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Abstract

Neural Radiance Field (NeRF) has achieved impres-
sive 3D reconstruction quality using implicit scene rep-
resentations. However, planar specular reflections pose
significant challenges in the 3D reconstruction task. It
is a common practice to decompose the scene into phys-
ically real geometries and virtual images produced by
the reflections. However, current methods struggle to
resolve the ambiguities in the decomposition process,
because they mostly rely on mirror masks as external
cues. They also fail to acquire accurate surface ma-
terials, which is essential for downstream applications
of the recovered geometries. In this paper, we present
RS-SpecSDF, a novel framework for indoor scene sur-
face reconstruction that can faithfully reconstruct spec-
ular reflectors while accurately decomposing the reflec-
tion from the scene geometries and recovering the accu-
rate specular fraction and diffuse appearance of the sur-
face without requiring mirror masks. Our key idea is to
perform reflection ray-casting and use it as supervision
for the decomposition of reflection and surface material.
Our method is based on an observation that the virtual
image seen by the camera ray should be consistent with
the object that the ray hits after reflecting off the specu-
lar surface. To leverage this constraint, we propose the
Reflection Consistency Loss and Reflection Certainty
Loss to regularize the decomposition. Experiments con-
ducted on both our newly-proposed synthetic dataset
and real-captured dataset demonstrate that our method
achieves high-quality surface reconstruction and accu-
rate material decomposition results without the need of
mirror masks.

1. Introduction

3D surface reconstruction, as a basic tool for digital 3D
content creation, aims to accurately capture surface shape,
texture, and appearance from sensor data of the environ-
ment, facilitating detailed digital representation and analy-
sis. The resulting 3D surfaces could be directly employed in
various downstream applications including manufacturing,
filming, gaming, VR/AR, etc. As NeRF[16] demonstrat-
ing impressive performance in 3D reconstruction and novel
view synthesis tasks, surface reconstruction with neural im-
plicit representation[27, 33, 11] has made significant pro-
gresses in recent years. However, challenges persist in re-
constructing indoor scenes with planar specular reflections.

Indoor scenes often feature specular planar reflectors due
to the prevalence of glasses, mirrors or artificial objects with
glossy surfaces, such as polished wood or marbles. These
planar reflectors present significant challenges for two main
reasons. Firstly, the reflection inside a planar reflector obeys
the multiview consistency that corresponds to the geome-
try of the reflection virtual image. This often leads recon-
struction methods to inaccurately reconstruct the virtual im-
age as real geometries[7, 35], hindering faithful representa-
tion of the actual specular surface. Secondly, modeling the
appearance of specular reflections solely based on surface
position and direction, as typical NeRF-like methods do,
proves difficult. Specular reflections from planar surfaces
exhibit significant variations in both spatial and directional
domains, with high-frequency details mirroring those of the
real scene. Thus interpolating such reflections accurately
becomes challenging. Moreover, methods targeting non-
planar reflectors[22, 40, 13, 4, 9] often approximate spec-
ular reflection from distant illumination using environment
lighting, which is incompatible with the plane reflection.
To address planar reflectors, a common practice is to de-
compose the reflection from the real scene using alternative
spatial representations, such as additional radiance field[7]
or multiple radiance fields[35], 3D Gaussians[12, 15], etc.
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Figure 1. Current methods [7] handling specular planar reflection
suffer from light and material ambiguity, leading to inaccurate de-
composition of surface material and reflection virtual image even
though the rendered image is close to ground truth. Our proposed
RS-SpecSDF leverages the environment information (reflected ob-
ject) as supervision, achieves through reflection ray-casting. Our
approach effectively resolves light and material ambiguity.

However, the decomposition of reflection and real scene
suffers from significant ambiguities that current methods
still cannot resolve. There frequently exists appearance
ambiguity when distinguishing whether the observed ap-
pearance belongs to the virtual image of reflected objects
or non-reflective geometries. Thus, it is hard to estimate
whether a specular surface exists only using RGB images
as the supervision. Most current methods heavily rely on
reflection masks[7, 12, 15, 38] to correctly perform decom-
position. However, obtaining reflection masks for complex
scenes is not straightforward and always requires tedious
manual annotations or additional physical equipment during
capture process[29]. While some methods[35, 41] are de-
signed without reflection masks, they fail to achieve a com-
plete decomposition between reflection and the real scene.
On the other hand, as shown in Figure 1, the decomposi-
tion of reflection light and surface material (both the dif-
fuse color and specular fraction) is still challenging. The
light and material ambiguity exists when the planar sur-
face is texture-less, which is a common scenario in real en-
vironments. It leads to inaccurate estimation of surface dif-
fuse color and specular fraction. Current methods either do
not consider the diffuse color of the reflector[15, 38, 12],
or wrongly model the reflection light and surface mate-
rial [7, 35].

Our key idea is to use reflection ray-casting as super-
vision for the decomposition in order to resolve these two
ambiguities. The crucial observation behind the idea is that
the reflection virtual image should align with the reflected
object or the observed surface is unlikely to be specular. It
serves as an important clue to distinguish if the surface is
specular and to estimate the correct reflection light. Fortu-
nately, in indoor scenarios, corresponding objects appear-
ing in reflections can be found in the reconstructed scene.
Therefore, we cast reflection rays at surface points to obtain
the depth and radiance of the reflected objects, and utilize
these information to supervise the reconstructed virtual im-
age and the surface materials. Specifically, we design two
effective constraints: 1) Reflection Consistency Loss. The
virtual image should have the same depth and radiance as
the reflected object, satisfying the consistency requirement
of planar reflection, thus can resolve the light and mate-
rial ambiguity; 2) Reflection Certainty Loss. The sur-
face specular fraction should highly related to the degree of
consistency between the virtual image and reflected objects,
which we regard as the certainty of the current virtual im-
age to determine whether it is credible or pseudo. Thus, ap-
pearance ambiguity could be resolved without reflection
masks by constraining the surface specular fraction with the
certainty of virtual image.

To evaluate our method, we construct an indoor scene
reconstruction dataset based on Replica Dataset[20]. We
introduce more specular planar reflectors into the scene and
render multi-view images, ground truth diffuse appearance,
and a specular fraction map for reconstruction and material
estimation tasks. We also validate the effectiveness of our
method on a real-captured dataset.

In summary, we present the following contributions:

• We present the RS-SpecSDF framework to reconstruct
surfaces for specular scenes without indicating mirror
masks.

• We propose reflection ray-casting to supervise the de-
composition between reflection and real scene to re-
solve the ambiguities in planar reflection.

• We build a new indoor scene dataset for 3d reconstruc-
tion with complicated specular planar reflectors. Ex-
periments on our proposed dataset can demonstrate the
effectiveness of our method.

2. Related Works

2.1. Neural Surface Reconstruction

NeRF [16] has recently emerged as a promising solution
to 3d reconstruction task, leveraging an implicit scene rep-
resentation and volume rendering to synthesize photorealis-
tic images. However, volume density cannot represent high-
fidelity surfaces due to the lack of surface constraints. Im-
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Figure 2. Overview of RS-SpecSDF. RS-SpecSDF reconstructs the indoor scenes with specular reflectors by decomposing the real
geometry G and the reflection virtual image F into a neural SDF and a NeRF. During rendering process, we cast one ray to sample the
surface SDF, one ray for the virtual image field, then we compose the final color by Eq. 9 and supervise it with input image. Additionally, we
cast a reflection ray on the corresponding Auxiliary-Plane that approximates the accurate position of reflector. And we use the reflection
ray to supervise the reconstructed virtual image and surface specular fraction β by our proposed Reflection Consistency Loss Lcs and
Reflection Certainty Loss Lct. Moverover, we adopt a normal prior correction scheme Ln to supervise the geometry using the predicted
normal from monocular estimation.

proved reconstruction of surface geometry can be achieved
by employing signed distance field(SDF), NeuS [27] and
its concurrent works[33, 18] enable implicit neural SDF
optimized by volume rendering. In order to address large
texture-less or less observed areas in typical indoor scenes,
monocular depth and normal priors[26, 36] are integrated.
Specifically NeuRIS[26] has proposed a checking method
based on patch matching to adaptively impose normal priors
into optimization. Subsequent works follow the success of
iNGP[17], representing the SDF with multi-resolution hash
grid for faster training[28] and better performance[11]. Re-
cently 3D Gaussian[10] have emerged as a popular choice
for 3D representation due to its fast training speed. There
are also methods[8, 37, 6, 1] attempting to reconstruct sur-
face with 3D Gaussian splatting and achieving promis-
ing results on object surface reconstruction. However,
they still cannot outperfrom the state-of-the-art of implicit
representations[11] in large scenes[8, 37]. Therefore we
continue to use implicit representation for SDF in our work.

2.2. Reflective Object Reconstruction

Reconstructing and rendering highly specular content
remains a challenging task. Ref-NeRF and its follow-up
works [22, 24, 4] demonstrated that reparameterizing out-
going radiance as a function of the reflected view direction
is effective in cases where geometry is estimated accurately.
An alternative approach to synthesize specular appearance
is inverse rendering[40, 9, 3, 30]: estimating representations
of scene materials and lighting which also parameterized

as the function of reflected view direction. However this
parameterization of reflected view direction is most effec-
tive for objects that are mainly illuminated by distant light
sources. Progress has been made in solving the near field
reflections[13, 32, 39, 25], however they all need geometry
learning stage similar to RefNeRF[22] to acquire the near-
perfect geometry of objects. SpecNeRF[14] modifies Ref-
NeRF’s encoding to vary spatially according to a set of op-
timized 3D Gaussians, which helps the color network repre-
sent the near field reflection of reflective objects. However,
due to its limited capacity of Gaussians it can only handle
the rough surface with weak reflection image[14]. Most re-
cently, NeRF-Casting[23] proposing to trace reflected rays
and render feature vectors, also mainly focus on objects
which have strong geometry clues provided by the pho-
tometric difference between foreground and background.
Therefore methods targeting non-planar object still cannot
handle the mirror-like planar reflectors that bring great ge-
ometry ambiguity. They might model the virtual image as
real geometries, thus cannot ensure the geometry correctly
initialized for the reflection decomposition.

2.3. Planar Reflection Decomposition

Decomposition of planar specular reflection faces great
ambiguity. Most methods[7, 38, 15, 12] requires mirror
masks as supervision. NeRFReN[7] use two separated
NeRFs for the transmitted and the reflected components,
successfully preserving the geometry of transmitted part,
but it cannot correctly estimate the reflection fraction due



to the light and material ambiguity. Mirror-NeRF and its
concurrent works[38, 15, 12] share the same idea of directly
reflecting rays on mirrors to represent the reflection. How-
ever, they need mirror masks for every input images to ini-
tialize the mirror geometries, and can only handle mirrors
without diffuse color. Methods that do not utilize mirror
masks either impose specific requirements on capture pro-
cess to leverage physical cues[29, 31], or are unable to re-
solve the ambiguities of decomposition[35, 41]. Whelan
at al[29] proposed the use of a scanner equipped with an
AprilTag[19] to detect mirrors during scene capture. Flash-
Splat[31] necessitates shooting the scene twice, once with
camera flash and once without, employing flash cues to re-
cover transmitted appearance. MS-NeRF[35] models the
scene by a group of feature fields in parallel sub-spaces,
which allows it to manage multiple mirrors, however, it
fails to achieve a clean decomposition of reflections from
scene geometry. RefGaussian[41] solely relies on smooth-
ness regularization for reflection decomposition, also result-
ing in incomplete seperation.

3. RS-SpecSDF

3.1. Overview

As shown in Figure 2, we take the RGB images
C = {C1, ..., CM} and the predicted normal maps N =
{N1, ...,NM} generated by monocular estimation[2] as in-
put, reconstruct the real geometry field G with its material
M and the virtual image field F for reflections. We decom-
pose the scene into real geometry and virtual image field
(See Sec. 3.3), cast the reflected rays to supervise the de-
composition by Reflection Consistency Loss and Reflection
Certainty Loss (See Sec. 3.4). To ensure the reflected rays
accurate, instead of directly reflect rays on the SDF surface,
we use Auxiliary-Planes to approximate the planar specular
surface and cast reflected rays from the hitting points (See
Sec. 3.5). In order to reconstruct better surfaces at texture-
less areas, we adopt normal prior as supervision with a cor-
rection scheme (See Sec. 3.6). Finally, we introduce our
training schedule at Sec. 3.7.

3.2. Preliminaries

Before detailing our method, we will first introduce the
necessary preliminaries that underpin our approach.
Neural Radiance Field. Neural Radiance Field
(NeRF)[16] represents a scene as a continuous volumetric
field, where the density σ ∈ R and radiance c ∈ R3 at any
3D position x ∈ R3 under viewing direction d ∈ R2 are
modeled by a multi-layer perceptron(MLP):

fθ : (x,d) → (σ, c) (1)

where θ is the learnable parameters. To render a pixel qk
from the camera center o at viewing direction d, NeRF

samples n points with depth {t1, ..., tn} along the camera
ray R(qk) = {xi = o+ tid}ni=1, then the rendered color of
the ray is computed by:

c(qk) =

n∑
i=1

Tiαici (2)

where αi = 1 − exp(−σi(ti+1 − ti)) is the opacity of the
i-th point, and Ti =

∏
j<i(1−αj) is the transmittance after

the i-th point. And the total opacity is computed by:

α(qk) =

n∑
i=1

Tiαi (3)

During training, rendered RGB cr = c will be supervised
by input images C,

LRGB =
1

m

∑
k

||cr(qk)−C(qk)||1 (4)

where m is the sampled ray number for one training itera-
tion.
Neural Surface Reconstruction. We follow NeuS[27]
to represent the surface as the zero-level set of a Neural
SDF {gθ(x) = 0 |x ∈ R3}. Then NeRF-like volumetric
rendering[16] is applied to render images from neural SDF
gθ. And αi in Eq. 2 is derived from the SDF value as pro-
posed in NeuS[27]:

αi = max

(
Φs(gθ(xi))− Φs(gθ(xi+1))

Φs(gθ(xi))
, 0

)
(5)

where Φs(x) =
1

1+e−sx is the Sigmoid function, and s is a
trainable parameter to control the density range of a surface,
that is, 1/s approaches to zero as the training converges.

Total losses to train the neural SDF can be derived as:

Lsdf = LRGB + λeikLeik + λcurvLcurv (6)

where Leik is the eikonal loss[5] enforcing the neural rep-
resentation to be a valid SDF.

Leik =
1

nm

∑
k

n∑
i=1

(||∇2gθ(xk,i)||2 − 1)2, (7)

where n is the number of sample points of a ray. And Lcurv

is the curvature loss for smoothness of geometry defined in
[11], computed by:

Lcurv =
1

nm

∑
k

n∑
i=1

|∇2gθ(xk,i)|, (8)



3.3. Reflection Decomposition

Neural Surface for real geometry To accurately recon-
struct the surface of indoor scenes, we use multi-resolution
hash grid neural SDF as the representation for real geom-
etry field G and follow the training strategy proposed in
Neuralangelo[11].

In detail, we represent the SDF as gθ : x → gθ(x).
3D position x alongside viewing direction d encode sur-
face radiance as gc : (x,d) → c, therefore the surface ra-
diance could represent other view-dependent effect which
isn’t produced by planar reflection. Note that the input RGB
images is in low dynamic range(LDR), so surface radiance
is stored in standard RGB color space(sRGB): c ∈ [0, 1]3.
To decompose the reflection from real geometry, a specular
fraction value β is learned for each 3D position x ∈ R3 to
measure the specular property of objects in real geometry
field: gβ : x → β.
NeRF for Virtual Image In order to decompose the reflec-
tion from the real geometry, we use a separated NeRF with
multi-resolution hash grid encoding strategy [17] to model
the virtual field F. Note that composing the virtual field F

with real geometry field G should be performed with radi-
ance in high dynamic range(HDR) before gamma correction
γ, in which the radiance of virtual field should be ranged in
[0,+∞]3 instead of [0, 1]3. Thus we compute radiance of
virtual field F by cv = cs · (1 + I), where cs ∈ [0, 1]3 is
color in sRGB color space and I ∈ [0,+∞] is the inten-
sity value to ensure the radiance range in [0,+∞]3. As the
virtual image rarely having view-dependent effect, we do
not introduce view information but only position to virtual
NeRF: fv : x → (σ, cs, I)
Composition During the pixel rendering process, we sam-
ple two sets of points for the ray R(qk): one starts from
the camera center and queries the neural SDF, and the other
starts from the SDF surface and queries the virtual NeRF.
For the first set, we perform volume rendering to approx-
imate surface color c(qk), specular fraction β(qk), normal
n(qk) and depth d(qk) following Eq. 2, where notation (qk)
represents the volume-rendered quantity corresponding to
pixel qk. For the second set, the radiance cv(qk) , opac-
ity αv(qk) and depth dv(qk) from virtual NeRF are com-
puted in the similar way. Particularly, we introduce a ran-
dom background color to radiance cv(qk) with its opacity
αv(qk), forcing the opacity to approach 1.

Then we compose radiance from real geometry field G

and virtual field F by

cr = γ(γ−1(c) + β · cv) (9)

where cr is the final render RGB, γ(·) is the gamma cor-
rection function and the inverse gamma correction γ−1(·)
is applied on SDF radiance c due to incompetence between
the sRGB range of gc and HDR space to perform composi-
tion. Here the notation (qk) is omitted.

Our design that decomposes reflection into Neural SDF
and NeRF is also based on following considerations:
Firstly, we adopt neural SDF to utilize its inherited advan-
tage that the SDF forms the volumetric weights as a single
opaque surface when the 1/s value approaches zero. There-
fore it is unnecessary to add geometric priors to regular-
ize the real scene part as NeRFReN[7]. Secondly, we still
employ NeRF as the virtual image field, because the neu-
ral SDF needs careful initialization at approximate object
position[27]. However, we cannot infer the position of vir-
tual image in advance.

3.4. Reflection Constraints

Based on the reflection physics, reflection image pro-
vides a natural cue: the virtual image should exhibit the
same appearance with the reflected object, and also sym-
metrically positioned. To address the appearance ambiguity
and the light-material ambiguity during the decomposition
of the reflection virtual image and the real geometry, we
introduce Reflection Consistency Loss and Reflection Cer-
tainty Loss leveraging the reflection cues.
Reflection Consistency Loss. In order to regularize the
virtual image to be consistent with reflected object, we pro-
pose the reflection consistency loss Lcs. It enforces that the
depth and radiance of the virtual ray and the reflected ray
are equivalent:

Lcs =
1

m

∑
k

(|d(qk)− dr(qk)|+ ||c(qk)− cr(qk)||1)

·1(β(qk) > ϵs) · 1(αv(qk) > ϵv)
(10)

where superscript ’r’ for cr, dr represents the quantity of
the reflected object the ray cast on (See Sec3.5) and 1 is the
indicator function. Since the virtual image is valid only be-
neath the specular surfaces, the Reflection Consistency Loss
should only supervise the rays that passes through specu-
lar surface. We set the threshold ϵs = 0.005 to determine
whether the surface is specular or not. Additionally, as regu-
larizing the radiance and depth of virtual NeRF will encour-
age the opacity αv growing, Lcs will not be applied where
the virtual image opacity is lower than a threshold ϵv = 0.5.

Given the correct radiance of reflection, the specular
fraction and diffuse appearance on specular surface can be
inferred correctly, thereby addressing the light-material am-
biguity. However, when addressing appearance ambiguity
at non-specular surfaces, the specular fraction can easily be
trapped into the local-minima, attempting to account for the
diffuse appearance of non specular surface with a ’pseudo’
virtual image. Even when applying Reflection Consistency
Loss to regularize the pseudo virtual image, it might still
fail to achieve the consistency. This is because the pseudo
virtual image under non-specular surface is not well-defined
and might have conflict with either the credible virtual im-



age or other pseudo virtual images.
Reflection Certainty Loss. Since Lcs is only able to su-
pervise the specular surface, we propose Reflection Cer-
tainty Loss to resolve the appearance ambiguity at non-
specular surface. Our approach involves penalizing both
the specular fraction β and virtual image opacity αv where
the reconstructed virtual image lacks sufficient consistency
with the reflected object. We conceptualize the level of
consistency as the ’certainty’ of a virtual ray to determine
whether the surface is specular.

We define the depth certainty Cd to represent the NeRF
density on a virtual ray that falls within the range of the
consistent depth dr, computed by the accumulated weight
of sampled points:

Cd(qk) =

n∑
i=1

Tiαi · 1(|ti − dr(qk)| < ϵd) (11)

where Tiαi is the weights of virtual NeRF, ti is the depth of
sampled points, and 1 is an indicator function, with thresh-
old ϵd = 0.3.

We observe that the depth consistency of credible virtual
image can be naturally satisfied without applying Reflection
Consistency Loss, as the reflection image inherently pro-
vides geometric information. In contrast, the pseudo virtual
image beneath non-specular surfaces fails to generate suffi-
cient density within the range of consistent depth. Leverag-
ing this property, we regularize the non-specular surface by
depth certainty before applying Lcs.

In order that the pseudo virtual image approaches near-
zero opacity, we regularize total opacity αv of virtual NeRF
by depth reflection certainty loss computed as:

Ldct =
1

m

∑
k,β(qk)>ϵs

αv(qk) · 1(Cd(qk) < ϵdct) (12)

where the threshold ϵdct = 0.5. Note that the radiance of
virtual image cv in Eq. 9 has injected random background
color, therefore the low opacity will also encourage specular
fraction β to approach zero.

However, depth certainty serves as a rough indicator, as
the pseudo virtual image may luckily fall within the consis-
tent depth range of reflected objects. To address this lim-
itation, we introduce radiance certainty, defined by the ra-
diance error of the virtual image and reflected object, that
is:

Cr(qk) = ||c(qk)− cr(qk)||1 (13)

Since the virtual image requires applying Lcs to ensure
the radiance consistency with the reflected object, the ra-
diance certainty loss should be applied concurrently with
Lcs, which forces the opacity of virtual NeRF to grow. To
prevent contradictory regularization on opacity αv , the radi-
ance certainty loss directly regularizes the surface specular

fraction β, computed as:

Lrct =
1

m

∑
k,Cr(qk)>ϵrct

β(qk) (14)

where the threshold ϵrct = 0.5. And the Refection Cer-
tainty Loss is composed by these two constrains:

Lct = λdct · Ldct + Lrct (15)

where the weighting factor λdct is set to 0.05.

3.5. Auxiliary-Plane for Reflection Ray-Casting

We observe that the under-constructed SDF surface can-
not meet the accuracy requirements for reflection ray-
casting. To address this, we introduce K learnable planes
{P [i]}Ki=1 to approximate the specular surface and cast re-
flection rays on these auxiliary-planes. Each auxiliary-
plane is defined by P [i] = {x ∈ R3|n[i] · x + w[i] = 0},
where n represents the normal vector of the plane. We
use the notation ik to represent the index of corresponding
auxiliary-plane of the surface where ray R(qk) hits. When
the camera ray R(qk) = {x ∈ R3|x = o+ td} cast reflec-
tion on P [ik], the depth of hitting point can be calculated
by:

dp(qk) = −n[ik] · o+ w[ik]

n[ik] · d
(16)

We use the hitting point on plane P [ik] as the reflection
point, that is, the reflected ray originates from or = o+dpd
and follows the direction dr = d − 2(d · n[ik])n[ik]. We
then sample nr points along the reflection rays and perform
volume rendering to obtain the radiance cr, depth dr of re-
flected objects.

For each sampled rays R(qk), in order to determine
which auxiliary-plane the ray should cast reflection on, we
enable the virtual image field to additionally store the nor-
mal vector of the corresponding auxiliary-plane P [ik], de-
noted as corresponding normal field fn : x → nc. This
design is based on the fact that all points within the vir-
tual image of a plane reflector should align with the same
auxiliary-plane. Consequently the corresponding normal
exhibits spatial smoothness, making fn easy to learn.

To train this corresponding normal field, we regularize
the corresponding normal with the normal of SDF surface
n.

Lcn =
1

m

∑
k,β(qk)>ϵs

||nc(qk)− n(qk)|| (17)

Given the corresponding normal nc(qk), we select the
auxiliary-plane with the nearest normal to cast reflection,
that is ik = argmini(|nc − n[i]|). We also check the
distance between the depth d(qk) of hitting point on SDF
and dp(qk) of auxiliary-plane P [ik]. If the distance exceed
a threshold ϵpd, which indicates that current hitting point



doesn’t correspond to a planar reflector, we directly cast re-
flection on the SDF surface.

The auxiliary-planes are initialized by pointcloud plane
segmentation of the mesh extracted from Neural SDF gθ,
further details can be found in our Supplementary materi-
als. We directly store the plane normal vector n and posi-
tion w as learnable parameters, allowing for optimization to
ensure accurate reflection. Notably, the auxiliary-planes can
be regularized by Reflection Consistency Loss Lcs, because
the gradient of dr and cr can be backpropagated to the ori-
gin or and direction dr of reflected rays. Additionally, in
order to stabilize the position of auxiliary-planes, we regu-
larize the distance of the SDF surface and the corresponding
plane P [ik], computed by:

Ld =
1

m

∑
k,β(qk)>ϵs

|d(qk)− dp(qk)| (18)

3.6. Normal Prior with Correction

In order to guarantee the quality of reconstructed surface
for texture-less areas in typical indoor scenes, we follow
[26][36] to integrate estimated normal as a prior. We use
a pretrained Omnidata model[2] to predict normal maps N
for input RGB images.

Based on the observation that the predicted normal maps
N are easily erroneous inside the plane reflector and always
correspond to a blending normal between the virtual image
normal and the reflective surface normal, we introduce a
checking method for normal reliability and adaptively im-
posing the prior supervision in the optimization process.

To avoid introducing wrong normal prior on specular
surface, we utilize the normal vector of the corresponding
auxiliary-plane P (qk) of the surface as the corrected nor-
mal target. Note that the estimated specular fraction can-
not accurately delineate the true range of specular surface
before the network convergence, due to the detailed geome-
try above the specular plane remaining under-reconstructed.
Therefore, regularizing normal only based on the estimated
specular fraction is unreliable, potentially overriding the ge-
ometry clue of images at non-specular surface, which might
cause the missing of geometries near the reflector as shown
in Fig 3. To address this, we propose a normal correction
mask M to further assess whether the predicted normal N
falls within the true range of specular surfaces. The scheme
originates from our observation that the predicted normal
maps on reflective surface always correspond to a blend-
ing between the normal of virtual image and specular sur-
face. We perform correction to normal prior N only if the
predicted normal N predominantly comprises the normal of
virtual image nv and the normal of the surface n. That is,
the projection error of N should be small enough:

En = min
a>0,b>0

||N − (a · nv + b · n)||2 (19)
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Figure 3. An ablation study showing the effect of our design
choices on the checking method for normal prior. Directly perform
the correction indicated by the specular fraction β will wrongly
correct the normal for tiny non-specular objects above the specular
surface (Without M(qk)). With our design of correction mask, we
successfully utilize the geometry guidance from normal prior and
faithfully reconstruct these geometry details (Full Model).

Therefore we use this as an indicator to determine the nor-
mal prior correction mask M(qk) computed as:

M(qk) = 1[En(qk) < ϵn] (20)

where 1 is the indicator function. In our experiments, we set
ϵn = 0.1. Note that we cannot directly obtain the normal of
virtual image from our virtual NeRF, so we use the normal
of reflected object nr to approximate the normal of virtual
image nv by:

nv ≈ 2(n · nr)n− nr (21)

which means to reflect the direction of nr by the surface
normal n, as the virtual image is symmetric with respect to
the reflected object.

Given the normal prior N and the normal vector n[i]
from assited-plane, along with a correction mask M , the
corrected normal prior loss is derived as follows:

Ln =
1

m
[

∑
k,β(qk)<ϵs

||n(qk)−N(qk)||+

λr ·
∑

k,β(qk)>ϵs

||n(qk)− n[i](qk)|| ·M(qk)]

(22)
where the former part supervises the non-reflective surface
by the normal priors while the latter part performs as normal
regularization on specular surface with the factor λr = 0.5.

3.7. Optimization

The overall loss used to optimize RS-SpecSDF is the
weighted combination of losses from Neuralangelo[11]
Lsdf (See Eq. 6), the supervision loss Lap for
auxiliary-planes (Sec. 3.5), the two proposed reflec-
tion constrainsLcs,Lct (Sec. 3.4), and normal priors loss
Ln (Sec. 3.6):

Ltotal =Lsdf + λapLap

+ λcsLcs + λctLct + λnLn

(23)
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Figure 4. Decomposition components of our approach compared to baselines on our synthetic dataset. All baselines cannot estimate the
correct specular fraction map. Our approach produces the decomposition most consistent with the ground truth, due to the effectiveness of
reflection constrains.

where the supervisions for auxiliary-planes are integrated
as Lap:

Lap = Ld + Lcn (24)

Further more, we propose a universal training strategy to
eliminate the necessity of tuning hyper-parameters for each
scene. In order to ensure the surface geometry can be ini-
tialized and to prevent the reflection virtual NeRF explain-
ing the whole scene, we start the decomposition Eq. 9 after
2k iterations, before that we directly set: cr = c.

We extract auxiliary-planes and start casting reflections
on them at 50k iterations. The reflection consistency loss
Lcs is activated at 100k iterations. And depth certainty loss
Ldct and radiance certainty loss Lrct, are introduced at 60k
and 150k iterations respectively.

4. Experiments

4.1. Experimental settings

Datasets We conduct our experiments on both synthetic
dataset and real-captured dataset. According to our sur-
vey, the commonly used dataset for plane reflectors con-
tains either forward-facing scenes[7] or mirror reflectors
without diffuse component[38, 35]. There lacks an in-
door dataset featuring specular planar reflectors with diffuse
color. Therefore we conduct experiments on our newly-
proposed dataset, based on a synthetic dataset of indoor
scenes named Replica Dataset[20]. We add some specu-
lar planar reflectors with different reflection fraction ranged
from [0.1, 0.3] into the scene, such as tables, walls and
floors. The composition of materials and specular reflec-
tion was simulated using the equation: c = γ(cd + β · cs),
where β is the specular fraction, cd is the diffuse radiance,
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Figure 5. Decomposition comparisons between our approach and baselines on real-captured dataset Scannet++.
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Figure 6. Decomposition components of our approach compared
to NeRFReN*(N) on the Scannet++ dataset.

and cs is the specular radiance. We selected 5 scenes from
our dataset to evaluate the performance of our method. For
each scene, we render the composed RGB images around
200 views for training and the ground truth diffuse RGB,
normal, depth, and specular fraction around 20 views for
evaluation.

Additionally, we conduct experiments on real-captured
dataset Scannet++[34]. We select 3 scenes with planar spec-
ular reflectors to validate the effectiveness of our method.
We use every 16 input images for testing and others for

training. However, Scannet++ dataset doesn’t provide an-
notations for planar reflectors, so we manually annotated
the specular reflector masks for each test images.

Baselines We compare our method with the available
state-of-the-art neural rendering methods dealing with re-
flections, namely RefNeRF[22], NeRFReN[7], and MS-
NeRF[35], serving as our baselines. For fair compari-
son, we implement a new version called NeRFReN* with
SDF representation[11] as transmitted part and hash-grid
NeRF[17] as reflected part, sharing the exact same structure
as our method. Additionally, we also apply normal priors
on NeRFReN*. NeRFReN*(N) directly using normal prior
without correction. Besides, we use 2 sub-spaces instead of
8 sub-spaces in MS-NeRF, as each of our specular scenes
only has one or two specular surface. And we aim to eval-
uate its ability to decompose the scene into reflection parts
and the real scene. Note that all baselines and our method
are trained without mirror masks as supervision.

Parameter Settings We empirically set the weight of each
loss as following. The weight factor of normal priors loss
λn is set to 0.2, and λap = 0.1 for the auxiliary-planes,
λcs = 0.1 for the Reflection Consistency Loss, λct = 1.0
for the Reflection Certainty Loss. And we use K = 20 as
the capacity of the auxiliary-planes.

Metrics For novel view synthesis, the metrics include
PSNR of rendered image, decomposed diffuse image. To
evaluate the accuracy of recovered specular fraction, we
render the specular fraction into range [0, 1], and calcu-
late PSNR with the ground truth. Furthermore, we calcu-
late the F-Score of the specular range indicated by the ren-
dered specular fraction map. We evaluate 3D surface recon-
struction following the metrics defined in NeuralRecon[21].
Among those metrics, F-score is usually considered as the
most suitable metric to evaluate geometry quality. Refer to
the supplementary for more details.
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Figure 7. Surface reconstruction results of our approach compared to baselines on our synthetic dataset and a toy scene from MS-NeRF
dataset[35]. Our method produces more accurate and higher-fidelity surfaces in all cases. NeRFReN* with or without normal prior all fail
at certain cases.

4.2. Comparisons

Novel view synthesis and reflection decomposition Ta-
ble 1 and Figure 4 show the quantitative and qualitative
results compared with the state-of-the-art methods in our
synthetic dataset. We achieve the highest PSNR on render

Table 1. Quantitative comparisons of novel view synthesis re-
sults over 5 scenes of our synthetic dataset.

Method PSNR(R)↑ PSNR(D)↑ PSNR(S)↑ F-Score(S)↑
RefNeRF 31.934 16.373 6.939 0.275
MSNeRF 32.877 26.346 20.638 0.732

NeRFReN* 36.481 30.570 22.139 0.593
NeRFReN*(N) 36.426 31.451 22.779 0.612

Ours 37.339 37.741 36.878 0.992

image, diffuse image and specular fraction map. Addition-
ally, specular range F-Score of our method reaches nearly
1.0, indicating that our method can accurately recover the
specular range without guidance of mirror masks. While
RefNeRF and MS-NeRF produce seemingly fair novel view

Table 2. Quantitative comparisons of novel view synthesis re-
sults over 3 scenes of real-captured dataset.

Method PSNR(R)↑ PSNR(D)↑ F-Score(S)↑
MSNeRF 23.565 22.773 0.508

NeRFReN* 27.498 19.659 0.153
NeRFReN*(N) 27.877 20.983 0.126

Ours 27.957 27.860 0.967

results, they actually fail to decompose the reflection from
the real scenes as the low PSNR of diffuse image and spec-
ular fraction map shows. RefNeRF models the virtual im-
age as real geometries because it cannot accumulate enough
density at the correct surface position, thus it cannot use
NeRF’s view-dependency to model the reflection. Sim-
ilarly, MS-NeRF also struggles to decompose the reflec-
tion because MS-NeRF relies on the view-inconsistency
of reflection virtual image to perform correct decomposi-
tion. However, in our dataset, the virtual images are mostly



view-consistent, which conflict with the basic assumption
of MS-NeRF. NeRFReN* and NeRFReN*(N) successfully
decompose the reflection from the real scene. However,
they not only estimate a biased specular fraction at spec-
ular surface, but also incorrectly use reflection virtual im-
age to explain some diffuse surfaces. Consequently, they
achieve low scores on both specular PSNR and specular F-
score. In contrast, our solution can correctly decompose the
reflection and faithfully recover the specular fraction of the
surface and achieve better results in all cases.

Qualitative and quantitative results on the Scannet++
datasets are provided in Figure 5 and Table 2. Note that the
Scannet++ dataset doesn’t provide the ground truth for dif-
fuse appearance, so we compare the rendered image outside
the mirror mask as the diffuse component. Furthermore, we
can only annotate the specular fraction as a binary mask
without its value, therefore we do not evaluate on the spec-
ular PSNR metrics. We can see that other baselines fail to
recover the correct range of specular reflectors. In contrast,
our method shows great effectiveness in decomposing the
reflection from the diffuse appearance. We also visualize
and compare the decomposition components produced by
our method and NeRFReN*(N) in Figure 6. Our method
recover the correct range of specular surface, thus won’t ex-
plain the diffuse appearance by pseudo virtual image, re-
sulting in better novel view synthesis results on both render
image and diffuse image.
3D Reconstruction. Table 3 and Figure 7 present the quan-
titative and qualitative results of the surface reconstruction
compared with baselines on the synthetic scenes. Note that
since RefNeRF and MS-NeRF are not designed for surface
reconstruction and all fail to decompose the virtual image
from real geometries, we haven’t evaluated their results for
3D reconstruction. Our approach fully utilizes the normal
prior based on our normal correction scheme and correct es-
timation of the range of specular surface. Consequently, the
correction to normal priors doesn’t influence the geometry
at non-specular surfaces. NeRFReN* without normal pri-
ors struggles to reconstruct accurate surface at low-texture
areas both on specular surface and non-specular surface.
NeRFReN*(N) directly supervised with normals will gen-
erate wrong geometry due to the wrongly predicted normal
at the specular surface as shown in the example of office0 in
Figure 7. Above results demonstrate that only our method
can utilize the normal prior and perform appropriate cor-
rection, thus achieving faithful surface reconstruction with
robustness.

4.3. Ablation Study

In this section we carefully ablate the key components of
our method to justify our design choices.
Reflection Constrains. Our main component is the reflec-
tion constrains. Thus we provide ablation studies on the

Table 3. Quantitative comparisons of reconstruction results
over 5 scenes of our synthetic dataset.

Method Accu.↓ Comp.↓ Prec.↑ Recall.↑ F-Score↑
NeRFReN* 0.504 0.663 92.261 89.159 90.678

NeRFReN*(N) 0.421 0.449 95.931 94.623 95.272
Ours 0.363 0.374 98.039 97.424 97.729

(c) Full Model(b) Without consistency loss

(a) Without certainty lossSpecular GT

Image GT

Figure 8. An ablation study showing the effect of the reflection
constrains.

Table 4. Novel view synthesis results for ablation studies of the
reflection constrains of our method over 5 scenes of our synthetic
dataset.

Method PSNR(R)↑ PSNR(D)↑ PSNR(S)↑ F-Score(S)↑
(a) without certainty 36.808 35.358 31.663 0.980
(b) without consistency 36.949 36.121 28.572 0.983
(c) Full Model 37.339 37.741 36.878 0.992

reflection consistency loss and reflection certainty loss to
demonstrate their effectiveness as shown in Table 4 and
Figure 8. Model (a) only uses Lcs and without Lct, so
only virtual image at specular surface is constrained cor-
rectly. Wrong specular fraction remains uncontrained at
non-specular surface. Model (b) uses Lct without Lcs. Note
that the radiance certainty calculation requires the virtual
image having consistent appearance with the reflected ob-
ject. Therefore, it becomes unavailable during the absence
of Lcs. We only adopt depth certainty loss into our certainty
loss. It achieves slightly higher F-Score on specular range
than Model(a) but still cannot estimate the accurate specular
fraction for specular surface. Moreover, the depth certainty
loss Ldct is a rougher indicator compared with Lrct. Thus
it cannot produce the same accurate specular range as our
full model (Model (c)).
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Figure 9. An ablation study showing the effect of casting reflec-
tion rays on Auxiliary-Planes.

Normal Prior Correction. Figure 3 shows the qualitative
results removing the normal correction mask M computed
by normal prior projection. Some thin structures above the
specular surface might remain under-reconstructed, causing
the ray that should hit the non-specular thin structure to
reach the specular surface. Without the normal correction
mask, normal correction will be applied to pull this ray’s
normal to the plane, hindering the growth of the detailed
geometry. Our correction mask can recognize that the pre-
dicted normal does not belong to the specular surface. With
better utilization of the geometry guidance provided by nor-
mal prior, our normal prior correction scheme effectively
reconstructs detailed geometry near the specular surface.
Auxiliary-Planes. As shown in Figure 9, Model(a) directly
casting reflection rays on SDF surface cannot achieve cor-
rect decomposition results. At early stage of training, SDF
surface still remains incomplete compared with true reflec-
tor. Therefore, casting reflection rays on SDF surface, might
produce biased reflection rays, causing the Reflection Con-
strains wrongly constrain the decomposition.

5. Conclusions

We have presented RS-SpecSDF, a framework to recon-
struct surfaces for specular scenes without indicating mirror
masks and decompose the unbiased reflection from the real
scene. Our method utilizes reflection ray-casting as a su-
pervision. Specifically, we have proposed Reflection Con-
sistency Loss and Reflection Certainty Loss to regularize
the decomposition of reflection virtual image and surface
material. Therefore we can acquire the accurate range of
specular surface and the unbiased specular fraction for ma-
terial estimation task. Based on the accurate range of spec-
ular surface, we have proposed a correction method for pre-

dicted normal from monocular estimation which is possibly
wrong at specular surface. Our method can fully leverage
the normal prior as supervision and faithfully reconstruct
the surfaces.
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