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Abstract

Texture synthesis aims to generate larger textures re-
sembling an input exemplar, which is crucial for appli-
cations like scene rendering, 3D model texturing, and
virtual environment design. Despite great advances in
the field, texture synthesis remains a challenging task.
This is due to the rich space of appearances covered
by textures, with varied statistical and spatial char-
acteristics, sometimes varying within the texture itself
(e.g. non-stationary textures). This paper introduces
a feature-enhanced diffusion network (FEDNet), which
is trained on pairs of large and small patches cropped
from the input. FEDNet ensures both fidelity and di-
versity through two key techniques: 1) A frequency-
aware residual block (FARB) enhances feature extrac-
tion during the down-sampling step of the UNet; 2) A
feature fusion connection (FFC) integrates spatial his-
togram layers into skip connections. By capturing the
overall structure and texture attributes of the input ex-
ample, FEDNet can expand the input and its sub blocks
after training. Additionally, our model is capable of con-
tinuously extending textures through cascading. Exten-
sive experiments demonstrate our method’s improved
performance over state-of-the-art approaches in both
stationary and non-stationary texture synthesis tasks.

Keywords: Image manipulation, Texture synthesis,
Diffusion-based generation, Non-stationary texture.

1. Introduction

Texture synthesis refers to the task of generating novel
textures that accurately capture the visual features and
structural attributes of a given texture exemplar. In the field
of computer graphics, this task has been explored in the past
two decades [7, 34, 6, 19, 16, 36, 15, 17, 35, 33, 22]. How-
ever, existing methods are each suited to specific types of
textures, and there is currently no general and effective tex-
ture synthesis model for arbitrary textures.

Overall, textures can be categorized as stationary or non-
stationary. A texture is considered stationary if its ob-

served appearance remains generally the same within a
small moving window, as shown in Figure 1. Conversely,
non-stationary textures exhibit varying appearances in dif-
ferent locations at the scale of the same window. The chal-
lenge of texture synthesis lies in preserving the pattern and
appearance of the exemplar texture while avoiding exact
replication and unnatural artifacts. This challenge is par-
ticularly evident when dealing with non-stationary textures
characterized by irregularity and a lack of translation in-
variance. As revealed in Figure 1, current methods cannot
achieve satisfactory synthesis results for both stationary and
non-stationary textures simultaneously and still suffer from
the following issues affecting the synthesis quality: 1) in-
ability to preserve the original texture structure; 2) the pres-
ence of boundary issues; and 3) the emergence of artifacts.

To tackle these issues, we introduce a texture syn-
thesis model named Feature Enhanced Diffusion Network
(FEDNet), which demonstrates notable synthesis capabil-
ities across a wide range of texture exemplars. To begin
with, we propose frequency-aware residual blocks (FARBs)
to enhance the encoder’s ability to capture high-frequency
content. Inspired by [21], we also redesign the skip con-
nections in the UNet architecture by introducing a train-
able histogram layer that incorporates statistical informa-
tion into the fusion of low-level and high-level feature maps.
This effectively combines the traditional feature extraction
method with diffusion models to improve the synthesis re-
sults. Given a texture exemplar, the network learns the ex-
pansion of arbitrary texture blocks extract from the exem-
plar. After training, the model can quickly generate ex-
tended textures that closely resemble the input. Moreover,
through cascading, it is possible to continuously produce
larger textures.

We evaluate our texture synthesis model using both sta-
tionary and non-stationary textures as input exemplars. In
the experiments, our method demonstrates an increased ver-
satility in terms of supported appearances as well as a higher
quality compared to the state-of-the-art methods. It pro-
duces satisfactory texture synthesis results for both station-
ary textures and more challenging non-stationary textures.
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Figure 1. Left: Differences between stationary and non-stationary textures. Middle: Comparison between our results and those of the
most advanced GAN-based texture synthesis method [44]. Right: Comparison between our results and those of the state-of-the-art texture
synthesis method [42]. It can be observed that the existing deep learning-based methods cannot handle stationary textures well. At the
same time, NonGAN suffers from boundary issues, while NTSGC may introduce artifacts. Additionally, both methods fail to preserve the
original structure of some textures. In contrast, our method effectively preserves the original texture structure and details, demonstrating
excellent visual quality.

2. Related Work

Classical approaches. The classical texture synthesis ap-
proaches can be classified into three categories: pixel-based
methods [7, 34], stitching-based methods [6, 19, 16, 22]
and optimization-based methods [15, 35, 14]. Self-tuning
texture optimization [14] is the state-of-the-art classical
method. It uses smart initialization and an additional edge
map as the guidance for achieving more coherent structures.
Although this method produces plausible results for almost
all examples, but it cannot handle textures containing large
but unpronounced features. Hu et al. [12] proposed an im-
proved statistical-based method for texture synthesis. This
method is capable of extending both structured and stochas-
tic materials without suffering from artifacts seen in tradi-
tional texture synthesis approaches, such as structure er-
rors. However, traditional non-parametric methods often
limit randomness in the generated texture to preserve reg-
ularity. In addition, while classical methods excel at re-
producing small-scale structures, they often fail to capture
and reproduce the large-scale or global structures, leading
to their inadaptability for non-stationary texture synthesis.
Deep learning-based approaches. With the development
of deep learning, researchers have proposed some methods
based on it to address the limitations of classical methods.
Gatys et al. [8] introduced pioneering work on texture syn-
thesis using neural networks. This method characterizes
textures by learning features from natural images and mini-
mized the difference with the input using optimization pro-
cedures, which requires numerous steps to modify the syn-
thesized counterparts, typically taking several minutes even
on a modern GPU. Since, several approaches have been in-
troduced to accelerate the inference process. For instance,
Ulyanov [31] constructed a feed-forward network for syn-

thesizing target textures, leveraging texture loss defined in
[8]. Heitz et al. [9] proposed a textural loss LSW , capturing
complete feature distributions and proving more robust than
the Gram-matrix loss LGram used in [8].

In the past few years, GAN-based methods [13, 2, 44,
27, 26] have been proposed for texture synthesis tasks and
achieved improved performance. Jetchev et al. [13] intro-
duced Spatial GAN (SGAN), which represents the pioneer-
ing application of unsupervised GANs in texture synthesis.
Based on SGAN, Bergmann et al. [2] developed Periodic
Spatial GAN (PSGAN), specifically designed to learn peri-
odic textures from individual texture or datasets. Besides,
NonGAN [44] enables the generator to learn how to extend
small sample windows to larger texture windows during
adversarial training, thereby acquiring the ability to faith-
fully reproduce local patterns and global structures. Sin-
GAN [26] captures the spatial distribution and interrela-
tionships of patches in texture samples, thereby generating
textures with similar visual content. Although these meth-
ods are able to handle some challenging non-stationary tex-
tures, they often suffer from visual artifacts, especially near
boundary areas.

Recently, Zhou et al. [42] proposed an improved CN-
NMRF model with versatile guided correspondence loss
(LGC), denoted as NTSGC throughout this paper. NTSGC
combines the Markov random field (MRF) optimization
framework with a pre-trained neural network VGG-19. It
demonstrates the capability to produce high-quality texture
results under both uncontrolled and controlled conditions,
surpassing other deep learning-based methods, making it
the state-of-the-art in texture synthesis. Deep learning-
based methods have also achieved promising results in other
texturing tasks, such as guiding texture synthesis [43] or
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Figure 2. Overall framework: The left part represents the data preparation module, which continuously crops texture pairs from exemplar
image I . The middle part is the texture fusion UNet structure, designed for the texture synthesis task and used to predict noise. The right
part corresponds to the optimization phase, where the model parameters are optimized through back-propagation.

painting texture on a 3D mesh surface [11].
In general, deep learning-based methods are effective at

the texture synthesis task. However, when faced with the
task of synthesizing non-stationary textures existing meth-
ods still tend to produce undesirable results. Meanwhile,
compared with classical methods, the reliability of station-
ary textures synthesis is lower, such as producing noticeable
visual seams, as shown in Figure 1 and Figure 7.
Denoising diffusion probabilistic model. DDPM was ini-
tially introduced by Sohl-Dickstein et al. [28] and promoted
by Ho et al. [10]. Due to its robust statistical theoreti-
cal foundation and powerful feature processing capabilities,
it has been widely applied in various fields, including im-
age generation and restoration [3, 38], 3D reconstruction
[30, 37], and natural language processing [1] [5].

3. Method

We begin this section with an overview of texture syn-
thesis with denoising diffusion probabilistic model, fol-
lowed by a detailed explanation of the data preparation pro-
cess, the designed network architecture and the specifics of
model inference.

Our purpose is to construct an end-to-end texture synthe-
sis model for a single texture. Once the model is trained, it
can indefinitely generate images that exhibit diversity while

retaining the original texture visual characteristics of the in-
put exemplar.

As illustrated in Figure 2, the overall framework com-
prises three main parts: 1) Data preparation: Initially, we
utilize two cropping windows to extract blocks from texture
I , which forms the basis for our training dataset. 2) Noise
prediction: Subsequently, the UNet predicts the added noise
based on the input data. 3) Optimization: During this
phase, the distance between the predicted noise εp and the
ground truth noise εt is calculated using the loss function,
and the model parameters are then optimized through back-
propagation.

Denoising Diffusion models [10] consist of two funda-
mental steps: First, during the training phase, noise is pro-
gressively added to the input in a process called the noising
process. Second, during the inference phase, the model iter-
atively denoises the Gaussian sample to generate the result.

In our method, the model undergoes training using pairs
of data (x, y0) extracted from the texture I . This training
process follows a forward diffusion mechanism, wherein
Gaussian noise is progressively introduced into the ini-
tial input through a fixed Markov chain represented as
q(yt|yt−1). Throughout this phase, the model learns to pre-
dict noise patterns. Subsequently, during sampling stage,
starting with a pure noise image y′S , the model iteratively
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Figure 3. Training and Inference of Conditional Image Generation: The upper part corresponds to the training phase, during which the
model optimizes its parameters to develop the capability to predict noise. The lower part represents the inference phase, during which the
model iteratively removes predicted noise and obtains the output texture.

recovers the signal from it, thereby generating the target
texture y′0 conditioned on the input texture Ī . Texture Ī is
derived by upscaling texture I using bicubic interpolation,
as illustrated in Figure 3.

3.1. Data Preparation

Conditional diffusion models build upon traditional dif-
fusion models by incorporating specific conditions or con-
straints to guide the generation process. When applied to
the texture synthesis task, a small texture block is utilized as
conditional information, while a larger texture block serves
as the initial image onto which noise is added. Through
training, the model gains the capability to perform denois-
ing based on the conditional information. During the in-
ference stage, the model can generate larger textures with
similar perceptual qualities to the input texture exemplar.

As illustrated in Figure 2, to obtain the training image
pair (Y,X), we randomly crop a patch y0 of size N × N
from the original texture I , denoted by the blue square. Sub-
sequently, we crop a smaller patch x of size N

2 × N
2 from

this initial patch, denoted by the orange square. Here, N
represents a configurable hyperparameter. This method is
consistent with the approach used in [44]. A large num-
ber of diverse training image pairs can be prepared before
model training, or can be generated on the fly during the
training process.

After the model is trained, we crop the largest central
portion of the texture I and use this square image as the
input for synthesis. Through model inference, the output
texture, i.e., the texture synthesis result, is obtained.

3.2. Network Architecture

We adopt a similar network structure as Saharia et
al. [24]. This network was proposed to perform super-
resolution, a task that is related to texture synthesis as it
also increases resolution. We employ a denoising diffu-
sion probabilistic model for conditional image generation,
achieving texture synthesis through a random iterative de-
noising processes.
Injecting information. We utilize small texture blocks to
act as conditional information for generating larger textures.
As shown in SR3 [24], a simple concatenation operation
is sufficient to introduce the initial texture into the noise
addition and denoising processes. We initially attempted to
integrate conditions by incorporating attention mechanisms;
however, the generated results were unsatisfactory and this
introduced computational overheads.

During the training phase, given a temporal step t, the
noisy image yt is obtained by adding Gaussian noise to the
original image y0 according to yt =

√
γty0 +

√
1− γtεt,

where εt denotes noise sampled from a Gaussian distribu-
tion and γt is the noise scaling factor. We concatenate the
guidance information x with the noisy image yt before uti-
lizing the UNet architecture to predict noise. Throughout
the training process, the UNet model continually updates
its parameters via the back-propagation, guided by the loss
computed between the predicted noise εp and the ground
truth noise εt.

During the inference phase, we use the resized input ex-
emplar Ī as the guidance information, enabling the model
to iteratively denoise from pure noise to produce a result
texture y′0.
Frequency-Aware Residual Block. In textures, edges and
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repeating patterns introduce distinct high-frequency signa-
tures in texture synthesis. Inspired by this, We enhance
the model’s sensitivity to these high-frequency features and
seek to improve the overall synthesis process.

In diffusion models, the encoder in the UNet architec-
ture extracts and compresses features from the input image,
playing a pivotal role in accurately predicting noise. Since
the network needs to learn the expansion of texture blocks,
perceiving and capturing high-frequency information is cru-
cial for the reconstruction of structures and details. How-
ever, the high-frequency information in images gradually
becomes blurred or lost during the network downsampling,
which is disastrous for texture synthesis tasks. To address
this issue, we design a specialized frequency-aware resid-
ual block to help the encoder better capture high-frequency
content.

The FARB module primarily consists of two basic con-
volution blocks and a residual group (RG) [41], as de-
picted in Figure 4. The convolution blocks, enclosed within
dashed lines, are adapted from the implementation in Big-
GAN [4]. We implement a self-gating mechanism to en-
hance features using the Swish function [23], formulated
by:

f(x) = x · sigmoid(x) = x · 1

1 + e−x
. (1)

The residual group consists of residual channel attention
blocks (RCABs) and a skip connection. The RCAB draws
inspiration from the success of channel attention (CA) and
residual block (RB), rescaling the extracted residual fea-
tures based on the significance among channels, thereby
enabling the network to focus on more valuable channels.
Meanwhile, the skip connection facilitates faster transmis-
sion of low-frequency information through the network,
ensuring sufficient network depth to extract important but
more scarce high-frequency information.

In our approach, the feature tensor x undergoes process-
ing through the first basic module to yield output xshallow,
which is then fed into a RG module. The resulting output

undergoes a 3 × 3 convolution layer and is summed with
xshallow to yield xRG.

xRG = xshallow + Conv(fRG(xshallow)). (2)

Subsequently, temporal step, which is an important infor-
mation in diffusion models, is introduced and fed into the
second basic module, resulting in output xdeep. Finally, the
feature tensor x is summed with xdeep after passing through
another 3 × 3 convolution layer to obtain the output of the
FARB module xFARB .

xFARB = Conv(x) + xdeep. (3)

FARB enhances the model’s ability to capture fine-
grained details and complex structures, thereby improv-
ing the accuracy of noise prediction and achieving higher-
quality synthesized textures.
Feature Fusion Connection. Traditionally, handcrafted
techniques like local binary patterns (LBP) and histogram
of oriented gradients (HOG) are used for feature extraction
based on the spatial distribution. With the advancement
of deep learning, automated feature learning has replaced
handcrafted feature extraction, leading to widespread suc-
cess. However, deep architectures require a greater num-
ber of parameters to capture spatial distribution compared to
traditional features, and sometimes cannot demonstrate bet-
ter or comparable performance in texture analysis. To fur-
ther enhance deep learning networks, studies [18] [40] [39]
have incorporated traditional texture extraction techniques
into deep learning models, thereby providing additional in-
tuitive feature information and references. This integration
represents a promising direction for the future development
of deep learning in texture analysis.

Inspired by this, to further adapt to the texture synthe-
sis task and enhance the model’s data expression capabili-
ties, we introduce statistical texture features into skip con-
nections to effectively characterize the distribution of local
spatial features. This is achieved by taking into account the
histogram of the content.

The histogram is a successful and efficient method for
aggregating information. The standard histogram operation
counts values within a specified range. However, as an in-
dicator function, its non-differentiable nature prevents the
back-propagation of parameter updates in neural networks.
To overcome the limitation, Wang et al. [32] employed lin-
ear basis functions to enable back-propagation in histogram
operations, and Sedighi et al. [25] used radial basis function
(RBF) modeling to adapt to steganalysis task. Then Peeples
et al. [21] introduced a histogram layer that combines the
properties of both methods. They utilized smoother RBFs
to represent the histogram structure, allowing the model to
estimate bin centers and widths through back-propagation.
Their proposed histogram layer effectively captures texture



Figure 5. Flowcharts of (a) simple skip connection and (b) feature
fusion connection.

information, significantly outperforming other texture en-
coding methods.

Skip connections in UNet refer to the mechanism of con-
necting corresponding layers between the encoder (down-
sampling path) and the decoder (upsampling path). Unlike
traditional methods, we do not simply connect the feature
maps of encoder and decoder layers. Instead, we introduce a
feature fusion connection (FFC) that incorporates the train-
able histogram layer [21], aiding the decoder in better uti-
lizing the features extracted from the encoder, as illustrated
in Figure 5. The FFC can be defined by

f i
FFC = Conv(Concat(f i

e, HisLayer(f i
e))), (4)

where f i
e represents the output feature of the i-th layer of

the encoder, and f i
FFC represents the feature generated by

the FFC.
Experimental results demonstrate that this improvement

significantly enhances the detail expression of synthesized
textures, while introducing negligible additional computa-
tional overhead, as shown in Figure 10.

3.3. Sampling Acceleration

In DDPM, inference is defined as a reverse Markovian
process, proceesing opposite to the forward diffusion pro-
cess. This results in the number of steps required to gener-
ate the image being the same as T steps in training, leading
to a long sampling time.

To reduce the time needed for image generation, we
build on the idea of DDIM [29] during the sampling phase.
DDIM shares the same training objective as DDPM, but
it no longer limits the diffusion process to be a Markov
chain, enabling faster generation process with fewer sam-
pling steps. Therefore, by specifying a deterministic step
size S(S ≤ T ), the model can iteratively denoise from a
pure noise image y′S using S steps to achieve the target re-
sult y′0, defined as:

Source 
Texture

Use 
DDPM 

Use 
DDIM 

Figure 6. Using DDIM significantly improves the sampling effi-
ciency of the model, resulting in a reduction in the time needed to
generate a 512×512 texture image from the original 4 minutes to
approximately 6 seconds.

y′s−1 =
√
γs−1(

y′s −
√
1− γsϵθ(y

′
s, Ī, s)√

γs
)

+
√

1− γs−1 − σ2
s · ϵθ(y′s, Ī, s) + σsε,

(5)

where

σs = η

√
1− γs−1

1− γs

√
1− γs

γs−1
. (6)

Here, γ represents the cumulative α defined in [29], and ϵθ
is the noise prediction network conditioned on the current
input y′s, control condition Ī , and timestamp s.

Using this method, we reduce the number of sampling
steps from 2000 to 50 and the generation time on an
NVIDIA GeForce RTX 2080 Ti from the original 4 minutes
to 6 seconds. The acceleration effect is depicted in Figure
6.

4. Experiments

Our approach is implemented using PyTorch. For com-
parison with other methods, we collected 50 texture images
from [44], resizing all input textures to 256×256 pixels, re-
sulting in textures of 512×512 pixels. Our model is trained
on an NVIDIA GeForce RTX 2080 Ti with 11GB memory,
and the training time is about three and a half hours. Once
the training is completed, the model takes 6 seconds to dou-
ble the width and height of the 256 x 256 texture through
denoising. The input textures include non-stationary texture
samples with irregular and non-uniform structures, where
our method successfully captures and extends the global
structures presented in the input examples. Additionally,
our method is also applicable to more stationary textures,
including regular or random structured textures.

We compare our method against six representative ap-
proaches in Figure 7. Self-tuning texture optimization [14]
is the state-of-the-art classical method, employing smart ini-
tialization and an additional edge map for guiding more co-
herent structures; CNNMRF [18] explores a combination



Source Texture Self-tuning CNNMRF Sliced Wasserstein SinGAN NonGAN NTSGC Our Result

Figure 7. Qualitative comparison between our method and six state of the art methods. For each source texture, the results shown from left
to right are respectively generated by Self-tuning [14], CNNMRF [18], Sliced Wasserstein [9], SinGAN [26], NonGAN [44], NTSGC [42]
and our method.



Figure 8. Our model generates texture images that exhibit both high-quality and diversity. In the first row, for the two source textures, four
diverse synthesis results are shown respectively. More results are displayed in the second and third rows.

Self-tuning CNNMRF Sliced Wasserstein SinGAN NonGAN NTSGC Ours
Human Eval. 28.6% 15.7% 10.4% 6.1% 13.2% 31.4% -
Color Dis. 0.649 2.305 2.331 1.566 2.273 0.928 1.586

Table 1. Quantitative comparison between our method and six state of the art methods. Human Evaluation and the Color Distance between
the source and synthesized textures can serve as reference metrics for assessing the synthesis quality.

of generative Markov random field (MRF) models and dis-
criminatively trained deep convolutional neural networks
(dCNNs) for synthesizing 2D images. At the same time,
CNNMRF is the baseline model of NTSGC; Sliced Wasser-
stein loss [9], the state-of-the-art statistic-based textural
loss, captures complete feature distributions; SinGAN [26]
and NonGan [44] are two state-of-the-art GAN-based mod-
els for single-image texture synthesis tasks. NTSGC [42]
combines MRFs and neural networks and achieves remark-
able synthesis results.

4.1. Generation Quality

As shown in Figure 8, our model can synthesize diverse
texture images while maintaining the structure of the input
exemplar. This shows the strong ability of the model to pro-
duce diverse and high-quality textures, thereby better meet-
ing the wide range of user needs.

In Figure 7, it can be observed that our results exhibit
favorable visual outcomes across all examples versus other
approaches. Compared to CNNMRF and NTSGC, our syn-
thesis results consistently exhibit greater clarity, fewer ar-
tifacts, and, importantly, better texture structures. The re-
sults synthesized by Sliced Wasserstein appear highly dis-
ordered. SinGAN and NonGAN, on the other hand, suffer
from boundary issues, where repetition and poor synthesis
effects occur at the boundaries, as observed in the sixth row
of Figure 7. While self-tuning yields reasonable results in
almost all examples, ours are comparatively improved in

terms of reproducing small scale features (less wavy) and
large scale structures and regularities.

In the field of texture synthesis, the quality of synthe-
sis is evaluated primarily by visual observation, and there
is currently no universal quantitative evaluation metric or
standard benchmark. We refer to the quantitative compari-
son methods used in [42], and similarly conduct subjective
image quality assessment and color distance calculation.

In subjective quality evaluation, the forced-choice pair-
wise comparison method is considered to be more reliable
[20]. In our study, we presented three images simultane-
ously to the participants: the source texture, the synthesized
texture from our method, and the synthesized texture from
one of the comparison methods. Participants were required
to choose the synthesized texture they perceived to be more
plausible. This approach allows for a direct and intuitive
comparison between different synthesis methods. We in-
vited 50 participants from different fields to take part in the
experiments. The human evaluation metric presented in Ta-
ble 1 represents the proportion of the results of the compari-
son model that were selected. For example, 28.6% indicates
that when comparing textures generated by the self-tuning
method and our method, participants considered the quality
of the former to be better in 28.6% of cases, while the per-
centage of our method being preferred is 71.4%. The results
of the Human evaluation indicate that our method consis-
tently outperformed others in terms of visual quality. This
can be attributed to our method’s ability to generate plausi-
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Figure 9. Synthesizing 2×, 4× and 8× textures through model cascading.

ble texture structures while preserving the original texture
style, ensuring that the synthesized results are visually ap-
pealing and structurally coherent.

Traditionally, texture synthesis techniques used a best-
matching neighborhood objective to optimize for textures
from examples [34]. We thus use this metric as an addi-
tional indicative measure of quality. Specifically, the output
texture was partitioned into small blocks of size 10x10, de-
noted as Ri, where i = 1, 2, ..., N and N represents the
total number of blocks. For each resulting block Ri, we tra-
versed the small blocks of size 10x10 in the source texture,
denoted as Sj , where j = 1, 2, ...,M and M is the total
number of blocks in the source texture. We then computed
the squared Euclidean distances between the corresponding
pixels of Ri and each Sj :

Dij =
∑

(x,y)∈Ri
∥Ri(x, y)− Sj(x, y)∥2. (7)

Here, Ri(x, y) and Sj(x, y) represent the color values at
position (x, y) in Ri and Sj , respectively. The minimum
value of Di,j for each Ri was selected as the nearest neigh-
bor distance:

D∗
i = minjDij . (8)

Finally, the average of these nearest neighbor distances was
calculated to serve as the overall color distance metric be-
tween the source and synthesized textures:

D̃ =
1

N

∑N
i=1 D

∗
i . (9)

This method effectively evaluates the color distance be-
tween the two textures, and the experimental results are

shown in Table 1. It can be observed that our method
demonstrates a certain improvement over some existing ap-
proaches. While the color distance is related to synthesis
quality, it is merely a statistical measure of pixel color val-
ues and does not account for the patterns and structural co-
herence of the generated textures. Therefore, it can only
serve as an indication in evaluating the quality of the gener-
ated textures.

4.2. Efficiency Assessment

As illustrated in Figure 6, the utilization of DDIM dur-
ing the inference phase notably reduces the time required to
generate textures while preserving both diversity and high
quality.

In terms of processing time, the self-tuning method [14]
takes approximately 4 minutes per result. NTSGC[42] com-
bines MFR with deep learning and utilizes pre-trained net-
works to extract multi-layer features. Therefore, it does not
require self-training of the network and takes only 5 min-
utes for each sample. Among deep learning-based meth-
ods, Ulyanov et al. [31] spend 1 hour training each sam-
ple using texture networks; PSGAN [2], NonGAN [44] and
InGAN [27] require 12, 5 and 4.5 hours, respectively, to
train on an image of the same size. The training time of our
approach is amongst the fastest of the deep learning-based
methods, even though it is significantly slower than that of
classical methods and methods that use pre-trained models.
Additionally, its ability to handle a wide range of textures
and produce high quality results compensates for its slower
speed.



Figure 10. Qualitative results of ablation study on different network components.

4.3. Texture Expansion

Our model demonstrates a robust capability for continu-
ous texture expansion. For 4× synthesis, we use the trained
model for 2× synthesis twice. Beginning with a 256×256
input image, we initially generate a 512×512 texture, which
is subsequently used to produce a 1024×1024 texture.

Given the increased memory demands for generating
larger textures, we use an NVIDIA GeForce RTX 3090
GPU with 24GB memory for this experiment. The sam-
pling time for 512×512, 1024×1024 and 2048×2048 images
are 4 seconds, 15 seconds and 1 minute, respectively. More-
over, this approach enables us to achieve 8× synthesis and
16× synthesis. The generated results are presented in Figure
9. It can be observed that for the texture containing text, the
model consistently produces desirable and high-quality out-
puts, even when magnified by a factor of 64 (8 times longer
and 8 times wider).

4.4. Ablation Study

To further demonstrate the effectiveness of each pro-
posed component, we conduct ablation studies using four
configurations: 1) the initial network architecture; 2) the
network without the FFC module; 3) the network without
the FARB module; and 4) the complete network (including
both FARB and FFC) to obtain synthesis results.

As shown in Figure 10, the initial network architecture
is less suitable for the texture synthesis task, failing to cap-
ture the global structure and local patterns of the input. The
generated results exhibit obvious artifacts and visual seams.
The introduction of the FARB enhances the model’s capa-
bilities in extracting and optimizing features, particularly

in discerning high-frequency features, thereby improving
the pattern and appearance of the results. The integration
of FFC captures the local spatial distribution of shallow
features in the encoder, optimizing feature connection be-
tween the encoder and decoder. As a result, the model gen-
erates images with more accurate texture details. Finally,
the complete model effectively integrates the capabilities of
both methods, resulting in the highest quality across overall
structure, element distribution, and detail expression.

5. Discussion and Conclusion

In this work, we propose the feature-enhanced diffu-
sion network (FEDNet), which tackles the complex chal-
lenges of synthesizing both stationary and non-stationary
textures. The texture fusion UNet is designed with effective
frequency-aware residual blocks and feature fusion connec-
tions. The former avoids the high-frequency information
being blurred during downsampling, while the latter incor-
porates traditional histogram feature into the skip connec-
tions. Experiments show that our method outperforms exist-
ing state-of-the-art techniques in the synthesis of challeng-
ing cases of both stationary and non-stationary textures.

The limitation of our technique is the influence of the
cropping window size. We observed that different textures
have different ideal cropping window sizes, and that using
too large or too small sizes can be detrimental to the results
as shown in Figure 11. This variance can be attributed to the
diverse element sizes and structures inherent to textures. A
common pre-processing step before training texture images
involves resizing them to conform to the model’s specifica-
tions. However, this step may introduce additional infor-



Source Texture

32×32 64×64

40×40 80×80

64×64 128×128

64×64 128×128

80×80 160×160

88×88 176×176

Results generated by using different cropping windows

Figure 11. Results obtained using different cropping window sizes
for texture images. It can be observed that using excessively large
or small cropping windows leads to undesirable outcomes.

mation or lead to information loss. Therefore, we advocate
using different cropping window sizes to adapt to the size
and structure of individual textures. Although we currently
use the fixed window size, which is 64 x 64 and 128 x 128
pixels, our framework still demonstrates excellent texture
synthesis performance. Determining the most appropriate
cropping window size for diverse textures will be the focal
point of our future research.
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