to enforce velocity discontinuity which supports better
simulation of soft-body thin-rigid-body coupling and
fluid thin-rigid-body coupling. However, it only sup-
ports rigid bodies with explicit geometric representa-
tion, making it unable to simulate interactions between
fluids and elastic solids while enforcing a free-slip con-
dition. Fei et al. [8] used an improved transfer scheme
based on NFLIP idea to untrap the particles in MPM.
It reduces diffusion and unphysical viscosity compared
to traditional MPM integrators but it becomes unsta-
ble and prone to particle intersection issues if the po-
sitional adjustment parameter is not properly selected.

In particular, none of these prior works address
the unphysical viscosity problem in two-way coupling
between elastic solids and fluids using only one uni-
fied grid and achieve enough stability. Inspired by
CPIC [15], we propose a novel transfer scheme called
Decomposed Compatible Affine Particle in Cell(DC-
APIC) within the MPM framework which is able to sta-
bly simulate the two-way coupled interaction between
elastic solids and incompressible fluids under free-slip
boundary conditions on a unified background grid.
Compared to other methods [6, 13], DC-APIC does
not significantly alter the MPM workflow, allowing for
the extension of other MPM-based algorithms, such as
elastic-viscoplastic phase transition simulation [29].

3. MPM Background

3.1. Elastoplasticity

In MPM, the material is represented by a collection
of particles that carry information about the material’s
properties, such as mass, velocity and position. Similar
to other PIC/FLIP solvers, MPM solves the governing
equations on a background Eulerian grid. Stress-based
forces are computed on the grid and then transferred
back to the particles, which are moved in a Lagrangian
manner.

The deformation theory of MPM is from the contin-
uum mechanics. Material particles in the undeformed
space with position X is mapped to the deformed space
with position x as x = ϕ(X), where ϕ is the deforma-
tion mapping. The deformation gradient F is the the
Jacobian of ϕ as F = ∂ϕ

∂X (X, t). The governing function
consists of mass conservation and momentum conser-
vation:

Dρ

Dt
+ ρ∇ · v = 0, ρ

Dv

Dt
= ∇ · σ + ρfext, (1)



Figure 1. Advection of two particles for different integrators. Two 2D particles are moving away with same velocity magni-
tude. The grid size is ∆x and the initial distance between them is 0.2∆x for both direction(x and y). No external force is
exerted and inner force generated by constitutive model is set to zero. We adopt quadratic B-Spline kernel, width of which
is 1.5∆x (Blue colored scope in figure). The ground truth is calculated based on uniform linear motion.

where ρ is the density, v is the velocity, σ is the Cauchy
stress tensor, fext is the external force such as gravity.
The deformation gradient can be decomposed as F =
FEFP, where FE and FP are elastic and plastic parts
of F respectively. The stress and strains can be written
as

σ =
1

J

∂ψ

∂F
, J = det(F ), (2)

where J is the determinant of F representing the vol-
ume change of material particles. MPM can be adopted
to simulate a wide variety of materials through the use
of constitutive relations, which describe the relation-
ship between stress and strain. In this paper, we use
the Neo-Hookean model [30] to formulate the deriva-
tion of plastic and fluid materials. The elastic energy
ψ is split into the volumetric part ψvol and deviatoric
part ψdev:

ψdev =
µ

2
(J−2/dtr(FFT )− d),

ψvol =
κ

2
(
J2 − 1

2
− log(J)),

(3)

where d is the dimension, µ is the shear modulus and
κ is the bulk modulus. Then the stress can be written
as:

τ =
1

J
σ,

τ = τvol + τdev,

τvol =
κ

2
(J2 − 1)I+ µdev(J−2/dFFT ),

(4)

where τ is the Kirchhoff stress, dev(A) = A− 1
d tr(A)I

for any tensor A denotes the deviatoric part of the ten-
sor.

Most materials also exhibit plastic deformation
when shear stress exceeds specific yield conditions,

which can be described as a yield function y. Any
stress violating the condition(i.e., y > 0) should be pro-
jected to the yield surface using the process called re-
turn mapping. In our paper, we adopt Drucker-Prager
model [18] for granular materials and fluid. To avoid
volume gain artifact, we use the improved return map-
ping algorithm [28] by tracking and recovering volume
changes.

3.2. Transfer Scheme

Figure 2. Analysis of dissipation in MPM. Area are colored
to distinguish different phase domains, where red stands for
solid area and blue stands for fluid. (a) Black arrow of par-
ticles represents velocity. Red arrow is the normal of solid
particle while blue one is fluid normal vector. Traditional
MPM transfer scheme APIC has difficulty in separating
particles in same B-spline kernel scope since their tangen-
tial component are averaged in the P2G step. Although
solid particle (the red one) shows potential to the up di-
rection, it can only be advected to the right-down corner
direction to the dashed red circle place. (d) Our novel DC-
APIC can help calculate the interface geometry and give
instruction for particles to the correct position.

In MPM, the transfer scheme refers to the process
of transferring physical quantities between the mate-



rial points and the Eulerian grid at each simulation
step. Since MPM combines the advantages of both
Lagrangian and Eulerian frameworks, the transfer be-
tween the two domains is crucial for accurately model-
ing material behavior. In the following context, super-
scripts n, n+1 represent quantities at time tn and tn+1,
and for brevity, we set ∆t = tn+1− tn, ∆xn

ip = xi−xn
p ,

and wip = Ni(xp) for short, where Ni(xp) denotes the
quadratic B-spline interpolation function between node
i and particle p, used in transfer steps.

The standard PIC scheme transfers mass mp, posi-
tion xp, and velocity vp from particles to Eulerian grids
according to:

P2G : miv
n
i =

∑
p

wipmpv
n
p ,

G2P : vn+1
p =

∑
i

wipv
∗
i ,

xn+1
p = xn

p +∆t
∑
i

wipv
∗

(5)

where v∗
i denotes grid velocity after updating by stress

and collision resolving. PIC transfer scheme is stable
but suffers from excessive dissipation.

FLIP transfer scheme [34] adds an additional parti-
cle velocity preserving term to mitigate the dissipation
in PIC as:

P2G : miv
n
i =

∑
p

wipmpv
n
p ,

G2P : vn+1
p =

∑
i

wipv
∗
i + α(vn

p −
∑
i

wipv
n
i ),

xn+1
p = xn

p +∆t
∑
i

wipv
∗,

(6)

where α is the PIC-FLIP blending ratio [4]. With
α = 0, Eq. (6) turns back to PIC, and with α = 1,
it is full FLIP. Although FLIP transfer scheme makes
simulation more energetic by additional particle veloc-
ity preserving term, it suffers from instability.

The APIC [17] scheme preserves angular momentum
and prevents instabilities, which also reduces part of
dissipation. We summarize the P2G and G2P transfers
of APIC as:

P2G : miv
n
i =

∑
p

wipmp(v
n
p +Bn

p (D
n
p )

−1∆xip),

G2P : vn+1
p =

∑
i

wipv
∗
i ,

Bn+1
p =

∑
i

wipv
∗
i∆xip,

xn+1
p = xn

p +∆t
∑
i

wipv
∗,

(7)

where Dn
p is analogous to an inertia tensor and is given

by

Dn
p =

∑
i

wip∆xip(∆xip)
T (8)

The locally velocity affine term BpD
−1
p helps preserve

energy that would otherwise be lost by transfer schemes
such as PIC due to numerical viscosity. However,
APIC is still based on the assumption of material con-
tinuity, and therefore, it cannot effectively handle par-
ticle separation.

The Affine-augmented Separable FLIP(ASFLIP)
scheme[8] is designed to address cases where the ma-
terial continuity assumption may not hold, such as for
highly dispersed sand. It adds the particle velocity
preserving term in FLIP and an additional positional
adjustment term to APIC for easier particle separation:

P2G : miv
n
i =

∑
p

wipmp(v
n
p +Bn

p (D
n
p )

−1∆xip),

G2P : vn+1
p =

∑
i

wipv
∗
i + α(vn

p −
∑
i

wipv
n
i ),

Bn+1
p =

∑
i

wipv
∗
i∆xip,

xn+1
p = xn

p +∆t(
∑
i

wipv
∗ + βpα(v

n
p −

∑
i

wipv
n
i )),

(9)
where βp is the ratio to control the magnitude of the po-
sitional adjustment. However, it still suffers from nu-
merical viscosity. This issue becomes particularly pro-
nounced in fluid-solid coupling problems, where both
solids and fluids are discretized into MPM particles,
making it challenging for the two phases to separate
smoothly. In addition, the effectiveness of ASFLIP
is influenced by parameters, making it more prone to
penetration artifacts, as illustrated in Fig. 12.

For hybrid particle-grid methods, numerical viscos-
ity arises from the transfer between the particles and
the grid. Typically, the number of particles is much
greater than the number of grid nodes. As a result, the
P2G step can cause information loss. As illustrated in
Fig 2(a), when two particles with equal mass and op-
posite velocities transfer momentum to the grid, the
velocity will be averaged. From another perspective,
MPM is based on the assumption of material continu-
ity, making it difficult to physically describe material
separation, especially in fluid-solid coupling cases. The
velocity field at the interface of two phases can easily
be smoothed by P2G.



4. Method

4.1. Particle Grid Compatibility

We adopt the concept of compatibility from
CPIC [15] to mark the relationship between particle
and grid node. In CPIC, a particle p and a node i are
compatible when they are within the same domain that
is not separated by a rigid body collision. Since mul-
tiple thin rigid bodies can divide an elastic body into
two or more regions, two particles compatible with the
same grid node may belong to different regions.

In our work, an additional property s to each par-
ticle is assigned representing the material state from
solid(s = 1) to fluid (s = 0). We define particle p and
node i as compatible when they share the same solid-
fluid phase. Compatibility cip for particle p and node
i is equal to 1 only if sp = si. Given that only two
phases (solid and fluid) exist, two particles compatible
with the same grid node must belong to the same re-
gion. Therefore, there is no need to use the CDF data
structure in [15] to compute the compatibility.

Figure 3. Phase-field gradient method for particle grid com-
patibility. The quadratic B-Spline kernel scope is anno-
tated with purple square. (a) The background grid along
with the scope of B-spline kernel, in the center of which lies
the grid node to be calculated. The blue arrow is the gradi-
ent of grid node phase value ∇si (b) The particle color indi-
cates the solid-fluid phase. The blue color represents fluid
particles, while the red color represents solid particles. The
red arrow is material weighted particle phase gradient value
Qp. (c) Particles and background grid nodes. The green
arrows indicate the estimated grid node phase contribution
gained by center node from nearby particles calculated by
∇si ·Qp. Finally the grid node phase is valued by signal of
total contribution it achieved. (d) Phase value of all grid
nodes are calculated.

We can clearly use signed distance functions (SDFs)
to calculate the grid node phase si, but its time com-
plexity is very high which takes almost half of each time
step in our implementation. As a result, we design a
phase-field gradient method which is initially used for

fracture simulation [14]. First, we estimate grid phase
gradient by particle phase state as ∇si =

∑
p sp∇wip.

Second we use Qp to denote material weighted particle
phase gradient and Qp = (−1)sp

∑
i∇siwip. Then we

partition the grid node into different phase based on
the sign of the dot product of the material weighted
phase gradient at the particle and phase gradient at
the node as

si =

{
sp, sgn(∇si ·Qp) > 0

1− sp. otherwise.
(10)

However, two different phase particles may classify one
grid node into their own phase at the same time, which
means ∃p, q, i, s.t. sgn(∇si ·Qp) > 0∧sgn(∇si ·Qp) > 0,
where sp is different from sq. This pathological case
can occur quite frequently at the sharp border of solid
region. We employ a heuristic algorithm to solve this
problem (as shown in Fig. 3). At the boundary area,
the greater the length of the projection of the par-
ticle phase gradient onto the grid phase gradient di-
rection ∥∇si ·Qp∥, the more significant its impact on
determining the grid node phase. Therefore, we use
the dot product of the gradients as the weight for
determining the phase of the grid node. We define
Ii =

∑
p(∇si ·Qp). If Ii > 0, we classify node i as a

solid node and assign si = 1. Conversely, if Ii < 0, we
classify node i as a fluid node and assign si = 0.

We also implement the SDF-based compatibility cal-
culation method, which reconstructs solid particle level
set and queries each grid node to get its phase. This
is a bit more correct than phase field gradient method
but suffers from time consumption in building level set.
We compare the result of these two methods in Fig. 6.

4.2. Particle-grid Transfer

4.2.1 DC-APIC Particle-to-Grid Transfer

We use subscripts p, q for particle quantities and i, j
for grid quantities. ip+ denotes nodes that are compat-
ible with particle p, and ip− denotes the incompatible
nodes. Similarly, pi+ are the particles that are compat-
ible with grid node i, and pi− are the incompatible par-
ticles. We will still use APIC transfer scheme in most
parts of simulation objects. However at the interface,
particles only transfer the normal component of mo-
mentum to incompatible grid nodes to avoid smoothing
velocity in another phase and transfer both tangential
and normal component of momentum to compatible
grid nodes to support automatic MPM collision solv-



ing during fluid-solid coupling:

mi =
∑

q∈{pi+,pi−}

wiqmq,

mi+ =
∑

q∈{pi+}

wiqmq,

(mivi)
norm =

∑
q∈{pi+,pi−}

wipmq(vqnq +BqD
−1
q ∆xiq),

(mivi)
tan =

∑
q∈{pi+}

wiqmq(vq − vqnq),

vi = (mivi)
norm/mi + (mivi)

tan/mi+,
(11)

where mi is the total mass transferred to a node by
mapped particles and mi+ is only the mass transferred
by compatible particles, the locally velocity affine term
BqD

−1
q helps preserve energy that would otherwise be

lost by transfer schemes such as PIC due to numeri-
cal viscosity. We divide momentum into normal com-
ponent and tangential component because they need
to be divided by different mass in velocity calcula-
tion step. To be detailed, if the tangential velocity
is (mivi)

tan/mi, the velocity will be dissipated.
As illustrated in Fig. 2, it is relatively difficult for

APIC scheme to separate particles moving in oppo-
site directions within the same grid node (within the
BSpline kernel range), because the particle-to-grid op-
eration averages the momentum of particles within the
kernel range, resulting in numerical viscosity. In con-
trast, DC-APIC decomposes the momentum into tan-
gential and normal components, transmitting only the
tangential momentum to the compatible grid node.
This avoids the averaging influence of particles from
another phase. Additionally, since the normal velocity
is still transferred normally and not directly adding an
position-adjust term to xp, it effectively resolves the
issue of particle interpenetration found in NFLIP [24]
and can be more stable than ASFLIP [8].

4.2.2 DC-APIC Grid-to-Particle Transfer

For each particle, the tangential velocities on incom-
patible grid nodes are non-associated with the parti-
cle due to the enforcement of discontinuity. We take
a ghost velocity approach, where we assume for any
node j ∈ ip−, its velocity is simply vj = vnp through
a constant extrapolation from particle p. Thus the
DC-APIC transfer from grid to particle which gathers
contributions from both incompatible and compatible

nodes is given by

vp =
∑
j∈ip+

wjpv
∗
j +

∑
j∈ip−

wjpv
∗
jnj +

∑
j∈ip−

wjp(vp − vpnj),

Bp =
∑
j∈ip+

wjpv
∗
jxjp +

∑
j∈ip−

wjp(vp − vpnj)∆xip.

(12)
Particles will gain velocity from compatible nodes as
well as the normal component of velocity from incom-
patible nodes to achieve the automatic MPM coupling
without self intersection. We only use the tangential
component of ghost particles velocity in Eq. (12) for
stability. To be noticed, the normal vector here has
to be grid node normal ni for the sake of momentum
conservation. Momentum conservation can be rigor-
ously proven in APIC, where the total particle mo-
mentum before and after G2P and P2G is equal to
the total grid momentum. However DC-APIC uses
CPIC techniques, where P2G selectively transfers par-
tial momentum to the grid based on the geometry of
the fluid-solid boundary, and during G2P, the lost mo-
mentum is transferred back to the particles using vn

p

as an approximation. From another perspective, our
transfer scheme can be viewed as a composite of two
operations: orthogonal decomposition and CPIC. Or-
thogonal decomposition obviously preserves total mo-
mentum. During P2G of CPIC, velocities transfer to
compatible nodes. Then incompatible nodes transmit
ghost velocities back to particles during G2P. These
ghost velocities are the same as particle velocities from
the previous timestep. Therefore, the entire P2G-G2P
pipeline seems like making an interpolation between
APIC Filter and Ground Truth, where Ground Truth
refers to velocities keep the same as previous timestep,
ensuring momentum conservation. A more detailed
analysis of the effect of energy conservation will be pre-
sented in Section 6.

4.3. MPM Workflow with DC-APIC Scheme

Compared with traditional MPM workflow, we em-
ploy an additional step to obtain information about
particle grid compatibility to regulate the grid-to-
particle and particle-to-grid processes for material dis-
continuity in solid-fluid coupling. Fig. 5 showcases the
main data flow of our numerical solver and the main
workflow is listed below.

(1) Interface information calculation. Calculate both
particle normal vectors np and grid node nor-
mal vectors ni along the interface as well as grid-
wise colored solid-fluid phase field state si to con-
trol DC-APIC particle-to-grid and grid-to-particle
steps.



Figure 4. Pinned Bunny with Sand Dropped. Our DC-APIC method can effectively solve the solid-fluid coupling with
free-slip condition while traditional MPM is hard to separate water and elastic solid bunny.

Figure 5. The data flow of our algorithm. The figure illustrates the data flow between particles and grid in one time step.
The solid red lines denote the additional steps for DC-APIC scheme. Interface Information Calculation(IIC) step calculate
the particle normal np, grid normal ni and grid node solid-fluid phase state si at the beginning of each time step, which
will be used for DC-APIC particle-to-grid (P2G) and DC-APIC grid-to-particle (G2P) step.

(2) Particles to grid. Transfer mass and momen-
tum from particles to the grid according to DC-
APIC scheme, which is described in detail in Sec-
tion 4.2.1.

(3) Grid velocity update. Calculate the force ap-

plied to node i according to neighbor particles’
deformation gradient Fn

p , formulated as fni =

−
∑

p V
0
p

∂Ψ
∂F Fn

p
T∇wn

ip, and then update the ve-
locity in a symplectic Euler manner as vn+1

i =
vn
i +∆tfni /mi.



(4) Grid to particles. Update the velocity vn+1
p ,

spatial velocity gradient of particle (∇v)n+1
p and

affine state Bn+1
p in APIC according to Sec-

tion 4.2.2, and then perform particle advection
with collisions handling.

(5) Strain update. Update particle trial deformation
gradient as Fn+1

p = (I +∆t∇vn+1
p )Fn

p .

Figure 6. Water drops on elastic balls. (Top) Our novel
phase-field gradient compatibility calculation based DC-
APIC MPM. Water separate easily from free-slip elastic
balls. (Middle) Coupling simulated by traditional MPM
suffers from unphysical viscosity. It’s hard for water to
leave elastic body. (Bottom) SDF based DC-APIC which
reconstruct level set to classify grid node phase, result of
which is apparently the same as phase-field gradient but
takes more time to compute.

4.3.1 Interface Information Calculation

At the first of IIC step, we use an additional P2G which
only transfers phase field. Grid nodes that receive both
fluid and solid phase are marked as boundary nodes,
and particles mapped to these nodes are marked as
boundary particles.

4.3.2 Normal Estimation

Traditional signed distance functions(SDFs) are con-
venient for performing inside and outside queries and
normal estimations. However, it is expensive to re-
construct the particle level set at each time step of
simulation. We use the same method as [6] by pick-
ing solid normals as the negative mass gradient field of
solid particles.

ms
i =

∑
ps

mpwip,

ns
p = −

∑
i

ms
i∇wip/∥

∑
i

ms
i∇wip∥,

(13)

where ms
i is the solid mass mapped to one grid node,

ps denotes the solid particles and ns
p denotes the solid

particle normal. For grid normals and fluid particle
normals we design a different strategy as:

ni =
∑
ps

ns
pwip/∥

∑
ps

ns
pwip∥,

nf
p = −

∑
i

niwip/∥
∑
i

niwip∥,
(14)

where ni is the grid node normal which can cover all
interface grid nodes, nf

p denotes the fluid particle nor-
mal. As we can see from Eq. (14), first we apply the
B-spline smooth kernel on solid particle normals ns

p to
get grid node normals. The smoothing kernel can make
DC-APIC grid-to-particle (Section 4.2.1) and particle-
to-grid (Section 4.2.2) more stable. Then we calcu-
late the fluid particle normals using grid node normals.
This strategy is both stable and efficient, avoiding the
need to find the nearest solid particles through spatial
data structures when computing fluid normals.

Figure 7. Rubber duck toy with different density dropped
into water. From left to right, the duck-water density ratio
is 0.5, 1.0 and 2.5.

5. GPU Implementation

In this section, we will briefly introduce the stor-
age, reorder, and parallel scheme of GPUMPM [11],
as we implement DC-APIC based on it. We will then
present the additional components, including a special-
ized warp write algorithm.

5.1. GSPGrid Overview

The GSPGrid [11] is the GPU adaptation of the SP-
Grid [23], which is an alternative sparse data struc-
ture. Its particle-reorder algorithm and write-back
scheme work effectively on the parallel architecture of
CUDA. In particle domain, particle indices are divided
into target-pages from different blocks which include
4 × 4 × 4 grids. Particles in one block may easily
exceed the maximum number of threads in a CUDA
block. To address this issue, target pages are further



divided into virtual pages containing up to 512 parti-
cles each. Simultaneously, in the grid domain, a 4KB
page can store 64 grids that possess 16 single-precision
float attributes.

Since the BSpline function serves as the weight ker-
nel, one particle is associated with 3 × 3 × 3 grid
nodes. In this situation, some particles may inter-
act with grids belonging to other blocks. Therefore,
GPUMPM pre-calculates the mapping between each
block and its seven neighbors with off-by-one stagger-
ing strategy. Neighbors are the ones with a positive
offset alongside at least one axis. If the dimension of
simulation is three, there should be seven neighbors.
Additionally, it utilizes shared memory for all 2× 2× 2
blocks in the MPM transfer kernel, such as during the
particle-to-grid step, to resolve cross-block write con-
flicts and cross-warp write conflicts. This means that
every CUDA block handles one virtual page (512 par-
ticles) and writes back to eight blocks (one block and
its seven neighboring blocks).

Algorithm 1 Specialized Warp Write
1: procedure GatherAndWrite(T* buffer, T mass,

int tag, int iter)
2: stride← 1
3: kind← tag ▷ // 1 for solid, 0 for fluid
4: if kind then ▷ // only reduce solid particle

mass
5: val ← mass
6: else
7: val ← 0
8: while stride <= iter do
9: tmp← shfldown(val, stride)

10: if stride <= interval then
11: val ← val + tmp

12: stride← stride << 1
13: if boundary then
14: ∗buffer ← ∗buffer + val

5.2. Specialized Warp Write for Non-Consecutive Data

For most common serial data, such as velocity and
stress, summation can be easily performed using tradi-
tional warp write algorithms that include CUDA prim-
itives. However, in our project, solid mass for the grid
needs to be calculated based on affected solid particles.
The best way to distinguish solid from fluid particles
is to assign a tag when they are sampled. As a re-
sult, Algorithm 1 must be slightly modified to accom-
modate new attributes. When the warp computation
algorithm [11] is completed, each particle governed by
a thread will know whether it is the first particle in the

Figure 8. Reduce solid particle masses. It shows a way
to reduce non-consecutive data like different kind particle’s
mass. Besides, it demonstrates solving cross-warp-write-
conflict by shared memory.

Figure 9. Sand jelly. Elastic Jell-O’s with varying Young’s
modulus are two-way coupled with sand particles.

current warp and how many particles remain. Fig. 8
illustrates how this procedure works.

It is important to note that basic particle attributes
have distinct reorder schemes tailored to their intrinsic
characteristics, e.g., mass, position, and velocity. For
example, the sequence of masses remains unchanged
since they are constant; the only requirement is to map
the current order of particles back to their original or-
der. The additional particle attributes also require dif-
ferent sorting methods; for instance, tags are treated
similarly to masses while normals are treated similarly
to velocities.

6. Results

We evaluate the effectiveness of our DC-APIC MPM
method by a number of solid-fluid coupling simula-
tions. Our demos were performed on a desktop with
Intel Core i7-8700K CPU at 3.70 GHz and NVIDIA
GTX 2080TI. The parameter settings of the material
and the performance statistics are given in Table 1.
As shown in Fig. 14, DC-APIC uses a unified back-
ground grid, avoiding extra solid-fluid boundary solver,
resulting in a 4.9× improvement in computational effi-



Figure 10. Kinetic Energy Curve. The kinetic energy is
plotted over time for the duck case (Fig. 7). The rubber
ducks enter the water at frame 50, leading to a subsequent
period where the overall particle kinetic energy in DC-APIC
is higher than in APIC for less numerical dissipation.

Figure 11. Timing Consumption. In the bear-bath example
(Fig. 13), the average timing costs per time step before and
after contact are 1.17s and 1.42s respectively. Others step
includes reinitialize, grid velocity update, plastic update
and particle state update by force.

ciency compared to IQ-MPM. Additionally, it simpli-
fies the implementation, allowing for easy extension of
other simulation algorithms based on DC-APIC, reduc-
ing numerical instability at fluid-solid interfaces at the
same time. Time consumption of each step is shown
in Fig. 11. We also present an analysis of the kinetic
energy stored in particles in Fig. 10. After the fluid im-
pacts the solid, the kinetic energy in the APIC method
dissipates more quickly compared to that in the DC-
APIC method.

In Fig. 4, we show the comparison between our DC-
APIC MPM and traditional MPM. We also provide
the 2D comparison between phase-field DC-APIC, SDF
DC-APIC and traditional MPM in Fig. 6. As shown
in sub-figures, traditional MPM suffers from numerical
viscosity problem while our DC-APIC method effec-
tively overcome this shortcoming. At the same time,
we prove that our phase-field gradient method to cal-
culate compatibility is precise enough to compare with
time-consuming SDF-based method. It can reach 2.7×
speedup than SDF-based method in 2D case with no
obviously artifacts.

In Fig. 1 we compare our DC-APIC integrator to

Figure 12. Comparison of the solid-fluid interaction between
our methods and ASFLIP [8].

Figure 13. Bear bath. A dam breaks, hitting a hyperelastic
bear and sweeping it away. Water particles flow bypass
elastic surface correctly with no unphysical viscosity.

other earlier transfer schemes. At the beginning, all
test cases have two particles of different phase, the up-
per one moving right and the lower one moving left. At
the end frame, only Full FLIP, ASFLIP and our DC-
APIC can untrap the B-Spline kernel smoothing scope.
It’s obviously seen our result is closest to ground truth
due to tangential velocity only transferred to compati-
ble grid nodes. Although ASFLIP can handle scenarios
where the material continuity assumption breaks down,
such as highly dispersed sand, it still suffers from sig-
nificant numerical viscosity. This issue becomes espe-
cially evident in fluid-solid coupling problems, where
both solids and fluids are discretized into MPM parti-
cles, making it difficult for the two phases to separate
smoothly. Furthermore, the performance of ASFLIP
is sensitive to parameter settings, which increases its
susceptibility to penetration artifacts. As illustrated
in Fig. 12, we present a simple case comparing the per-
formance of DC-APIC and ASFLIP.

Moreover we present several examples with different
density of solid and fluid. We can demonstrate that
our method correctly handles the buoyancy of solids in
Fig. 13 and Fig. 7.

To further validate the robustness of our method, we
simulate sand-like fluid with plasticity interacting with



Table 1. Parameters and performance.
Example sec/frame ∆x ∆t #Particles Young’s Modulus Poisson’s Ratio density ratio
(Fig. 4 left) Pinned bunny 6.33 0.1 0.001 98K 8000 0.4 1.0
(Fig. 4 right) Pinned bunny 3.60 0.1 0.001 98K 8000 0.4 1.0
(Fig. 13) Bear bath 24.17 0.1 5× 10−4 400K 6000 0.4 1.2
(Fig. 7) Duck 57.63 0.1 0.001 640K 6000 0.4 0.5/1.0/2.5
(Fig. 9 left) Jelly Sand 14.72 0.05 5× 10−4 1.2M 1500 0.2 1.0
(Fig. 9 middle) Jelly Sand 17.16 0.05 5× 10−4 1.2M 4000 0.3 1.0
(Fig. 9 right) Jelly Sand 15.91 0.05 5× 10−4 1.2M 6000 0.4 1.0
(Fig. 6 top) Balls(2D) 0.78 0.05 0.001 8K 4000 0.4 1.0
(Fig. 6 middle) Balls(2D) 0.42 0.05 0.001 8K 4000 0.4 1.0
(Fig. 6 bottom) Balls(2D) 1.14 0.05 0.001 8K 4000 0.4 1.0

a jelly cube in Fig. 9. The sand uses Drucker-Prager
plastic model [18] where friction angle ϕf is 30.

7. Conclusion and Future Work

While DC-APIC enables free-slip solid-fluid cou-
pling for MPM at low cost since only a narrow band
near solid-fluid interface needs DC-APIC, it still suffers
from resolution problem. We can obviously see the one
∆x gap at interface area for it cannot handle sub-level
topology as sharp corners and narrow gaps. Hence for
realistic simulation, we have to decrease ∆x which may
cause instability problem and more time consumption.
Adaptive grid MPM [10] combined with DC-APIC is a
promising future direction which can use higher reso-
lution grids in the solid-fluid interface area to support
more narrow gap. The coupling between porous mate-
rials and fluids is also an issue worth paying attention
to [22].

Fully implicit elastic-MPM strong coupling using
DC-APIC on one unified background grid is not for-
mulated in this work and we leave that as future work.

Although our DC-APIC transfer scheme is stable in
volumetric solids case, particles can still intersection
with each other, which has been solved in SDF-based
DC-APIC method with a penalty force based on pen-
etration distance in level set. However, there’s still
no solid resolution in phase-field gradient DC-APIC
method for lack of penetration distance information.

Using DC-APIC in co-dimensional solids case re-
mains quite challenging. It would be interesting to
extend our work to support fluid interactions with
cloth [7, 8] and hair [9, 8]. Another promising direction
for future work is to modulate the tangential interac-
tion between incompatible grid nodes and particles to
better account for frictional effects.
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