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Abstract

Advances in mobile cameras have made it easier to
capture ultra-high resolution (UHR) portraits, however,
existing face reconstruction methods lack specific adap-
tations for UHR input (e.g., 4096×4096), leading to
under-use of high-frequency details that are crucial for
achieving photorealistic rendering.

Our method supports 4096×4096 UHR input and
utilizes a divide-and-conquer approach for end-to-end
4K Albedo, Micronormal, and Specular texture recon-
struction at the original resolution. We employ a two-
stage strategy to capture both global distributions and
local high-frequency details, effectively mitigating mo-
saic and seam artifacts common in patch-based predic-
tions. Additionally, we innovatively apply hash encoding
on facial UV coordinates to boost the model’s ability to
learn regional high-frequency feature distributions.

Our method is easy to integrate with state-of-the-art
facial geometry reconstruction pipelines, and will signif-
icantly improves the texture reconstruction quality, fa-
cilitating artistic’s creation workflow.

Keywords: Texture Reconstruction, Face Reconstruc-
tion, Ultra-High Resolution, Single Image Synthesis

1. Introduction

Avatars play a pivotal role in virtual worlds, with broad
applications across virtual reality, gaming, and multime-
dia platforms [14]. Realistic personalized avatars bridge
the gap between physical and digital reality [14]. Achiev-
ing lifelike facial renderings requires capturing fine details
of the human face, such as pores, redness, wrinkles, and
freckles, which are essential for realism [22]. Ultra-high-
resolution (UHR) images (e.g., 4096×4096) provide signif-
icantly more detail compared to lower-resolution images

(e.g., 512×512), capturing more nuanced facial features.
While acquiring such UHR textures was once prohibitively
expensive, advancements in mobile camera technology [6]
now allow the capture of UHR portraits. However, exist-
ing methods [14, 34, 15] are typically constrained by mem-
ory and computational limitations, restricting input image
resolution to lower sizes (e.g., 256×256 or 512×512) [19].
This downsampling results in substantial information loss,
impairing the capture of high-frequency local details and
degrading texture quality.

While some existing methods aim to generate high-
resolution physically-based rendering (PBR) textures, they
primarily only use low-resolution inputs and apply super-
resolution techniques to produce high-resolution outputs.
For example, MoSAR [14] and DreamFace [55] utilize spe-
cialized super-resolution networks, such as ESRGAN [51]
and Real-ESRGAN [50], to upscale the initial raw outputs
(512×512). Although these methods leverage priors from
ultra-high-resolution datasets in their super-resolution mod-
ules, the fidelity of these outputs is still inherently limited
by the resolution constraints of the model’s input and out-
put. Consequently, these methods struggle to accurately
capture fine texture details directly from UHR inputs, re-
sulting in potential inaccuracies in the generated textures.

One reason existing methods do not directly use UHR
inputs is the significant GPU memory cost involved. Even
processing 1K resolution is computationally expensive. For
example, StyleGANv3 [24] takes over three months to train
on an NVIDIA V100 GPU with 16GB of memory at 1K res-
olution. Scaling to 4K would require 16 times more mem-
ory (256GB), making training prohibitively expensive for
many research groups.

To fully leverage 4K UHR input images, we adopt a
“divide-and-conquer” approach by splitting the 4K input
into patches and processing them individually. However,
this presents three challenges: 1) Different facial regions
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exhibit varying textures. Dividing the images does not guar-
antee that the corresponding patches from different faces
align with the same facial region. 2) Separately generating
each patch can not guarantee texture consistency and seam-
less stitching for the borders. 3) Local texture generation
often assumes near-planar geometry, otherwise, global nor-
mals may interfere with local texture (e.g. Micronormal)
prediction [20]. However, facial geometry is complex and
cannot satisfy this constraint. To address these challenges,
we introduce a Global Distribution Extraction stage (Stage
1, Sec. 3.3) that uses a downsampled image to determine
the global distribution of textures as a guide for the next
stage. Additionally, we propose a novel facial UV hash en-
coding technique to better capture regional information in
generated guidance texture by Stage 1, which not only en-
sures that Stage 1 provides global consistency for Stage 2
but also delivers substantial continuous details, facilitating
further refinement in Stage 2. Finally, we incorporate a ge-
ometry normal prior to ensure that local texture generation
remains independent of global geometry. This allows our
method to function effectively even when the original input
image is non-planar.

Our final method employs a two-stage pipeline that effi-
ciently captures both low-frequency global distributions and
high-frequency local details from the UHR input. It outputs
4K Albedo, Micronormal, and Specular textures without the
loss of detail typically caused by downsampling.

More specifically, Stage 1 (Global Distribution Extrac-
tion) employs an UNet-like network to generate the fa-
cial UV and normal maps from a downsampled 1024×1024
copy of the original input image. The UV map is then
used for facial hash encoding, which has proven effec-
tive in enhancing the network’s ability to capture both re-
gional features and high-frequency details. The input im-
age, along with the UV map, Normal map, and features pro-
duced by the hash-encoding, are concatenated and passed
into the Global Distribution Extractor. This module out-
puts 1024×1024 Albedo, Micronormal, and Specular maps,
which serve as guides for the subsequent stage, maintaining
global consistency when predicting details across different
patches.

In Stage 2 (High-Frequency Detail Refinement), we
splitting the original input into 8×8 patches, each with a res-
olution of 512×512. These patches are processed individu-
ally to predict detailed PBR texture patches. The patches
are then reassembled and post-processed to generate the fi-
nal output. The guide textures produced by Stage 1 offer
a coarse prediction, enabling Stage 2 to focus on refining
high-frequency texture details.

By fully utilizing UHR input images, our method gener-
ates 4K textures with rich high-definition details, greatly en-
hancing artists’ productivity. Additionally, our approach is
completely independent of geometric reconstruction, func-

tioning as a plug-and-play module that can significantly im-
prove texture quality in existing facial geometry reconstruc-
tion methods.

In summary, this article makes the following contribu-
tion:

• We propose a novel two-stage 4K facial PBR
texture reconstruction pipeline that fully leverages
4096×4096 UHR inputs, ensuring consistency across
local detail patches via global guidance. Additionally,
the geometric normal prior is designed to alleviate the
planar assumption for local detail prediction.

• We introduce a novel facial region encoding tech-
nique, which enhances the network’s ability to adap-
tively learn regional texture distributions, leading to
improved prediction of fine details.

• Experiments demonstrate that our method significantly
enhances facial texture reconstruction quality. It op-
erates independently of geometric reconstruction, al-
lowing for easy integration with state-of-the-art facial
geometry pipelines. Leveraging advancements in mo-
bile camera technology, our approach opens the door
to even higher-quality single-image facial reconstruc-
tion in the future.

2. Related Work

2.1. 3D Face Reconstruction

3D face reconstruction, which focuses on recovering 3D
facial shapes, expressions, and textures from 2D images,
has been extensively explored in the literature [58]. Al-
though accurate geometry estimation can be achieved in
controlled environments, such as using multiple cameras in
a light stage setup [12], these methods are expensive and
time consuming, restricting their use in broader applica-
tions. This motivated research on facial rendering asset re-
covery from a single image, which enables a wider variety
of applications.

Monocular reconstruction is typically treated self-
supervised by modeling parametric scenes that include ge-
ometry, lighting, reflectance, and camera parameters [12].
These approaches can be broadly categorized into those
based on parametric geometry models such as 3D Mor-
phable models [9] (3DMM) and those that attempt to re-
cover unconstrained geometry [39, 44, 53], which go be-
yond 3DMM priors.

Within the 3DMM framework, methods based on lin-
ear 3DMMs [10, 11, 13, 15, 17, 33, 43, 47, 57] are re-
stricted by the statistical priors of the model, limiting ex-
pressiveness in reconstruction. To overcome these limi-
tations, learning non-linear substrates or texture decoders
[8, 41, 49, 48, 57] significantly improves the expressiveness



of 3DMM. Moreover, in some recent work, the differen-
tiable rendering pipeline [27] facilitates many reconstruc-
tion methods learning directly from images.

Recently, with the further development of deep learn-
ing, many works focusing on implicit face modeling have
achieved promising results. Along with the advances in
DDPM theory [21], approaches using diffusion-based neu-
ral renderers for rendering high-fidelity human faces have
also emerged [30]. Notably, with the advent of 3D Gaus-
sian Splatting (3DGS) [28], a variety of methods based on
this approach have emerged [38, 52, 45]. In particular, [42]
shows highly realistic submillimeter-level relighting results,
which have significant potential for future face-to-face in-
teractions with VR or MR. However, these methods typi-
cally require a large amount of multiview, well-calibrated
datasets and do not directly generate explicit geometry and
textures, which may be challenging to integrate into most
current rendering pipelines or require additional adaptation
efforts.

2.2. High Resolution Facial Texture Generation

High-fidelity asset details are critical for achieving re-
alistic computer rendering results, especially in facial ren-
dering. Humans are particularly sensitive to the appear-
ance of face [35], making the acquisition of high-fidelity
rendering assets important to enhancing perceptual realism.
As mobile device cameras continue to improve, capturing
high-definition (4K) portraits is becoming increasingly ac-
cessible. Therefore, leveraging these high-resolution inputs
to generate ultra-high-resolution (UHR) facial textures be-
comes a valuable topic.

Supported by differentiable rendering techniques, some
methods utilize self-supervised and weakly supervised
learning to reconstruct high-fidelity facial textures [13, 17].
Other approaches are based on texture decoders [46, 18, 32,
48], employing StyleGAN2 [26]to generate high-resolution
UV textures, followed by 3D face geometry matching algo-
rithms (e.g., 3DMM base) to find the optimal latent code for
reconstruction.

FitMe [32] and Relightify [37]leverage real-world
albedo datasets from AvatarMe++ and employ diffusion
models [21]and GAN tuning [40]to extract albedo tex-
tures from in-the-wild images. Similarly to our goal, UV-
IDM [34] focuses on reconstructing facial textures in UV
space, and using existing BFM-based 3D face reconstruc-
tion methods to get geometry. For input images, UV-IDM
maps facial region to the UV space as a condition for a latent
diffusion model to complete the texture, while their output
resolution is limited to 256x256. Similar to UV-IDM, our
tasks of high-quality UHR texture generation and geometry
matching are decoupled. We chose HRN [33] as our ge-
ometry matching algorithm because it employs a coarse-to-
fine multi-stage iterative strategy, which excels at capturing

high-frequency geometric details of the face.
MoSAR [14] reconstructs relightable avatars using high-

quality light stage data, supporting the generation of 4K tex-
tures. However, their original input and output texture res-
olutions are limited to 512x512, which does not fully uti-
lize the information in 4K input images. Their results are
upsampled to 4K using a super-resolution network (ESR-
GAN), which potentially leads to texture pattern distortion.
Additionally, their method relies on expensive high-quality
light-stage data.

Recently, generative high-resolution avatars have be-
come a prominent research topic, such as UltraAvatar
[56]and DreamFace [55], which support both text and im-
ages as input to generate geometry and textures. In par-
ticular, DreamFace supports 4K input images and produces
up to 4K high-fidelity albedo, micronormal, and specular
textures. DreamFace utilizes a two-stage framework, lever-
aging a diffusion model to learn priors from a large-scale,
high-quality dataset. This approach enables the generation
of textures that not only ensure overall consistency with the
input but also effectively preserve fine details. However,
similar to MoSAR, DreamFace’s pipeline does not generate
4K textures in an end-to-end manner, but instead by apply-
ing super-resolution (Real-ESRGAN [50]) on 512 × 512
raw output. In contrast, our method adopts a divide-and-
conquer approach, directly reconstructing textures from
high-resolution inputs in an end-to-end fashion. This strat-
egy maximizes the retention of high-frequency details from
the input without the need for super-resolution, resulting in
superior preservation of fine details. Our method demon-
strates better performance in maintaining subtle features,
and we present a detailed comparison with DreamFace’s re-
sults in our paper.

3. Methods

In this section, we introduce our two-stage approach to
reconstruct ultra-high resolution PBR facial textures. As il-
lustrated in Figure 1, our method has two main stages: in
Stage 1, the target is to obtain the global texture distribu-
tions as guidance for next stage. In Stage 2, original input
is split into 8×8 patches, each with a resolution of 512×512,
which are processed individually to predict highly detailed
PBR texture patches. These patches are then reassembled
and post-processed to produce the final high-resolution out-
put.

3.1. Preliminaries

Facial UV Texture Space. Facial texture distribution
is highly region-specific [7], making an accurate positional
encoding essential for the network to learn these patterns
effectively. Instead of using facial segmentation masks [56]
or landmarks [29] , we leverage UV coordinates for more
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Figure 1. Our method’s pipeline consists of two stages. In Stage 1, the input is downsampled to 1024x1024 and fed into Normal&UV pre-
dictor network to generate facial Normal and UV maps, with the UV map used for hash encoding of the facial region. 8 channels encoded
features, combined with the Input, Normal, and UV maps, which are all in 1024*1024, are then processed by the Global Distribution Ex-
tractor (GDE) to produce 1024x1024 guide textures. In Stage 2, the input is split into 8x8 patches of 512x512. Each patch is concatenated
with the corresponding region’s cropped and upsampled Normal and UV maps from Stage 1, then passed through the High-Fidelity Detail
Refiner (HFDR), producing 512x512 Albedo, Micronormal(microN.), and Specular(spec.) outputs. These patches are then assembled,
post-processed, and mapped to the given geometry’s UV space to produce the final texture.
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Figure 2. Visualization of the output features of the hash-encoding
module. PCA is performed on the output 8-channel features of
the hash-encoding module, and the three channels with the highest
weights are visualized.

precise localization of facial regions. Specifically, we train
a UNet (Normal&UV predictor) to map input RGB images
to both UV and Normal maps, formulated as:

RH×W×3 → RH×W×5

Here, RH×W×3 represents the RGB input, and RH×W×5

contains the unified UV coordinates (first two channels)
and normalized normal maps (last three channels). Normal
maps are normalized as:

n =
nraw + 1

2

Data from [1] and rendered via Blender Cycles [2] are used
for training Normal&UV predictor.

Geometry and Texture Mapping. We use HRN [33]
as the geometric basis to capture detailed shapes. The ge-
ometry, G(β, Vγ ,Mσ), is formed using blendshape coeffi-
cients β, deformation map Vγ , and displacement map Mσ

extracted from input. NvDiffrast [31] is then used to map
our output textures from image space to UV space, opti-
mizing by minimizing the difference between the rendered
geometry and the input image.

Ltexture =
∑
i,j

∥Timage(i, j)−R(G(β, Vγ ,Mσ), TUV)(i, j)∥22

where R(G(.), TUV) represents the rasterized geometry
with the UV texture, and Timage is the texture in image space.

3.2. Geometry Normal Prior

In the texture asset reconstruction task, our goal is to re-
construct Albedo, Micronormal, and Specular maps, which
are wrapped on the geometric surface. Directly reconstruct-
ing local detail from the image space input to the texture
space necessitates the assumption that the object itself is
planar or near-planar, as described in [20]. However, the
lack of prior knowledge about global geometry normals
can potentially negatively affect the prediction of the lo-



cal Micronormal, especially for Micronormal prediction on
small patches due to a limited receptive field. Without a
global normal guidance, the network may incorrectly fuse
the global geometry normal with the local Micronormal.

Therefore, we additionally train a Normal&UV predic-
tor (module in Stage 1) to predict the UV and geometry
normal distribution for given input, and utilize the obtained
UV and normal predictions as auxiliary inputs for GDE and
HFDR. With the assistance of global normal, the network
can effectively focus on learning the Micronormal distribu-
tion in the texture space, which can be expressed as follows:

||f(Iraw)− nmicro||2 ≥ ||f(nglobal, Iraw)− nmicro||2 −∆

where nglobal is normal aquired by Normal&UV predictor,
and ∆ is a constant that indicates the reduction in learning
effort for f to converge to nmicro when relying solely on
the raw image Iraw. This demonstrates that the predicted
global normal facilitates the model to learn the subtle and
high frequency in Micronormal distribution. Meanwhile,
additional geometry normal prior also alleviating the pres-
sure of model’s relighting process when predicting Albedo
and Specular maps. In the comparison shown in Figure 7, it
can be observed that our method is less affected by self-
shadowing caused by geometry, resulting in cleaner and
more refined albedo outputs.

HFDR 
Only

GDE+
HFDR

input

Figure 3. Directly stitching the texture maps from HFDR results
in noticeable inconsistencies across patches. In this case, the input
image (4096×4096) is divided into 64 non-overlapping 512×512
patches, with each processed independently by HFDR.

3.3. Global Distribution Extraction (Stage 1)

Given the raw input image Iraw, in Stage 1, the goal is to
obtain the global texture distribution, which serves as guid-

ance for Stage 2. The guide textures generated in Stage 1
provide coarse guidance, allowing Stage 2 to focus the net-
work’s capacity on refining high-frequency texture details,
and more importantly, maintains global consistency when
predicting details across different patches. In this stage,
the involved modules include the Normal&UV Predictor (as
discussed in Sec 3.2), the Facial Hash Encoding module,
and the Global Distribution Extractor.

Facial Hash Encoding.
For facial reconstruction tasks, an effective spatial en-

coding method is crucial due to the strong correlation be-
tween different facial regions and their corresponding tex-
ture distributions. Proper encoding enhances the network’s
ability to efficiently learn the distribution of facial details,
particularly in areas like the lips and eye corners, where
the texture and color typically differ from other parts of the
face.[22]

Previous works [56] typically employ a facial segmen-
tation network to segment the face and use the predicted
mask as part of the auxiliary input. Other works leverage
facial landmarks [29] for the same purpose. Although these
approach is straightforward and easy to implement, leverag-
ing priors learned from large datasets of facial images, the
predicted results only provide a very coarse spatial encod-
ing. For example, a part of mask encodes an entire region
with a single ID, while landmarks only provide relative po-
sitions for eyes, nose, etc., lacking finer granularity, which
potentially reduces the network’s ability to adaptively cap-
ture subtle details. [23]

To further enhance the Global Distribution Extractor
(GDE) ’s network’s ability to adaptively learn the subtle
differences in texture distributions across various facial re-
gions, we apply hash encoding [36] to the UV coordinate
map of the face predicted by Normal&UV predictor in this
Stage. The Normal&UV predictor generates 2D coordi-
nates of the face within a unified UV space, represented
as (u,v) ∈ R2. These coordinates serve as inputs to the
hash encoding, allowing the network to better capture fine-
grained texture details across the face.

The hash encoding consists of multi-layers of multires-
olution hash table of trainable textures whose values are
optimized through stochastic gradient descent. This com-
pact representation helps the network capture complex spa-
tial patterns and fine-grained details in high-resolution data.
Specifically, we define the number of learnable hash tex-
ture levels as L = 4, with nF = 2 features per texture
level, yielding a final output of C = L × nF = 8 chan-
nels after hash encoding During training, we observed that
an 8-channel hash encoding was sufficient, as increasing the
number of channels did not yield significant improvements
and instead led to slower training speeds.

Our hash encoding module is jointly trained with the
Global Distribution Extractor (GDE) network, allowing the



gradients from GDE to optimize the features in hash encod-
ing module, which can be expressed as:

H
(k+1)
optimized = H

(k)
optimized +∇LGDE(H

(k)
optimized)

where H denotes features in hash textures in hash encoding
module, and ∇LGDE(H) denotes the gradient of the loss
function propagated to the hash-encoded features, which
enables the model to learn the prior closely related to the
UV distribution of the facial geometry.

By performing principal component analysis (PCA) on
the 8-channel features output by the hash-encoding module,
we extract the 3 most weighted features and make visualiza-
tion, please refer to Figure 2. It shows that hash-encoding
can learn the feature distribution of different regions of the
face. In the Ablation Study, we quantitatively compare the
prediction quality of the GDE after removing hash encoding
module.

Global Distribution Extractor.
For ultra-high-resolution inputs, such as 4096x4096 tex-

tures, directly feeding them into the network is impractical
due to the memory size restriction on current GPUs, mak-
ing training inpractical. As a result, it is a common practice
to divide the image into patches for localized predictions.
However, limiting the network’s input to individual patches
results in a significant loss of global contextual informa-
tion, thereby constraining the receptive field and making it
insufficient for capturing broader texture distributions. The
absence of constraints on the texture value distribution from
neighboring patches causes the average distribution of each
patch to fluctuate independently. This lack of coherence of-
ten leads to noticeable blocky artifacts and mosaic effects
between adjacent patches. Such issues typically arise when
the network relies solely on local information, without in-
corporating global context (see Figure. 3).

To enhance the capability of the High-Frequency Detail
Refiner (HFDR) module in capturing long-range structured
dependencies, we introduce additional module, Global Dis-
tribution Extractor (GDE), which is designed to capture
global long-range contextual features. However, as noted
in Sec.3.2, directly using RGB images as input for either
the GDE or HFDR modules conflicts with the near-planar
prior assumption. To address this, we leverage the outputs
of the Normal&UV Predictor as auxiliary inputs, providing
additional global geometric distrubution and ensuring that
both modules can better capture the subtle high-frequency
detail context of the face.

Our GDE module consists of a 12-layer UNet-like back-
bone architecture. The input is downsampled to a resolution
of 1024× 1024, then, the Normal&UV predictor is used to
predict the corresponding UV and normal maps:

{UVpred, Npred} = Fuv-normal(Idownsampled)

The predicted UV distribution is used in Facial Hash En-
coding to generate an 8-channel feature map. This, along
with the downsampled input, predicted UV, and normal
maps, are concatenated as input:

XGDE = Idownsampled ⊕ UVpred ⊕Npred ⊕ Fencoded

This concatenated input is then fed into the GDE network,
producing a 7-channel output:

Goutput = GDE(XGDE)

where Goutput = [Gg albedo,Gg micronorm,Gg spec], with
Gg albedo ∈ R3, Gg micronorm ∈ R3, and Gg spec ∈ R1. Here,
g denotes the abbreviation for ’guidance’, which will serve
as the guiding features for HFDR in subsequent stage.

The optimization objective of the GDE network is a
weighted combination of L1 Loss and Laplacian Loss. We
observed that Laplacian loss enhances the network’s abil-
ity to perceive and learn high-frequency textures more ef-
ficiently. This is especially crucial for capturing fine de-
tails such as skin pores, wrinkles, and other subtle features,
which are likely missed by standard L1 loss alone. The total
loss is formulated as follows:

Ltotal = λ1LL1 + λ2LLaplace,

where λ1 = λ2 = 1. The Laplacian loss, LLaplace, is com-
puted using a convolution with a Laplacian kernel to per-
ceive sharp spatial discontinuities, encouraging learning in
high-frequency distributions. The kernel K is defined as:

K =

0 1 0
1 −4 1
0 1 0

 .

Given above kernel, the Laplacian loss is implemented as
follows:

LLaplace(K) = E [|FLaplace(P)− FLaplace(K)(T)|] ,

where FLaplace represents the 2D convolution operation us-
ing the Laplacian kernel K, P is the predicted texture, and
T is the target texture. Both loss is computed over all chan-
nels.

Notably, GDE module is trained independently rather
than in a cascaded manner with the HFDR. We observed
that joint training in a cascaded setup results in the GDE
module being continuously influenced by the gradients
from the HFDR’s patch receptive field. This interference
hinders the GDE’s ability to focus on global context, ulti-
mately decrease its capacity to guide the HFDR effectively.

3.4. High-Frequency Detail Refinement (Stage 2)

To obtain ultra-high-resolution (UHR) textures with rich
local details, we need to predict highly detailed PBR tex-
tures at the original resolution level, therefore maximize the



utilization of the detail information within the UHR inputs.
Patches are processed individually in this stage, taking ad-
vantage of the global guidance of Stage 1 to maintain over-
all consistency.

At this stage, the raw input image is cropped into 8 × 8
patches, each of size (512x512). The guidance texture from
the GDE is split into 64 patches (128x128), which are then
upsampled to match the patch resolution (512x512). These
upsampled patches are concatenated with the features of last
hidden layer of HFDR, guiding its final output. The 64 re-
sulting patches are subsequently assembled to form a com-
plete 4096 × 4096 output. To further smooth the seams
between patches, we apply a Gaussian filter to convolve the
adjacent regions between the patches. Finally, the predicted
4096×4096 PBR textures from the original image are un-
wrapped into the UV texture space of the given geometry
using nvdiffrast [31], and the blank areas are inpainted ac-
cordingly.

G
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l

MicroNormal Albedo

Figure 4. Illustration of the output of GDE, as compared with the
final prediction after HFDR (Final). Closeups are shown in this
case. Note that fine details in the input are missing in the output of
the GDE of Stage 1.

High Frequency Detail Refiner.
Given the guidance texture from the GDE module,

the HFDR module can more efficiently focus on captur-
ing high-granularity, high-frequency local features within
patches. Similar to GDE, HFDR consists of a UNet-like
backbone. The input consists of the original resolution im-
age, which is cropped into 512× 512 patches, and concate-
nated with the upsampled predicted UV and normal patch
in the same position. The guidance from GDE is concate-
nated with the 17th hidden layer features of HFDR, signif-
icantly reducing the burden of predicting the overall tex-
ture distribution for HFDR. This also introduces long-range
contextual information into HFDR, mitigating discontinu-
ities between the distributions of adjacent patches. The loss
function of HFDR is similar to that of GDE, consisting of
a L1 loss and a Laplace loss, but the weight ratio between

them is set to 1:2, as shown in the equation below:

LHFDR = LL1
+ 2 · LLaplace

This allows HFDR to focus more on learning high-
frequency detail patterns.

before

after

Figure 5. Comparison before and after seam post-processing. Af-
ter postprossing, the slight discontinuities between patches be-
come smoother.

Assembling and Postprossing.
Given 64 patches Pi,j of size 512 × 512, where i, j ∈

{0, 1, . . . , 7}, we assemble them according to their original
positions to form an initial output of size 4096× 4096:

Output(x, y) = P⌊ x
512⌋,⌊ y

512⌋(x mod 512, y mod 512)

With the assistance of the global guidance from the GDE
module, the discontinuities between different patches in the
output are significantly reduced. However, due to resolu-
tion limitations, GDE cannot capture high-frequency fine-
grained details. As a result, there may still be noticeable
seams where the patterns do not match perfectly at the patch
boundaries. To address this issue, we apply anisotropic
Gaussian filtering to region of the horizonal and vertical
seam, achieving both seam smoothing and the preservation
of certain local high-frequency patterns. Specifically, we
process the regions adjacent to the seams with a padding
size of 8 pixels. For horizontal seams, we apply a Gaus-
sian kernel defined by x = 2 and y = 16; for vertical
seams, we use a convolutional kernel with x = 16 and
y = 2. Both convolutional kernels have a standard deviation
of σ = 5. The results demonstrate that this approach effec-
tively reduces the impact of seam artifacts, as shown in Fig-
ure 5. After obtaining the processed output, it needs to be
transformed from the image space to the corresponding UV
space of the specific geometry. As explained in the Prelim-
inaries 3.1 , we reconstruct the geometry using the method
[33], and utilize NvDiffrast [31] to optimize the texture in
the UV space. This is achieved by minimizing the loss be-
tween the predicted image-space texture and the projected
(or rasterized) texture in the UV-space, effectively ”unwrap-
ping” the predicted image-space texture onto corresponding
UV coordinates. To capture the predicted output with the
highest fidelity as possible, we employ a cascaded texture



optimization strategy, with the highest texture resolution set
to 8192× 8192, then downsampling it to 4096× 4096. Fi-
nally, we interpolate the resulting UV space texture with
a predefined texture. The interpolation weights are deter-
mined based on the average color of the facial region.

4. Implementation

4.1. Dataset

Our dataset is sourced from the online asset shop [1],
which includes a collection of 82 head assets with albedo,
micronormal, and specular texture maps up to 8K. The
training and testing sets are split in a 5:1 ratio, with the test-
ing set used to evaluate texture reconstruction quality. For
generating synthetic data in 4096 × 4096, we select 20 dif-
ferent environment maps and rotation settings to light the
heads and introduce perturbations to the camera angles to
enhance robustness. We render the assets using Blender’s
Cycles [2] renderer, with the sample count set to 1024
spp. The material is defined using Blender’s built-in Prin-
cipled BSDF shader, specifying the diffusecolor, normal,
and specular texture slots. The renderer outputs 4096x4096
radiance images of the front-facing head, along with corre-
sponding Albedo, Micronormal, and Specular maps. The
wild images used for testing come from the web, and since
this dataset lacks ground-truth textures, it is used to assess
the network’s generalization capabilities on wild images.

4.2. Training

The modules requiring training consist of the Nor-
mal&UV predictor, the hash-encoding module, the Global
Distribution Extractor(GDE) module, and the High Fre-
quency Detail Refiner(HFDR) module. All networks are
optimized using the Adam [16] optimizer, with an initial
learning rate of 0.001, and a learning rate reduction strategy
with the ReduceLROnPlateau [5] scheduler, where patience
is set to 5. For Normal&UV predictor, we observe conver-
gence after training for 56 epochs. For GDE and HFDR
modules, we performed end-to-end training for the hash-
encoding module and GDE modules first, then froze their
weights and trained the HFDR module separately. The GDE
and hash-encoding modules were trained for 600 epochs,
taking approximately 2 days on an Nvidia RTX 4090; the
HFDR module was trained for 40 epochs, taking about 5
days on the same device setting.

5. Experiments

To verify the effectiveness and efficiency of the proposed
method, we conduct several experiments on both synthetic
data and high resolution wild image data. Note that these
test cases are never involved in training. For both types
of data, we implement a diverse collection across various
races, genders, and age groups, to ensure comprehensive

representativeness. For synthetic data, we ensure that the
facial area occupies as large a portion of the image as pos-
sible during data generation, in order to fully leverage the
high resolution of the input images. For wild image data,
although there may be fluctuations in resolution depending
on various data source, we guarantee the resolution of the
primary facial area is more than 3000 pixels. Both types of
data will be crop according to the facial area and resizing
to the input size of 4096x4096. We compare our method
against several baselines in image-to-avatar generation with
physically based rendering (PBR) textures (DreamFace [55]
and NextFace [15]).

Experiment Setup. For all test methods, including ours,
we retain the original resolution of the generated geometry
and texture assets, importing them into a unified Blender
rendering pipeline. We do not enforce a uniform UV map-
ping across different methods; instead, each method’s na-
tive UV mapping is preserved. For NextFace, we use the
upsampling module provided in their official implementa-
tion to get 2K texture. For DreamFace, we utilize the ’detail
shot’ mode available on their official website, generating as-
sets at the highest resolution (4K) permitted by the platform
to fully leverage DreamFace’s capabilities, and the down-
loaded assets are then imported via DreamFace’s Blender
importer [3], where we retain the albedo, normal map, and
specular map settings, with all other parameters kept con-
sistent across methods for a fair comparison. For NextFace
and our method, we use the Principled BSDF [4] material
node, setting the albedo, normal, and specular texture in-
puts, and assigning any missing values to standardized de-
faults. For the same test samples, we use identical environ-
ment maps and viewing angles to ensure consistent lighting.
We set the sample count to 1024 samples per pixel (spp).

Method Albedo MicroNormal Specular

SSIM↑ LPIPS↓ SSIM↑ LPIPS↓ SSIM↑ LPIPS↓
DreamFace 0.852 0.173 0.672 0.261 0.713 0.243
NextFace 0.666 0.371 - - 0.604 0.481
Ours 0.903 0.066 0.732 0.141 0.764 0.088

Table 1. Results of quantitative comparison of our method with
DreamFace and NextFace.

5.1. Performance Analysis on Synthetic Data

All tests were performed on a PC with an Intel i9-
14900KF CPU, 32 GB RAM, and a NVIDIA GeForce RTX
4090 GPU. For a single test sample, our method completes
the entire reconstruction pipeline in under 40 seconds, faster
than DreamFace, which takes approximately 2 minutes, and
NextFace, which exceeds 5 minutes. Notably, other meth-
ods require downsampling the input image to meet input
size constraints, whereas our method can directly process
4K inputs at full resolution, while maintaining high effi-
ciency and reasonable GPU memory usage.
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Figure 6. Quality comparison of reconstruction between ours method and DreamFace (DF in short) on synthetic data, test samples used are
excluded from any training. Our method is able to directly reconstruct textures from 4096x4096 input, without supersampling network,
which allows us to capture extremely high-frequency and subtle details from input, such as facial capillaries and pores, in an end-to-end
manner. Compared to DreamFace, our method does not tend to bake shadows into the albedo, resulting in cleaner and more accurate texture
reconstruction.
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Figure 7. Comparison of texture reconstruction quality between Ours and DreamFace methods. Our pipeline shows better quality in terms
of texture clarity and detail. As shown, DreamFace tends to bake shadows into the texture (row 1 and row 2), whereas our end-to-end
pipeline precisely reconstructs high-frequency details, such as skin’s micro-topography , which are difficult to achieve by methods like
supersampling to 4K. Please zoom in to see the details.

To assess the reconstruction capabilities of the compared
methods for ultra-high-resolution inputs, we utilized syn-
thetic data containing Albedo, MicroNormal, and Specu-
lar ground truth (GT) to perform a quantitative analysis.
For all methods, the evaluation region was defined as the
overlapping area of the frontal projections from the aligned
geometries, with the corresponding results shown in Table
1. The visual comparison of reconstructed albedo between
ours and DreamFace is presented in Figure 6, which in-
cludes both the overall head result and zoomed-in views of
the albedo maps. In the cases illustrated in Figure 6, our
method outperforms DreamFace in terms of texture clarity
and fidelity, while the maps generated by DreamFace ex-

hibit notable deficiencies in high-frequency detail. Specif-
ically, in the left case, our approach successfully recon-
structs subtle details (e.g. facial blood vessels and subtle
chin wrinkles), while DreamFace tends to produce a blurrier
and more fused pattern, even at 4K resolution. We attribute
this discrepancy to the loss of significant high-frequency
details resulting from the downsampling process employed
by DreamFace. Although DreamFace’s robust augmenta-
tion module leverages priors learned from extensive high-
resolution datasets and upsamples its original output from
512×512 to 4096×4096, the absence of pixel-to-pixel cor-
respondence at the same resolution hampers its ability to
accurately restore high-frequency details from the input.



Instead, it generates unbounded content based on a rela-
tively lower-resolution original output. Furthermore, our
predicted albedo are generally closer to the ground truth
(GT) in terms of base color. Additional comparisons can
be found in Figure 9.

Input NextFaceDreamFaceOurs

net2
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Albedo

MicroN. Spec. MicroN. Spec. spec.Input patch

MicroN. Spec. MicroN. Spec. Spec.Input patch

Albedo

Figure 8. Comparison of head relighting results and zoomed-in
views of the reconstructed textures demonstrates that our method
produces cleaner, more accurately restored high-frequency details.

5.2. Wild Image Reconstruction

We conducted extensive tests on high-resolution wild in-
put images across a wide range of ages, genders, and ethnic-
ities to evaluate the reconstruction capabilities of different
methods. The performance of these methods is illustrated
from three perspectives: 1) the clarity and detail of rendered
results, as shown in Figure 7; 2) a zoomed-in comparison of
texture details, presented in Figure 8; and 3) a visualization
of global comparison of the radiance and albedo maps gen-
erated from different inputs, as shown in Figure 9.

Among the methods compared, we observed that Dream-
Face performs well in maintaining consistency between the
frontal renderings and the input, particularly in areas like
the major facial folds on the sides of the nose and the shad-
ows under the lower lip. However, as shown in Figure 7,
DreamFace’s strong emphasis on input consistency results
in shadows being baked into the generated albedos, which
is shown in the first and second rows of Detail 1 in Figure
7, where after relighting, the lower lip region still exhibits

overly deep artifacts. In contrast, our method outperforms
in both clarity and high-frequency detail, with significantly
fewer baked-in shadows and artifacts. The incorrect self-
occlusion baking is even more evident in the comparison
around the eyes in the third row of Figure 7. DreamFace
tends to bake self-shadows from fine wrinkles around the
eyes directly into the albedo, aiming for input consistency.
This results in unnatural dark streaks in the albedo, which
are unlikely to appear in real skin, leading to color inconsis-
tencies in albedo. We hypothesize that this phenomenon is
due to DreamFace struggles to differentiate between local
shadows caused by geometric self-occlusion and inherent
skin properties in the input. Leveraging our end-to-end re-
construction strategy and facial hash encoding, our method
successfully mitigates the influence of self-shadowing from
geometric details while preserving high-frequency texture
details, resulting in albedo maps with a more consistent and
accurate color distribution.

In the comparison shown in Figure 8, we evaluate the
quality of ultra-high-resolution texture reconstruction be-
tween DreamFace, NextFace, and our method. Due to
image size limitations, we present the texture details us-
ing a zoom-in approach. As illustrated in Figure 8 ,our
method, which employs a patch-based strategy and lever-
ages hash encoding to capture local texture distributions
via self-attention, enables pixel-to-pixel reconstruction of
the input image at its original resolution. This results
in significantly better reconstruction of albedo, micronor-
mal, and specular high-frequency details, which are gen-
erally more robust and faithful compared to those gener-
ated by other methods. For DreamFace, since its textures
are obtained via upsampling on 512x512 original output, it
blends priors learned from other distributions to compensate
for the missing details, which leads to unbounded outputs
and a tendency to generate disorganized patterns for high-
frequency reflectance, which is particularly noticeable in
the Micronormal map. As for NextFace, its reconstruction
strategy heavily relies on differential path tracing, a method
that highly depends on accurate light transport modeling
[54]. The quality of its texture reconstruction is therefore
strongly correlated with the correctness of environmental
lighting estimation. However, accurately estimating envi-
ronmental lighting in monocular image reconstruction tasks
is highly challenging, which cause some features to be in-
correctly baked into the predicted environment map, result-
ing in degraded albedo quality. Consequently, shadows and
highlights are incorrectly merged into the albedo, leading to
unrealistic skin tones, as seen in Figure 9.

5.3. Ablation Study

hash encoding ablation.
Figure 2 shows the principal component analysis (PCA)

performed on the features generated by hash encoding and
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Figure 9. Examples of generated radiance or albedo textures from
in-the-wild images using UV-IDM, DreamFace, NextFace and our
method. The skin tones reconstructed by our method more closely
match the input compared to other approaches.

Metrics Albedo MicroN Specular
SSIM w/ Hash 0.55 0.42 0.21

SSIM w/o Hash 0.52 0.43 0.21
PSNR w/ Hash 15.10 6.11 12.62
PSNR w/o Hash 13.54 6.08 12.51

Table 2. SSIM and PSNR quality comparison for GDE’s output
feature between variants with and without Hash Encoding. It can
be observed that the encoding module helps GDE learn the distri-
bution of albedo in different regions.

visualized the three most significant channels. The visual-
ization shows that applying UV hash encoding to the face
allows the model to adaptively learn the distribution of dis-
tinct features across different facial regions from dataset,
which benefits the predictions made by the GDE module in
a manner similar to self-attention. To further validate the
impact of the hash encoding module on the ability of the
GDE network to learn global features, we conducted an ab-
lation study. In Figure 10, we compare the quality of the
output features with and without the hash encoding mod-
ule. As shown, adding the hash encoding module enhances
the GDE’s ability to learn region-dependent distributions.
Notice the lip area: while the variant without hash encoding
captures the overall albedo distribution well, it struggles to
distinguish the color differences in the lips. We tested both
variants on the test set, evaluating texture reconstruction
quality using SSIM, LPIPS and PSNR metrics, and found

an improvement after adding the hash-encoding module, as
shown in Table 2.

GT

w/ 
hash

w/o 
hash

Figure 10. Comparison for GDE variant w/ and w/o hash encod-
ing module. from up to bottom: GT, w/ hash encoding, w/o hash
encoding. Adding hash encoding module can boost the GDE’s
ability on region dependent features, see lips’ color. Meanwhile,
hash encoding can enhance GDE’s high-frequency feature predict
quality.

input albedo

specularmicronormal

Figure 11. Failure case. Our approch does not explicitly model
external occluders, such as glasses or hairs.

6. Limitation and Future Work

Our method does not explicitly model external occlud-
ers, such as glasses or hair, which can sometimes be baked
into the Albedo map, and affect the quality of the Mi-
cronormal and Specular maps (see Figure 11). Addition-
ally, due to dataset distribution biases, the reconstruction
quality for certain ethnic groups may degrade slightly due
to the scarcity of training data. A promising future direction
could involve leveraging widely-used datasets like FFHQ
[25] to learn coarse priors, followed by fine-tuning with
high-resolution datasets to capture high-frequency details.
This hybrid training approach could potentially enhance the
generalizability of the model, and we leave this as an inter-
esting direction for future exploration.

7. Conclusion

In this paper, we have proposed a novel approach for re-
constructing 4K Albedo, Micronormal, and Specular tex-
tures directly from ultra-high-resolution portrait images.
Our approach addresses the limitations of many previous



facial texture reconstruction methods, which couldn’t han-
dle ultra-high-resolution (UHR) input end-to-end, and re-
sults in substantial information loss by input downsampling.
Our two-stage approach fully leverages 4K UHR inputs and
captures high-frequency detail textures while maintaining
global consistency. In addition, we utilize a novel facial
hash encoding method to enhancing the network’s ability to
capture both regional features and high-frequency details,
and use global normal prior to address the near-planar as-
sumption. Experiment results have demonstrated that our
method substantially enhances physically-based rendering
(PBR) texture reconstruction quality. Its independence from
geometric reconstruction allows for easy integration into
state-of-the-art facial geometry construction methods. Fur-
thermore, by leveraging advances in mobile camera tech-
nology, our approach sets a new standard for single im-
age facial reconstruction, opening the door to even higher-
quality results in future applications.
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