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Abstract

In this paper, we propose NeuS-PIR, a novel ap-
proach for learning relightable neural surfaces using
pre-integrated rendering from multi-view image obser-
vations. Unlike traditional methods based on NeRF
or discrete mesh representations, our approach em-
ploys an implicit neural surface representation to recon-
struct high-quality geometry. This representation en-
ables the factorization of the radiance field into two com-
ponents: a spatially-varying material field and an all-
frequency lighting model. By jointly optimizing this fac-
torization with a differentiable pre-integrated render-
ing framework and material encoding regularization,
our method effectively addresses the ambiguity in ge-
ometry reconstruction, leading to improved disentangle-
ment and refinement of scene properties. Furthermore,
we introduce a technique to distill indirect illumination
fields, capturing complex lighting effects such as inter-
reflections. As a result, NeuS-PIR enables advanced ap-
plications like relighting, which can be seamlessly inte-
grated into modern graphics engines. Extensive qualita-
tive and quantitative experiments on both synthetic and
real datasets demonstrate that NeuS-PIR outperforms
existing methods across various tasks. The source code
is included in the supplementary material and will be
released publicly upon acceptance.

Keywords: Inverse Rendering, Pre-integrated Render-
ing, Neural Implicit Representation

1. Introduction

Recovering an object’s geometry, material properties,
and illumination from captured images – commonly known
as inverse rendering – has long been a challenging problem
in computer vision and graphics. These recovered proper-
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Figure 1: Comparison of results from our proposed method
(bottom row) and NVDiffrec [30] (top row). Our method
simultaneously learns geometry, material, and illumination
within the neural implicit field. The relighted images and
reconstructed geometry produced by our approach show
significant improvements over NVDiffrec. Building on
NeuS [39], which focuses on geometry reconstruction with-
out factorization, our method benefits from the joint learn-
ing of material and illumination, allowing it to better pre-
serve geometry, particularly in highly reflective regions.

ties are crucial for a wide range of applications, including
view synthesis, relighting, and object insertion [30]. How-
ever, the task of inverse rendering is inherently difficult
due to its underconstrained nature. To mitigate this chal-
lenge, various approaches have been proposed, often rely-
ing on additional inputs such as scanned geometry, prede-
fined lighting conditions, multiple images captured under
different lighting setups, or simplifying assumptions like
uniform material properties for the object [3, 2, 46].

The emerging trend of neural representations has demon-
strated remarkable capabilities in geometry reconstruc-
tion [39] and novel view synthesis [28]. In these neural
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representation-based methods, material properties and illu-
mination are often intertwined. Consequently, they cannot
be directly applied to tasks like relighting or material edit-
ing. While there have been attempts to decouple neural
representations [48, 6, 35], major limitations are prevent-
ing them from being readily used for relighting. As NeRF-
based methods model geometry as a volume density field
without sufficient surface constraints, it contains artifacts
that may not be noticeable in view synthesis but problem-
atic in extracted high-quality surfaces with reliable normal.
Signed Distance Function (SDF) is introduced into vol-
ume rendering to supervise the geometry depiction explic-
itly and has achieved improved results [39, 31, 42]. How-
ever, these methods focus more on geometry reconstruction
rather than inverse rendering. Other methods like NVD-
iffrec [30] adopt hybrid approach that uses implicit SDF
field and explicit mesh and proposes an efficient differen-
tial rendering pipeline for reconstruction, but such geometry
representation might lead to inaccurate topology due to pre-
defined SDF-grid. Overall, existing inverse rendering ap-
proaches [4, 48, 30] mostly focus on decomposing material
and illumination while geometry quality is not prioritized.

In this work, we introduce NeuS-PIR, a novel frame-
work that jointly recovers high-fidelity geometry, realis-
tic material properties, and accurate all-frequency illumi-
nation from multi-view images, as shown in Fig. 1. Our
approach builds on the implicit geometry representation of
NeuS, extending it with a new pre-integrated rendering
(PIR) network to enable simultaneous optimization of ge-
ometry, material, and lighting. By leveraging the smooth
surface reconstruction capabilities of NeuS [39], we en-
sure stable and feasible joint optimization of geometry and
appearance. Unlike methods such as NVDiffrec, which rely
on discretized mesh representations that often struggle to re-
construct smooth surfaces due to reliance on good initializa-
tion, our implicit representation eliminates these initializa-
tion dependencies and produces more precise surface nor-
mals. To handle complex illumination, NeuS-PIR advances
pre-integrated rendering by learning from a high-frequency
environment map (a differentiable 6×512×512 cube map),
enabling superior reconstruction of shiny and reflective sur-
faces. In contrast, existing methods like Neural-PIL and
PhySG often rely on low-frequency illumination represen-
tations to reduce computational costs, resulting in a loss of
detail and degraded illumination quality. Additionally, we
introduce a radiance field that guides the learning process,
supported by customized regularization terms on geome-
try, lighting, and material properties to ensure stable and
robust training. Moreover, NeuS-PIR distills an indirect il-
lumination field from the learned representations, improv-
ing the modeling of complex lighting effects such as inter-
reflections. All components are jointly optimized through a
differentiable pre-integrated rendering framework, leading

to state-of-the-art performance in tasks such as relighting
and object insertion. In summary, our main technical con-
tributions are:

• a framework that leverages a neural implicit surface
and pre-integrated rendering to factorize the scene
into geometry, material, and illumination, leading to
less degraded geometry and better disentanglement,
thereby supporting relighting,

• a joint optimizing scheme using re-computed envi-
ronment map with material encoding regularization
that encourages sparsity and consistency, which en-
ables all-frequency illumination recovery with im-
proved generalization ability compared to data-driven
latent-space methods [6, 48], yet can be optimized ef-
ficiently, and

• a modular distillation method to distil indirect illumi-
nations field from learned representations by jointly
optimizing it with the direct illumination, which fur-
ther addresses the complex lighting effect like inter-
reflection.

2. Related Work

2.1. Multi-view Reconstruction

Explicit Reconstruction from images can be achieved
through various methods, including triangle meshes [24],
tetrahedral meshes [30], voxels [23], hierarchical oc-
trees [15], atlas surfaces [14], or hybrid explicit/implicit
representations [33]. A key advantage of explicit represen-
tations is their compatibility with downstream rendering in
industrial engines. However, optimizing explicit represen-
tations is often sensitive to hyperparameters and initializa-
tion, which can sometimes lead to reconstruction failures
due to topological inconsistencies. In contrast, neural im-
plicit fields tend to offer more stable optimization processes.
Neural Implicit Field Modeling leverages neural networks
to represent spatial fields for modeling 3D objects and
scenes. Neural Radiance Fields (NeRF) [28], along with
its variants (e.g., MipNeRF [1]), employ coordinate-based
MLPs to encode volumetric radiance fields. These models
allow querying the geometry and color of arbitrary points
in space by integrating values along casting rays, enabling
high-quality novel view synthesis. However, NeRF-like
methods do not directly optimize the underlying geometry.

Recent advancements in neural surface reconstruction
have introduced frameworks that optimize geometry using
photometric losses. For instance, UniSurf [31] refines the
sampling distribution to better align the volumetric field
with the surface, while VolSDF [42] transforms NeRF’s
density function into a learnable Signed Distance Function
(SDF), sampling points along casting rays based on opacity



error bounds. NeuS [39] and its successors [40, 26] provide
unbiased, occlusion-aware solutions by converting NeRF’s
density function into an SDF.

While these techniques can reconstruct plausible geome-
try and render high-quality novel views, material properties
and illumination are baked into the model, making it diffi-
cult to adapt to different background scenes. Our work ex-
tends NeuS by introducing material and illumination factor-
ization, enabling downstream applications such as relight-
ing and object insertion.

2.2. Material and Illumination Estimation

Material and Illumination Estimation for reconstructed
objects is a complex task, with many prior approaches
requiring known lighting conditions for inverse render-
ing. Deep Reflectance Volumes [3] and Neural Reflectance
Field [2] leverage differentiable volume ray marching
frameworks to supervise the reconstruction of neural re-
flectance volumes and reflectance fields, respectively. De-
ferred Neural Lighting [12] applies deferred rendering using
proxy geometry and neural texture, followed by neural ren-
dering, to enable free-viewpoint relighting. Another mesh-
based method [27] jointly optimizes mesh and SVBRDF
using a differentiable renderer specialized for collocated
configurations. IRON [46] proposes a two-stage approach
where a signed distance field (SDF) is first used to re-
cover geometry, followed by material optimization. These
methods rely on photometric images, which require a more
involved data capture process. In contrast, our approach
jointly optimizes geometry, material, and illumination us-
ing only input images.

Inverse Rendering with Multi-View Estimation has seen
recent progress, allowing for material and illumination es-
timation from more relaxed multi-view settings. NeRFac-
tor [48] uses a set of MLPs to model light source vis-
ibility, normal maps, surface albedo, and material prop-
erties at surface points, building on a pre-trained NeRF.
PhySG [47] assumes the scene is under fixed illumina-
tion, while NeRD [4] extends this to both fixed and vary-
ing illumination conditions. Neural-PIL [6] introduces a
neural pre-integrated lighting method to replace spherical
Gaussians, enabling the estimation of high-frequency light-
ing details. Ref-NeRF [37] replaces MipNeRF’s [1] view-
dependent outgoing radiance parametrization with reflected
radiance to model environment lighting and surface rough-
ness. NeILF [41] models illumination with a fully 5D light
field, naturally handling occlusions and indirect lighting,
while NeILF++ [45] removes the need for pre-reconstructed
geometry.

Rather than relying solely on implicit field representa-
tions, NVDiffrec [30] adopts a hybrid approach, combin-
ing an implicit SDF field with an explicit mesh and propos-
ing an efficient differentiable rendering pipeline for recon-

struction. NVDiffrecmc [16] builds on NVDiffrec’s rep-
resentation but incorporates ray tracing and Monte Carlo
integration for more realistic shading. TensoIR [19] opts
for tensor factorization and neural fields, moving away
from MLP-based fields. ENVIDR [22] introduces an im-
plicit differentiable renderer for inverse rendering, achiev-
ing strong performance, but its integration with modern
graphics pipelines—such as relighting with off-the-shelf
HDR environment maps—remains challenging. Concur-
rently, several works have emerged. NeRO [25] uses a sim-
ilar geometry representation and learning strategy, focus-
ing on reflective objects, while our approach is designed
for inverse rendering of general objects. NeuralPBIR [36]
proposes a two-stage pipeline that first reconstructs an im-
perfect geometry and then applies physics-based inverse
rendering for higher-quality factorization. However, their
method simplifies BRDF rendering by disregarding metal-
lic parameters, which limits its applicability to highly re-
flective surfaces, such as the toaster shown in Fig. 6 in our
work.

Recent advances in 3D Gaussian Splatting (3DGS) [21]
have introduced new representations and factorization tech-
niques [11], which significantly facilitate inverse render-
ing [17, 13, 34]. However, Gaussian splatting is an under-
defined explicit geometry, and mesh representations remain
more suitable for geometric manipulation tasks such as de-
formation.

3. Methodology

Given a collection of multi-view images and their corre-
sponding camera poses, our goal is to reconstruct the ob-
ject’s geometry and its surrounding environment’s illumi-
nation. Specifically, our factorization approach learns an
implicit representation of the object’s geometry and mate-
rial properties, as well as the illumination independent of
the object. As illustrated in Fig. 2, for each point x ∈ R3,
our model outputs several properties: the signed distance
field (SDF) value s ∈ R, the diffuse albedo kd ∈ [0, 1]3,
the roughness r ∈ [0, 1], the metallic parameter m ∈ [0, 1],
and the environment illumination, represented by a cube-
map I ∈ RH×W×6. Once training is complete, our method
enables the rendering of reconstructed objects under various
environment maps, a process known as relighting. This can
be achieved using either the jointly estimated environment
maps or externally provided ones. The rendering process
is governed by the principles of volume rendering. Addi-
tionally, high-quality surface meshes with material proper-
ties can be extracted from the learned representation using
standard mesh extraction algorithms, such as the marching
cubes algorithm or its variants, facilitating downstream ap-
plications.
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Figure 2: Our method factorizes a scene into geometry, material, and illumination. We display the reference and predicted
environment illumination as a latitude-longitude converted environment cubemap. The roughness and metallic are visualized
using a jet color map ranging from 0 to 1.

3.1. Prerequisites

3.1.1 NeuS for Geometry Modeling

Our method adopts Neural Implicit Surfaces (NeuS) [39] to
represent an object’s geometry, leveraging its ability to re-
construct high-quality surfaces as the zero-level set of an
implicit SDF representation. NeuS employs a multi-layer
perceptron (MLP) to learn both the SDF function fsdf :
x 7→ s, which maps a 3D position x ∈ R3 to an SDF value
s ∈ R, and the appearance function fcolor : (x,v) 7→ c,
which maps a 3D position x ∈ R3 and a viewing direction
v ∈ S2 to the corresponding RGB radiance L ∈ [0, 1]3.

NeuS renders images by accumulating radiance along
rays cast through each pixel, following the standard volume
rendering approach. Specifically, consider a pixel ray pa-
rameterized as {x(t) = o− tv | t ≥ 0}, where o ∈ R3 is
the camera origin, and v ∈ S2 is the normalized direction
pointing toward the camera center. The accumulated color
for this pixel, cp, is computed as a weighted sum of the ra-
diance along the ray:

cp(o,v) =

∫ tf

tn

w(t)L (x(t),v) dt, (1)

where w(t) is a non-negative weight function, and the inte-
gration is performed from the near plane tn to the far plane
tf of the camera. To ensure unbiased and occlusion-aware
rendering, NeuS derives the weight function from the SDF
as:

w(t) = exp

(
−
∫ t

0

ρ(u)du

)
ρ(t), (2)

where ρ(t) = max
(−dΦτ

dt (s(t)) /Φs (s(t)) , 0
)

is referred
to as the opaque density, and Φτ (s) = (1 + e−τs)−1 is the
Sigmoid function scaled by a factor τ . The learned factor
τ is inversely proportional to the standard deviation of the

density distribution near the zero level of the SDF. During
training, the value of 1/τ is expected to converge to zero
as the zero-valued isosurfaces of the SDF progressively ap-
proach solid surfaces.

To enable relighting and material factorization, we
model the outgoing radiance along the ray cast from a pixel
using two branches. The first branch directly predicts the
outgoing radiance based on the position, viewing direc-
tion, and surface normal using a radiance MLP. The sec-
ond, material-aware branch captures material and illumina-
tion properties and computes the outgoing radiance using
a split-sum approximation, as detailed in Sec. 3.1.2. Both
branches share the same SDF module to ensure geometric
consistency during training.

3.1.2 PIL for Material and Illumination Modeling

We adopt image-based lighting as our lighting model to
decompose the radiance field into geometry, material, and
lighting components, approximating the rendering equation
with pre-integrated rendering. Following [20], the specular
term in the rendering equation can be efficiently approxi-
mated using the split-sum approximation:

∫
Ω

Li(l)fs(l,v)(l · n)dl = I(r; r)

∫
Ω

fs(l,v)(l · n)dl,

(3)
where Li(l) represents the incident radiance from direction
l, fs(l,v; r,m) is the Cook-Torrance microfacet specular
BRDF [10] parameterized by roughness r and metallic m,
and n is the surface normal vector. The first term in the
split-sum approximation, I(r; r), involves the importance
sampling of the incident light radiance, modulated by the
surface roughness r. Although this approximation incurs a
minor loss in reflection accuracy at grazing angles, it allows



us to pre-integrate this term from the environment map and
query it using the reflection direction r = 2(v ·n)n−v as:

I(r; r) =

∫
Ω

Li(l)D(l, r; r)(l · r)dl, (4)

where D(l,v; r) represents the GGX normal distribution
function [38], which models the portion of microfacets that
reflect light toward the viewer and is defined by the rough-
ness r. The pre-integrated illumination is stored as mipmap
levels of a learnable environment cubemap.

The second term of the split-sum approximation is in-
dependent of illumination and corresponds to integrating
the specular BRDF fs in a constant brightness environment.
Using Schlick’s approximation, the specular reflectance at
normal incidence, F0, can be factored out. Thus, the second
term can be rewritten as F0 modulated by scale and bias
terms, which depend only on the material’s roughness and
the cosine between the viewing direction and the surface
normal (v · n):

∫
Ω

fs(l,v)(l · n)dl = F0S ((v · n), r) +B ((v · n), r) ,

(5)
where the scale S and bias B can be pre-computed and
stored in 2D lookup tables (LUTs) for efficient inference,
as in [20]. We follow the common convention of setting F0

as an interpolation between 0.04 (the specular reflectance of
non-metallic materials) and the diffuse color kd (the specu-
lar reflectance of metallic materials), based on the material’s
metallic value m:

F0 = 0.04× (1−m) +mkd. (6)

Finally, the direct outgoing radiance Ldir(v) observed
from the viewing direction v is a blend of diffuse and spec-
ular components, formulated as:

Ldir(v) = kdId + Is (F0S ((v · n), r) +B ((v · n), r)) ,
(7)

where Id = I(n; 1) represents the diffuse irradiance, and
Is = I(r; r) represents the specular irradiance. For further
details on pre-integrated rendering, we refer readers to the
presentation by UE4 [20].

3.2. Network Architecture

Fig. 3 illustrates the architecture of our proposed
method. The SDF MLP learns the scene geometry, while
the Radiance MLP captures the radiance field at a coarse
level, using the geometry features from the SDF MLP and
viewing directions. Following the pre-integrated rendering
principle, further decompositions factorize the radiance into
material and lighting components.

𝒙
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Figure 3: Network architecture of our proposed method.
The SDF MLP learns geometry, and the radiance MLP
learns the radiance field at a coarse level. Further decom-
positions factorize the material and illumination using the
Material MLP and Pre-Integrated Light.

Geometry Module. The SDF MLP takes 3D positions
x as input and outputs the feature f(x). The first channel
of this feature represents the SDF value s(x), and its gradi-
ent ∇s(x) is computed analytically. For positional encod-
ing, we use trainable multi-resolution grids, efficiently sup-
ported by hashtables [29]. The feature is learned through an
MLP.

Radiance Module. To initiate the training of the scene’s
geometry, the view-dependent color for each point is de-
termined using an MLP. The radiance MLP takes as input
the viewing direction v, the positional feature f(x), and
the unit surface normal∇s(x)/‖∇s(x)‖2. The viewing di-
rection is encoded using spherical harmonics up to the 4th
level. Finally, the output color ctex is computed and inte-
grated using Eq. 1.

Material Module. The material module decomposes the
view-dependent outgoing radiance by modeling it as inci-
dent light modulated by surface material properties. The
Material MLP, denoted as Mat(f), takes the SDF feature
f(x) as input and predicts the surface diffuse albedo kd ∈
[0, 1]3, metallic value m ∈ [0, 1], and roughness r ∈ [0, 1].
Following Munkberg et al. [30], the Material MLP also pre-
dicts a general occlusion term o ∈ [0, 1], which accounts
for indirect illumination and shadowing by modulating the
outgoing radiance by 1 − o. The occlusion term can be re-
fined and distilled from the learned representations during
the indirect illumination distillation process, as detailed in
Sec. 3.4. The specular and occlusion properties of the ma-
terial are collectively denoted as ks = {o, r,m}. Both kd
and ks are learned through MLP layers, with sigmoid acti-
vations to constrain their values to the range [0, 1].

To render the outgoing radiance under pre-integrated il-
lumination, we follow the approach of Munkberg et al. [30],
using a high-resolution cubemap as trainable parameters
and pre-integrating I(r; r) for discrete roughness levels,
stored as mipmaps. For a given roughness r, the value
I(r; r) is retrieved using mipmap interpolation. The view-



dependent radiance is then rendered using Eq. 7 and trans-
formed into the sRGB space through gamma correction. Fi-
nally, the pixel color cmat is volume-rendered using Eq. 1.

3.3. Loss and Regularization

We employ Mean Square Error (MSE), L1 loss, and bi-
nary cross-entropy (BCE) loss as supervision signals for the
masked rendered images. Additionally, we introduce regu-
larization terms for SDF, material, and lighting. Specifi-
cally, the image color loss is defined as:

Lĉ = λc1||ĉ− c||1 + λc2||ĉ− c||2, (8)

where ĉ represents the volume-rendered pixel color from
either the material module cmat or the texture module ctex.
The mask loss is defined as:

Lmask = λmaskBCE(mask, opa), (9)

where BCE is the binary cross-entropy between the image
mask and the accumulated opaque density along pixel rays.

To regularize the SDF field, we use both Eikonal and
sparsity terms:

Lsdf = λse||∇s− 1||22 + λss exp(−λsa|s|1). (10)

The Eikonal term encourages the gradient of the SDF
field to have unit length, while the sparsity term promotes
a sparse distribution of the zero-crossing level set of the
SDF. These regularization terms help in learning smooth
and sparse solid surfaces.

Material estimation is challenging due to limited obser-
vations of each surface point. We mitigate this issue by in-
troducing the prior that objects are generally composed of
a limited number of distinct materials. Following this prin-
ciple, we regularize the material representation in both fea-
ture space—promoting smoothness and sparsity—and im-
age space—promoting local consistency.

In feature space, we adopt a material feature loss inspired
by [50], regularizing the material-related latent feature f to
be sparse, and ensuring that the mapping of the Material
MLP is smooth with respect to small changes in the latent
feature space:

LFmat =λmf1

F∑
i=2

DKL(Bern(0.05)||p(fi))

+ λmf2||Mat(f)−Mat(f + ∆f)||1,

(11)

where p(fi) is the mean value of the i-th channel of the po-
sitional feature f , representing the probability of non-zero
values. The sparsity loss minimizes the KL-divergence be-
tween p(fi) and a target Bernoulli distribution with prob-
ability 0.05, encouraging sparsity in the material features.

Novel View GT Rendered Relighted Relighting GT

Figure 4: Novel view synthesis and relighting results pro-
duced by our proposed method.

The smoothness loss ensures that similar latent features
(differing by a small ∆f ∼ N (0, ε)) are mapped to sim-
ilar material parameters via the Material MLP.

In image space, we sample half of our rays using a patch-
based method to encourage local similarity in roughness
and metallic properties. Additionally, we regularize the am-
plitude of the occlusion term. The image-space material
loss is defined as:

LImat =

P∑
i=1

(λmidδi(kd) + λmirδi(r) + λmimδi(m))

+ λmio||o||22,
(12)

where δi computes the standard deviation of the i-th image
patch, and P is the number of patches. The full material
regularization is then computed as:

Lmat = LFmat + LImat. (13)

The real-world illumination is generally neutral with bal-
anced colors. Therefore, the cubemap is compared against
an “averaged gray” version of itself to prevent severe color
shift. Specifically, given Gbase as the channel-averaged
gray image of the learned environment cubemap Ibase at
the 0-th mipmap level:

Llight = λl|Ibase −Gbase|1, (14)

In summary, the total loss function is a combination of
the aforementioned losses:

L = Lĉmat +Lĉtex +Lsdf +Lmask+Lmat+Llight. (15)

3.4. Indirect Illumination

To handle complex indirect lighting, we distill the indi-
rect illumination field from the accompanying radiance field
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Figure 5: An example of material factorization by our pro-
posed method.

and incorporate it during rendering when direct light is ge-
ometrically blocked. This indirect illumination distillation
process is applied as a post-processing step after the initial
training. Following InvRender [50], we parameterize the
indirect illumination using M = 12 Spherical Gaussians
(SGs) for spatial positions:

Lindi (ω,x) =

M∑
k=1

Gx(ω; ξk, λk,µk), (16)

where ω ∈ S2 is the queried incident direction at posi-
tion x. The parameters ξk ∈ S2, λk ∈ R+, and µk ∈ R3

represent the axis, sharpness, and amplitude of each Gaus-
sian lobe, respectively. The SG parameters are modeled us-
ing an MLP that takes only the position x as input. Sim-
ilarly, a specular occlusion term os(ω,x) is modeled to
determine whether a direction ω is geometrically blocked.
The specular occlusion is hemispherically integrated to ap-
proximate the diffuse occlusion term od(x). Following
PhySG [47], the rendering equation can be efficiently inte-
grated by approximating the GGX normal distribution using
SGs as well. The outgoing radiance is computed as a com-
bination of direct and indirect components, each weighted
by the specular and diffuse occlusion terms:

L = Ldir + Lind, (17)

Ldir = (1− os(r))Lsdir + (1− od)Lddir, (18)

Lind = os(r)L
s
ind + odL

d
ind, (19)

Here, Ldir and Lind represent the direct and indirect out-
going radiance, respectively, while the superscripts s and
d denote the specular and diffuse components of each ra-
diance. The outgoing radiances are weighted by the oc-
clusion terms in a complementary manner: when the ob-
ject’s geometry obstructs the incoming light, the object is
illuminated by indirect light; conversely, when there is no
obstruction, the object receives direct illumination from the
environment. For the specular component, we simplify the
computation of occluded incident light by only consider-
ing occlusion in the reflection direction r. We assume that

the outgoing specular radiance is highly influenced by mir-
ror reflection, and thus multiply the occlusion term by the
outgoing radiance. Similarly, the diffuse occlusion effect
is simplified by multiplying the integrated diffuse occlusion
by the outgoing radiance, assuming that the incident light
is uniformly occluded. Despite these simplifications, our
experiments demonstrate satisfactory performance.

To learn the indirect illumination field, we begin by con-
ducting hemisphere sampling at a surface point x to obtain
secondary ray directions ωs. A sphere tracing algorithm is
then used to find intersections with other surfaces, denoted
asx′. The radiance extracted from the Radiance MLP, in the
opposite sampling direction, is used to supervise the corre-
sponding indirect illumination:

Lind = λind
∑
s∈S
||Lind(ωs,x)− Ltex(−ωs,x′)||22. (20)

Additionally, depending on whether the sphere tracing
algorithm finds an intersection along the sampled direction
ωs, denoted as o′s(ωs,x), the specular occlusion term os is
supervised using an MSE loss:

Locc = λocc
∑
s∈S
||os(ωs,x)− o′s(ωs,x)||22. (21)

4. Experiments

4.1. Baselines

Our work is primarily related to two methods, NVD-
iffrec [30] and Neural-PIL [6]. Both methods use pre-
integrated illumination for lighting modeling but differ in
their geometry modeling approaches. Additionally, re-
cent works based on these methods are available: NVD-
iffrecmc [16] adopts Monte Carlo Rendering for shading
based on NVDIffrec’s geometry and material representa-
tion, SAMURAI [5] additionally estimates camera pose for
inverse rendering. We also compare with NeRFactor [48]
and InvRender [50], which are both implicit representation-
based methods that adopt different representations for ge-
ometry and illuminations. To measure the image quality of
relighting and albedo images, we use three quantitative met-
rics: Peak Signal to Noise Ratio (PSNR), Structural Simi-
larity Index Measure (SSIM), and Learned Perceptual Im-
age Patch Similarity (LPIPS). For geometry evaluation on
synthesis dataset with ground truth geometry, Chamfer Dis-
tance (CD) is reported.

4.2. Implementation Details

We jointly optimize scene geometry, material, and envi-
ronmental illumination using both image loss and parame-
ter regularization. For the image loss, we prioritize Mean
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Figure 6: Material factorization and relighting on Ref-NeRF’s Shiny scene. Top row: material factorization results. Middle
row: high-frequency environment maps used for relighting. Bottom row: relighted results under the given corresponding
lights.

Method Relighting Albedo
PSNR↑ SSIM↑LPIPS↓ PSNR↑ SSIM↑LPIPS↓

NeuS 21.83 0.913 0.070 - - -
NeRFactor 23.78 0.907 0.112 23.11 0.917 0.094
NVDiffrec 24.53 0.914 0.085 24.75 0.924 0.092
NVDiffrecmc 26.20 0.928 0.054 25.34 0.931 0.072
Ours 26.23 0.925 0.058 24.86 0.921 0.066
w/o Lmat 26.07 0.923 0.062 24.60 0.924 0.064
w/o Lsdf 24.05 0.904 0.085 24.61 0.929 0.065

Table 1: Quantitative evaluation on NeRFactor’s synthesis
dataset. Both NVDiffrec and NeRFactor metrics are as re-
ported in [30] (In bold: best; Underline: second best).

Squared Error (MSE) loss by setting λc1 = 1, λc2 = 10,
and λmask = 0.1. For parameter regularizations, we set
λse = 0.1, λl = 0.1, λmio = 0.001, and all other pa-
rameters as default at 0.01. Our model is optimized us-
ing the Adam optimizer with a learning rate of 0.01. The
learning rate is scheduled by a 500-step warming-up stage,
starting from 1% and rising to 100%, followed by an ex-
ponential decay until the end of training. Material and ra-
diance modules are scheduled asymmetrically to facilitate
geometry initialization. Our experiment was conducted on
2 NVIDIA Tesla V100 GPUs, with a training time of ap-
proximately 1.5 hours for a total of 40,000 steps.

4.3. Experiment on Synthetic Dataset

NeRFactor’s Relight Dataset. Following NeRFactor
[48], four synthetic scenes originally released by NeRF
[28] are relighted with eight different low-frequency envi-
ronment illuminations, and evaluated over eight uniformly

Figure 7: Evaluation of the geometry on Shiny Dataset.
Chamfer Distances are shown beneath each example image.

sampled novel views. We compare our method with base-
line NeRFactor [48], NVDiffrec [30], and NVDiffrecmc
[16] on NeRFactor’s Blender dataset on relighting and
albedo reconstruction qualities. As material and fixed il-
lumination can only be resolved up to a relative scale, we
adopt the convention that scales the predicted albedo image
by a color-tuning factor that matches the average of ground-
truth albedo. As shown in Tab. 1, our method outper-
forms both NeRFactor and NVdiffrec and achieves on-par
relighting performance with NVDiffrecmc. We attribute the
performance gain to adopting efficient implicit neural sur-
face representation together with pre-integrated rendering,
whereas NVDiffrecmc’s performance gain is contributed by
novel Monte Carlo shading. We list NeuS here as a baseline
of non-relightable methods for comparison. The qualitative
results are visualized in Fig. 4, where we render the image
using a constructed environment map from a novel view and
relight it with a given illumination.

Shiny Scenes. As NeRFactor’s Relight dataset contains
mostly Lambertian surfaces illuminated by low-frequency
environment light, we further evaluate our method on Ref-
NeRF’s Shiny scenes [37], which contains shiny objects.
To evaluate the relighting ability in a more challenging sce-



nario, We relight the Blender models of car and toaster us-
ing Blender Cycles renderer with 7 different high-frequency
environment lights. Fig. 6 shows the material factorization
and relighting results on the toaster scene. The bread and
toaster material were correctly predicted, and the relighting
results blend in the novel illumination and exhibit consistent
non-Lambertian reflection on the surface (notice the reflec-
tion of the environment map visible on the toaster).

We further show evaluations of the reconstructed geom-
etry on the Shiny dataset in Fig. 7. The Chamfer distance
is calculated by uniformly sampling 5,000 points from the
mesh and comparing them to the samplings from ground
truth models. Our method addresses the geometric ambigu-
ity often found in NeuS by explicitly factoring the illumina-
tion, which makes it easier for the model to interpret shiny
objects. Therefore effectively maintains the convex geome-
try on the highly reflective region of both the car and toaster
model. Additionally, our method reproduces smoother sur-
faces compared to NVDiffrec/mc, showing the superiority
of using continuous implicit neural surface representation
over a discretized representation.

4.4. Experiment on Real-World Dataset

To evaluate our method on real-world scenes, we fol-
low Wang et al. [39] in adopting Common Objects in 3D
(CO3D) dataset [32] and evaluating a subset of cars. The
CO3D dataset is a collection of multi-view images cap-
tured in outdoor settings, containing detailed annotations
such as ground-truth camera pose, intrinsic, depth map, ob-
ject mask, and 3D point cloud. This dataset was gathered
through real-world video capture and presents a significant
challenge to reconstruction algorithms due to the presence
of highly reflective and low-textured surfaces like dark win-
dows, and metallic paint, which are non-Lambertian. As
the ground-truth object mask is directly produced by off-
the-shelf software, up to 8% of the masks are wrong. In our
experiment, we filtered out the incorrectly masked images
by first computing the distribution of masked percentages of
all images in a scene and then dropping the images whose
masked percentage is below the second mode threshold if
the distribution is multimodal.

We compare our method with NVDiffrec [30], NVd-
iffrecmc [16], SAMURAI [5], NeuralPIL [6], and InvRen-
der [50] on a subset of 10 car scenes with relatively com-
plete 360◦ viewing directions in CO3D dataset. As shown
in Tab. 2, our results are significantly better than other meth-
ods of novel view synthesis. It is worth noting that NVD-
iffrecmc performs worse than NVDiffrec because NVD-
iffrecmc enforces additional regularization[16] and also
tends to degrade the geometry as shown in Fig. 7. A more
detailed qualitative comparison with most related NVD-
iffrec methods is visualized in Fig. 8. Although its rendered
novel views look realistic in the interpolated viewing direc-

Table 2: Quantitative evaluation on CO3D dataset. [32]

Method Novel View
PSNR↑ SSIM ↑ LPIPS ↓

NVDiffrec [30] 26.29 0.925 0.086
NVDiffrecmc [16] 24.45 0.911 0.107
SAMURAI [5] 24.88 0.901 0.118
NeuralPIL [6] 25.42 0.915 0.092
InvRender [50] 24.94 0.919 0.092
Ours 29.03 0.935 0.046

tion, NVDiffrec fails to reconstruct a smooth mesh, and the
geometry artifacts lead to noisy material factorization and
unrealistic relighting results. We attribute this to the fact
that NVDiffrec uses differentiable marching tetrahedrons
with a fixed number of vertices to represent geometry, lim-
iting its ability to represent geometry and behaving unstably
under limited views.

4.5. Indirect Illumination

We further show the additional indirect illumination dis-
tillation in Fig. 9 using the Toaster scene. The model is
initialized using the pre-trained geometry, radiance and ma-
terial module and fine-tuned for another 20K epochs by
adding supervision for indirect illuminationLind and occlu-
sion Locc as described in Sec. 3.4. As shown in Fig. 9, the
learned occlusion terms for specular and diffuse occlusion
help in distinguishing the contribution of direct and indirect
illumination between the parallel breads as well as recog-
nizing the indirect color bleeding on the shiny surface of
the toaster machine. This decomposition leads to more con-
sistent albedo prediction on the bread, eliminating the effect
of complex indirect illumination. This shows that modular
indirect illumination distillation can work effectively based
on our learned representation.

4.6. Ablation Study

Material and SDF Regularization. We perform an ab-
lation study by comparing the result of NeRFactor’s syn-
thesis dataset with and without a certain factor. The results
are summarized in Tab. 1. We observe only limited per-
formance gain in relighting and albedo reconstruction re-
garding PSNR. We attribute this to the fact that the dataset
already contains high-quality input views to regularize ma-
terials. The SDF loss played a crucial role in solving the
ambiguity between geometry and material property, as it
penalizes noises in the reconstructed surface normals. As a
result, the quality of relighting results sees a large improve-
ment with the SDF loss.

Neural-PIL vs. Pre-computed Environment map.
We compare our choice of using a trainable environmen-
tal cubemap and explicitly computing the pre-integration
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Figure 8: A comparison between our proposed method and NVDiffrec [30] on real-world CO3D dataset. Although NVDiffrec
shows promising results on rendered novel views, it fails to reconstruct a plausible mesh. The geometry artifacts lead to noisy
material factorization and unrealistic relighting. our method with high-quality neural implicit field representation results in
better overall results.

Figure 9: Indirect illumination distillation. The first three are rendered images using composed illumination L, direct illumi-
nation Ldir, and indirect illumination Lind respectively in Eq. 17. The middle three images are fine-tuned material properties,
and the last two images are distilled diffuse occlusion od and specular occlusion os for Eq. 18, and Eq. 19 respectively.

𝑟 = 0.05 𝑟 = 0.2 𝑟 = 0.5 𝑟 = 1

(a)

(b)

Figure 10: Different illumination modeling methods. (a)
Using Neural-PIL [6]’s environment illumination modeling.
(b) Our proposed method.

as the lighting representation with Neural-PIL, which uses
FILM-SIREN layers [6] to learn the pre-integrated illumi-
nation by taking different roughness as network input. We
find that Neural-PIL does not impose strict integration rela-
tions among the queried environment maps across different
roughness levels. We implement Neural-PIL’s method as an
alternative to our illumination model and evaluate its ability
to reconstruct the environment illumination using NeRF’s
material scenes. As shown in Fig. 10, when queried at
roughness 1, the environment map drastically differs from
the previous levels of pre-filtered environment maps and has
a complementary color. This erroneous illumination predic-
tion violated the inherent relations across different rough-
ness levels and therefore leads to worse material repro-
ducing. On the contrary, our implementation learns high-
quality illumination, which is consistent across different
roughness levels by design and validated in Fig. 10. Ad-
ditionally, to regularize illumination, Neural-PIL resorts to

training another auto-encoder network to learn illumination
latent codes using data-driven methods. In comparison, our
method purely deduces illumination from the scene without
the need for extra data and thus reduces the induced bias
(e.g. blueish style because more sky environment maps are
collected, and lower resolution as the collected environment
is down-sampled before training the auto-encoder).

5. Conclusion

In this paper, we presented NeuS-PIR, a novel approach
for learning relightable neural surfaces via pre-integrated
rendering. Our method jointly optimizes a neural implicit
surface, a spatially varying material field, and a differen-
tiable environment cubemap, leading to high-quality recon-
struction and relighting results. Furthermore, we demon-
strated how indirect illumination fields can be effectively
distilled from the learned representations. Experimen-
tal evaluations show that NeuS-PIR outperforms existing
methods in both reconstruction accuracy and relighting per-
formance, showcasing its potential for a wide range of ap-
plications in computer vision and graphics.

Limitations. Our approach exhibits suboptimal results
when the number of input views is limited. This issue could
potentially be mitigated by incorporating data augmentation
techniques or diffusion models [44, 18, 43, 49]. While our
method is capable of handling in-the-wild data, stability re-
mains a challenge in certain cases. Inaccurate object mask
and camera pose estimation affects the decomposition of



our method. Enhancing robustness when processing such
data is an important direction for future work. Additionally,
we export explicit representations (i.e., meshes) using the
marching cubes algorithm [9], which may introduce some
loss of accuracy. Recent advances like neural marching
cubes [8] and neural dual contouring [7] could provide more
accurate explicit outputs for downstream tasks. Finally, our
current approach to indirect illumination distillation relies
on geometry occlusion multiplication to approximate more
complex masked light integration, which could be further
refined.

References

[1] J. T. Barron, B. Mildenhall, M. Tancik, P. Hedman,
R. Martin-Brualla, and P. P. Srinivasan. Mip-nerf: A mul-
tiscale representation for anti-aliasing neural radiance fields.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 5855–5864, 2021. 2, 3

[2] S. Bi, Z. Xu, P. Srinivasan, B. Mildenhall, K. Sunkavalli,
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