
Human Perception Faithful Curve Reconstruction Based on Persistent Homology
and Principal Curve

Yu Chen, Hongwei Lin, and Yifan Xing
School of Mathematics Science, Zhejiang University

No. 866, Yuhangtang Road, Hangzhou, China
chenyu.math@zju.edu.cn, hwlin@zju.edu.cn, 22335069@zju.edu.cn

Abstract

Reconstructing curves that align with human visual
perception from a noisy point cloud presents a signif-
icant challenge in the field of curve reconstruction. A
specific problem involves reconstructing curves from a
noisy point cloud sampled from multiple intersecting
curves, ensuring that the reconstructed results align
with the Gestalt principles and thus produce curves
faithful to human perception. This task involves identi-
fying all potential curves from a point cloud and recon-
structing approximating curves, which is critical in ap-
plications such as trajectory reconstruction, path plan-
ning, and computer vision. In this study, we propose
an automatic method that utilizes the topological under-
standing provided by persistent homology and the local
principal curve method to separate and approximate the
intersecting closed curves from point clouds, ultimately
achieving successful human perception faithful curve re-
construction results using B-spline curves. This tech-
nique effectively addresses noisy data clouds and inter-
sections, as demonstrated by experimental results.

Keywords: Intersecting closed curves, Curve recon-
struction, Principal curve, Persistent homology

1. Introduction

Curve reconstruction is a fundamental problem that fo-
cuses on recovering a complete and accurate curve from a
set of discrete points (a point cloud). The reconstructed
curve is essential for representing shapes, modeling objects,
and analyzing data across diverse fields. Given its wide-
ranging applications, the problem of curve reconstruction
has been extensively explored in numerous fields, estab-
lishing itself as a versatile and effective tool with applica-
tions across various disciplines. Its ability to recover com-
plete and accurate curves from discrete data makes it an
essential technique in many scientific and engineering do-
mains [1, 37, 38]. However, there are a lot of complicated
situations to deal with in curve reconstruction. An ongo-

ing challenge in the realm of curve reconstruction involves
aligning the reconstructed curves with human visual percep-
tion. According to cognitive psychology, human visual per-
ception adheres to various theories, such as the Gestalt prin-
ciples, which encompasses several principles guiding visual
perception [26, 27, 43]. One essential principle, known as
good continuation, posits that points forming straight lines
or smooth curves, when connected, are perceived as belong-
ing together, and these lines or curves are typically seen as
connected in the smoothest way possible [16]. This princi-
ple aids in directing our eyes in a specific direction while
connecting the points. Therefore, a curve that connects
or fits the points in the smoothest manner, adhering to the
Gestalt principle of good continuation, can be considered a
curve faithful to human perception.

In the field of curve reconstruction, a common applica-
tion of the good continuation principle involves reconstruct-
ing intersecting curves from point clouds, ensuring that the
reconstructed curves adhere to the good continuation prin-
ciple when crossing the intersection points. This process
involves sequentially identifying each curve from the initial
point cloud, with particular attention to accurately identify-
ing points near the intersection based on the good continu-
ation principle. Subsequently, each curve is reconstructed
using an appropriate method. Since intersections are crit-
ical features of curves, their proper treatment is essential
for ensuring that the reconstructed curves maintain correct
topology. This is crucial in various applications, includ-
ing trajectory reconstruction, path planning, and computer
vision [25, 40, 41]. Moreover, in practice, sampling point
clouds often contain noise, thereby complicating the recon-
struction of intersecting curves. Consequently, in such sce-
narios, the curve reconstruction method should not only ex-
hibit robustness to noise but also accurately address inter-
sections in line with human visual perception.

In this paper, we present a method that utilizes persis-
tent homology and principal curves to address the challenge
of reconstructing closed curves aligned with human visual
perception from noisy point clouds. To highlight the consis-
tency of our approach with the good continuation principle

1



of visual perception, we will concentrate on the task of re-
constructing intersecting closed curves from point clouds. It
is important to note that our method can also be utilized to
reconstruct closed curves without intersections, an area that
has been previously investigated by various methods [31].
However, none of the prior methods have successfully au-
tomated the separation and reconstruction of intersecting
closed curves, while our method is possible to obtain re-
constructed curves that are consistent with the shape of the
original sampled curves and are aligned with human visual
perception in most cases.

Specifically, when presented with a noisy point cloud
sampled from some intersecting closed curves, the propose
method provides an automatic way to separate and recon-
struct each curve from the point cloud, such that the recon-
structed curves adhere to the good continuation principle of
visual perception. This process entails initially providing a
topological understanding of the sampling point cloud us-
ing persistent homology. Subsequently, the local principal
curve method is employed to compute principal curves that
approximate the original sampling curves. Finally, through
the selection and smooth fitting of the derived principal
curves, all curves can be successfully reconstructed. Fig.
1 shows a flowchart of the entire curve reconstruction pro-
cedure. In the following sections, we will see that the infor-
mation provided by persistent homology allows for a suf-
ficient topological understanding of sampling point clouds
and the automatic determination of the parameters required
for computing the principal curve, enabling the extraction
of closed intersecting curves without additional human in-
tervention. In conclusion, the contributions of this paper are
as follows:

• Persistent homology is utilized to make topological un-
derstanding of point clouds.

• The selection of starting points and bandwidth param-
eter of local principal curves can be automated.

• Curves that align with the Gestalt good continuation
principle can be reconstructed.

The remainder of this paper is organized as follows.
First, we outline some related work on curve reconstruc-
tion, computational topology and principal curve in Section
2. Then we introduce certain concepts and properties con-
cerning persistent homology and local principal curves as
preliminary discussions in Section 3. The proposed curve
reconstruction algorithm using persistent homology and lo-
cal principal curve is introduced in Section 4. In Section
5, we show the experimental results and have a discussion.
Finally, we conclude this study in Section 6.

2. Related Work

2.1. Curve reconstruction methods

Now we enumerate some work related to reconstruct-
ing curves from sampling point clouds that are noisy or
have non-manifold structures. Many approaches are able
to address noisy sampling cases for reconstruction. Levin
[29] tackles this issue by employing moving least squares
(MLS) techniques to interpolate and denoise the input
points, thereby restoring the original smooth curve. An-
other method, FITCONNECT [33], is designed to handle
noisy samples in curve reconstruction by fitting points with
circular arcs to local neighborhoods, allowing for the re-
construction of noisy clusters and the denoising of the local
fits to the estimated noise extent. Furthermore, STRETCH-
DENOISE [32] enhances the FITCONNECT technique for
denoising. It models the recovered curve connectivity sep-
arately from the high-frequency residuals and uses this in-
formation to shift point positions by minimizing angles be-
tween edges in the least-squares sense. However, none of
the aforementioned methods can resolve the problem of re-
constructing non-manifold curves, and thus are unsuitable
for dealing with the reconstruction of intersecting curves.

Additionally, numerous methods are dedicated to re-
constructing curves with self-intersections, or more gen-
erally, non-manifold curves. Lenz [28] proposes an al-
gorithm for reconstructing curves with sharp corners and
self-intersections, initiating the process with a seed edge
between the two closest points and connecting edges by
tracing along with a probe shape. However, this method
is sensitive to noise and sampling conditions. PEEL [35]
is another algorithm specifically designed for reconstruct-
ing curves with self-intersections. It begins by denoising
the point cloud and reconstructing the curve with a vertex
degree constraint of a maximum of three. Subsequently,
post-processing is employed to identify and restore self-
intersections by exploring potential intersections at vertices
through one-ring Delaunay neighborhoods. However, self-
intersections are not automatically identified, and the ap-
proximation of the curves may be coarse since the algo-
rithm relies on two user-selected parameters. De Goes et
al. [7] address this issue by formulating an optimal transport
problem and minimizing the total cost to reconstruct non-
manifold curves, which can also handle noisy point clouds.
However, when it comes to the problem of reconstructing
different intersecting curves, none of these methods are able
to automatically separate and extract each curve.

More details on curve reconstruction are available in [31]

2.2. Computational topology

Computational topology [5,10] is a new branch of math-
ematics that is dedicated to extracting the topological struc-
ture of data. Key research in this field encompasses topolog-
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Figure 1. Flowchart of our curve reconstruction algorithm. The point cloud is sampled from two intersecting ellipses, and the number of
significant points in 1-PD is 5 due to the new appearing loops. By considering all the significant positive 1-simplices, we can compute five
local principal curves, while four of them represent the same ellipse. After removing duplicate curves, two ellipses can be successfully
reconstructed.

ical data analysis (TDA) [42], an approach to comprehend
the distributional characteristics of a dataset by computing
its topology, which has been successfully employed to many
fields, such as biomedicine [39], computer vision [2] and
machine learning [36]. This approach typically involves
constructing simplicial complexes and filtrations from the
datasets, and employing pivotal tools such as persistent ho-
mology to analyze their topological structures. The persis-
tent homology [10], serving as a fundamental tool for topo-
logical data analysis, acquires topological features within
the point cloud through a filtration procedure, enabling the
recognition of topological features within point cloud data
[4], such as the number of connected components and loops.
In particular, it provides a multiscale description of homol-
ogy by constructing filtrations from the original point cloud.
Consequently, when a point cloud is sampled from closed
curves, persistent homology can offer extensive informa-
tion about the sampling curves. In this paper, we employ
persistent homology to offer a topological understanding of
a sampling point cloud, which yields essential information
for curve reconstruction.

2.3. Principal curve

The principal curve is first introduced by Hastie and
Stuetzle [19], which can move along the “middle” of the
data point, offering an one-dimensional nonlinear approxi-
mation of the data cloud [18, 19, 24, 34]. It effectively cap-

turing the underlying data structure and providing a concise
one-dimensional nonlinear summary of the data.. Further-
more, this concept has been extended to Riemannian man-
ifolds [20, 22], and has found applications in many fields,
such as image processing [23], traffic patterns analysis [12]
and data clustering [6, 44]. However, parameter tuning can
pose a challenge for principal curves [3]. Dealing with a
point cloud representing more than two intersecting curves
is also challenging. One possible approach to address this is
the use of principal graphs [23], which provides an approx-
imation of the data, including cases with self-intersected
curves, but automatic separation of two or more intersected
curves remains challenging. An alternative possible ap-
proach to address this problem is the local principal curve
method [13, 14], a variant of the principal curve that re-
lies on localized principal component analysis, thus paying
more attention to localized analysis of the data clouds. This
method facilitates the identification of closed curves as well
as cases of local curve crossings. However, it necessitates
the careful selection of several parameters, such as the orig-
inal point of the curve and the bandwidth parameter. With-
out suitable parameter selections, it is difficult to generate
principal curves that fit the shape of the point clouds.



3. Preliminaries

In this part, some key concepts about persistent homol-
ogy and local principal curve used in this paper are pre-
sented.

3.1. Persistent homology

We begin by introducing some concepts and properties
of persistent homology. An n-simplex is defined as the
convex hull formed by n + 1 affinely independent points
{u0, u1, . . . , un} in the Euclidean space RN , denoted as
[u0, u1, . . . , un]. Geometrically, an n-simplex can be rep-
resented as a geometric model, such as vertex (0-simplex),
line segment (1-simplex), triangle (2-simplex), and tetrahe-
dron (3-simplex).

A simplicial complex K is a collection of simplices that
satisfies specific properties: every face of a simplex in K
is also in K, and the intersection of any two simplices in
K is a face of both of them [11]. The dimension of a
simplicial complex K is defined as the maximum dimen-
sion among all the simplices in K. Let K be a simplicial
complex and n its dimension. An n-chain is a sum of n-
simplices in K, denoted by c =

∑
aiσi, where σi repre-

sents an n-simplex, and here ai is its coefficient belonging
to Z2. With the addition operation, the n-chains form the
n-chain group, denoted by Cn(K). The boundary for a n-
simplex σ = [x0, x1, . . . , xn] is given by

∂nσ =

n∑
j=0

(−1)j [x0, . . . , x̂j , . . . , xn],

where x̂j denotes the omission of xj . Let Zn(K) =
Ker(∂n) be the group of n-cycle and Bn(K) = Im(∂n+1)
the group of n-boundary. The n-th homology group of K is
defined as the quotient group Hn(K) = Zn(K)/Bn(K).

The Vietoris–Rips (VR) Complex [11] is a type of sim-
plicial complex, whose construction is defined by following
rules:

Definition 1. (VR Complex) For any ε > 0, a finite subset
{x0, x1, . . . , xn} ⊆ P of the space RN forms a simplex
[x0, x1, . . . , xn] if and only if the distance between any pair
of points xi and xj satisfies d(xi, xj) ≤ ε. The collection
of all simplices generated by the point cloud P that satisfy
these conditions constitutes the VR complex.

Given a point cloud P and a series of parameters 0 =
ε0 < ε1 < · · · < εm, the nested VR complex sequence

V R(P, ε0) ⊂ V R(P, ε1) ⊂ · · · ⊂ V R(P, εm)

is referred to as a VR filtration [11], and ε is called the fil-
tration parameter. To simplify notation, we will also denote
V R(P, ε) as V R(ε). Fig. 2 gives an example of VR filtra-
tion.

Definition 2. (Persistent Homology [11]) Suppose we have
a filtration

K0 ⊂ K1 ⊂ · · · ⊂ Km

then for every 0 ≤ i ≤ j ≤ m we have an inclusion map
from Ki to Kj and therefore an induced homomorphism
f i,j
p : Hp(Ki) → Hp(Kj) for each dimension p. The p-

th persistent homology groups are defined as the images of
the homomorphisms induced by inclusion:

Hi,j
p = Im f i,j

p , ∀0 ≤ i ≤ j ≤ m.

The corresponding p-th persistent Betti numbers are the
ranks of these groups: βi,j

p = rankHi,j
p .

The meaning of persistent Betti numbers is the number
of “holes” exsisting during the considered period in the fil-
tration. Thus, persistent homology is effective to detect
topological structures of underlying point clouds. The stan-
dard method for computing the persistent homology of a
filtration is the reduced matrix method [11]. Numerous soft-
ware packages and libraries are now available for comput-
ing persistent homology, such as the GUDHI Python mod-
ule [30].

One of the most common tools for visualizing persistent
homology is the persistence diagram (PD) [11], depicted in
Fig. 3. The set of points that records the birth time and
death time of the n-cycles is denoted as the n-PD. Each
point in an n-PD takes the form (bi, di), representing an n-
cycle and capturing its birth time bi and death time di, and
the value |di − bi| is termed as the persistence of this cy-
cle. Typically, points within an n-PD can be classified into
two classes based on their persistence. Points that exhibit
larger persistence are called significant points, while others
are called noise points. Various methods exist for identify-
ing significant points from PDs, such as the delineation of
confidence sets [15] and the clustering of these points [21].
Then, if the number of closed curves corresponding to the
sampling point cloud is not known in advance, it can be re-
garded as the number of significant points in 1-PD.

For each Hn(K), suppose its basis is {[r1], · · · , [rm]},
then each ri, i = 1, · · · ,m is called a representative n-cycle
of the homology class [ri]. The representative n-cycle of the
persistent pair (b, d) in persistent homology, referred to as
a persistent n-cycle [9], is a specific representative n-cycle
in the filtration Kb ⊂ Kb+1 ⊂ · · · ⊂ Kd. For instance,
a persistent 1-cycle corresponding to (b, d) emerges at Kb

and becomes a boundary at Kd.
By definition, persistent n-cycle may not be unique for

a given persistence pair. However, these persistent n-cycles
have a common positive n-simplex that gives birth to them,
hence each point in 1-PD will correspond to a positive 1-
simplex.

Definition 3. (Positive Simplex [11]) Consider a filtration
process that adds one simplex each time. We refer to a sim-



Figure 2. An example of VR filtration. As the filtration parameter increases, more and more simplices appear.
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Figure 3. An example of persistence diagram.

plex σ as positive if its addition creates a new persistent cy-
cle, thus giving birth to a new homology class. Otherwise,
we regard it as negative.

A positive 1-simplex corresponding to a significant point
in 1-PD is called a significant positive 1-simplex.

3.2. Local principal curve

Now we present certain concepts and details about lo-
cal principal curves. Let P = {p1, · · · , pn} represent a
d-dimensional point set in Rd, where pi = (pi1, · · · , pid).
Let H denotes a bandwidth matrix and KH(·) signifies a
d-dimensional kernel function (usually the Gaussion kernel
function). Typically, H is set as H = {h2 · I : h > 0},
with I representing the d-dimensional identity matrix, and
h referred to as the bandwidth parameter [13]. For x ∈ Rd,
the local center of mass around x is given by [13] as:

µx =

∑n
i=1 KH(pi − x)pi∑n
i=1 KH(pi − x)

Then, let Σx = (σx
jk) represent the local covariance ma-

trix of x, where the (j, k)-th entry (1 ≤ j, k ≤ d) is given
by

σx
jk =

n∑
i=1

wi(pij − µx
j )
(
pik − µx

k

)
with weights wi = KH(pi − x)/

∑n
i=1 KH(pi − x).

Definition 4. Let γ⃗x be the first eigenvector of Σx. Then,
γ⃗x constitutes the first column of the loadings matrix Γx

from the eigen decomposition (Γx)TΣxΓx = Λx, where

Λx = diag(λx
1 , . . . , λ

x
d) is a diagonal matrix containing the

ordered eigenvalues of Σx, with λx
1 ≥ · · · ≥ λx

d . We refer
to γ⃗x as the first local principal component at x, and the
process of finding γ⃗x as local principal component analysis
[13].

The key ingredients in computing a local principal curve
are the selection of the starting points and the bandwidth
parameter. In our work, we will tackle these issues by uti-
lizing persistent homology, which provides an automated
approach for parameter selection.

4. Perception Faithful Curve Reconstruction

In this section, we present the human perception faithful
curve reconstruction algorithm, focusing on the separation
and reconstruction of intersecting closed curves. For the
sampling point clouds of the original closed curves, it is
assumed that each curve is densely sampled with a similar
density, and that noise exists in the sampling points.

4.1. Topological understanding of the point cloud

By constructing the VR filtration from a given point
cloud and computing its persistent homology, we can ob-
tain the 1-PD, from which a wealth of important informa-
tion about the underlying point cloud can be derived. For
instance, through this process, we can identify all the posi-
tive 1-simplices of the persistent 1-cycles, along with their
respective positions and lengths.

In cases of intersecting closed curves, particularly pla-
nar intersecting closed curves, new loops will emerge due
to the presence of an even number of intersection points.
As a result, the region enclosed by original closed curves is
segmented into several parts, with each part having a per-
sistent 1-cycle representing its boundary. For instance, Fig.
1 demonstrates an example where the region enclosed by
two ellipses is segmented into five parts, and their bound-
ary cycles form five points with larger persistence in the 1-
PD. Generally, if the region enclosed by the original closed
curves is separated into k parts, the 1-PD will contain k
points with persistence larger than other noise points, al-
though there may be differences between the persistence of
these k points too. In the subsequent discussion, we denote
the k points in the 1-PD corresponding to these k persistent
1-cycles generated by all intersecting closed curves as sig-
nificant points, and the corresponding positive 1-simplices



(a)
(b)

Figure 4. (a) An illustration of projecting points in PD onto the line y = −x. (b) Illustrations of clustering to identify significant points.
On the left are the point clouds used as examples, on the right are the results of clustering into three classes (each colored circle denotes a
class).

as significant positive 1-simplices. In general, k is larger
than the number of original sampling closed curves. But
as we will see later, by extracting all significant positive 1-
simplices and then employing the next steps of our curve
reconstruction algorithm on each of them, it is feasible to
automatically separate and reconstruct all original sampling
closed curves in the correct quantity.

Initially, we assert that for each curve, there will be at
least one significant positive 1-simplex located on the sam-
pling points of this curve.

Proposition 1. Given a point cloud P sampled from some
intersecting closed curves, then by constructing VR filtra-
tion from P and computing persistent homology, for each
closed curve, at least one significant positive 1-simplex will
be located on the sampling points of this curve.

The proof is available in Supplementary Information.
Hence, the initial assertion holds true, indicating that

each sampling curve possesses at least one significant pos-
itive 1-simplex within its sampling point cloud. When the
number of significant positive 1-simplices exceeds the num-
ber of original sampling curves, more than one positive 1-
simplices will be located on a single sampling curve, re-
sulting in the generation of reconstructed curves that rep-
resent the same original sampling curve. In such cases, a
filtering condition can be introduced to remove redundant
curves, which will introduced in section 4.3. Therefore, all
the original sampling curves can be reconstructed by simply
performing our curve reconstruction algorithm on all signif-
icant positive 1-simplices. In practice, we usually consider
these positive simplices in descending order of the persis-
tence of the corresponding persistent 1-cycles.

The remaining problem pertains to identify all the sig-
nificant points in the 1-PD. In this paper, we will utilize the

method of clustering. Initially, according to the assump-
tion that each curve is densely sampled with a similar den-
sity, these significant positive 1-simplices should be close
in length, hence the birth time of all significant points in 1-
PD should be close too. Thus, we can remove points with
birth times greater than a certain threshold, as these points
cannot be significant in this context. This threshold can be
automatically selected by relying on the birth time b1 of the
point (b1, d1) in 1-PD with the largest persistence, for in-
stance, by setting the threshold as 2 · b1.

Subsequently, all the remaining points in 1-PD are pro-
jected onto the line y = −x, hence projected points farther
from the origin have greater persistence (see Fig. 4 (a) for
an illustration). By denoting the number of points in the
1-PD as m, we add an additional m points (0, 0) to the pro-
jected point set, thereby expanding it to 2m points. Then
we can identify significant points in 1-PD by clustering the
projection points. In cases of intersecting closed curves,
new loops may form with relatively small persistence com-
pared to points with the largest persistence. However, these
loops possess relatively large persistence compared to noise
points, and as such, should not be classified as noise points.
For instance, in the upper row of Fig. 4 (b), the middle loop
formed by intersections is smaller than the other two, cor-
responding to a point with moderate persistence in 1-PD.
Since the above scenario is common in cases of intersect-
ing curves, to prevent genuinely significant points, such as
those corresponding to small loops, from being misclassi-
fied as noise, and to robustly handle noise points in PD,
we choose to cluster the 2m points into three classes by
employing the k-means method [17]. Then we consider
the points in the 1-PD before projection corresponding to
the two classes far from the origin (indicating larger persis-



tence) as significant points, and the remaining class close
to the origin as noise points. This method effectively ad-
dresses cases like the upper row in Fig. 4 (b). Furthermore,
for cases where the significant points are all relatively close
together, this method can also identify the correct signif-
icant points. This is due to the addition of a large num-
ber of points to the origin, ensuring that truly noise points
are consistently clustered into one class, thereby rendering
all the points in the remaining classes as significant points.
The lower row in Fig. 4 (b) provides an example where
three points have proximate persistence, and clustering the
points in 1-PD into three classes yields correct significant
points. Thus, by clustering we can effectively and gener-
ally determine the number of genuinely significant points in
most cases.

Moreover, all significant positive 1-simplices can also
be further extracted from the VR filtration. Therefore, by
computing persistent homology and extracting significant
points in 1-PD, it is possible to determine the position and
length of all significant positive 1-simplices within the fil-
tration. Subsequently, applying this information to the next
reconstruction step to compute local principal curves, while
also eliminating curves that represent duplicates of the same
sampling curve, enables the successful reconstruction of all
the original sampling closed curves. The above process can
be summarized as Algorithm 1.

Algorithm 1 Deriving Persistent Homology Information
Input: A point cloud P .

1: Construct the VR filtration from P .
2: Calculate persistent homology and the 1-PD. Find the

birth time b1 of the point with largest persistence, and
remove points with birth time larger than 2b1.

3: Cluster the remaining points in 1-PD, and derive the
significant points.

4: Identify the position and length of all significant posi-
tive 1-simplices.

5: Sort these positive 1-simplices in descending order
based on the persistence of corresponding persistent 1-
cycles.

Return: The sorted significant positive 1-simplices along
with their position and length.

4.2. Selecting starting point and bandwidth to compute
local principal curves

In practice, the sampling point clouds often contain
noise. To address this issue, we utilize the local principal
curve, a form of piecewise linear curve, to initially approx-
imate closed curves from the noisy sampling point clouds.
But as mentioned earlier, the algorithm requires manual se-
lection of two parameters: the starting point x0 of the lo-
cal principal curve and the bandwidth h. In other words,

Figure 5. A localized illustration of a local principal curve. The
blue points represent the point cloud, while the centers of the cir-
cles (the black points) depict the vertices of the local principal
curve, and the radius represents the bandwidth.

to detect a single closed curve from a point cloud, we must
identify a point x0 sampled from this curve and select a suit-
able parameter h, which introduces a practical challenge. In
the original approach for computing local principal curves
[13], the starting points are often randomly selected, and
the bandwidth needs to be determined manually, leading
to increased difficulties in practical application. However,
since we have gained a topological understanding of point
clouds, based on the outcomes of Algorithm 1, we have de-
termined the position and length of each positive 1-simplex.
Given that every original closed curve can be represented by
a persistent 1-cycle, and we have identified the positive 1-
simplices of these cycles, we designate one vertex of the
corresponding positive 1-simplex as the starting point for
each local principal curve and set the bandwidth equal to
the length of this positive 1-simplex. Consequently, Algo-
rithm 1 enables the automatic selection of parameters for
computing local principal curves.

Therefore, to reconstruct the closed curves from given
point cloud, for each closed curve, we will first compute a
local principal curve to approximate it. Fig. 5 gives a local-
ized illustration of a local principal curve, and its original
computing method can be described as follows [13]:

• Select a suitable bandwidth h and a starting point x(0),
set x = x(0) initially.

• Calculate the local center of mass µx around x and
perform a local principal component analysis.

• Find the new value x by following the first local prin-
cipal component γ⃗x starting at µx, and update x as
µx + h · γ⃗x.

• Repeat above two steps until the stopping condition is
satisfied.

It is worth noting that this method can handle local cross-
ings between curves, making it suitable for addressing our



problem. Specifically, when calculating the unit direction
vector γ⃗x under the assumption that the intersections exist,
its computation can be modified by adding an angle penal-
ization to ensure that the local principal curve continues in
the same direction at the intersection as the last obtained
γ⃗x [13]. Specifically, let γ⃗x

(i−1) and γ⃗x
(i) denote the unit di-

rection vectors at the (i− 1)-th and i-th steps, respectively.
We define

ax(i) :=
∣∣∣γ⃗x

(i−1) · γ⃗
x
(i)

∣∣∣k
It is typical to set k = 2 [13]. Then, using angle penaliza-
tion, the modified γ⃗x

(i) can be computed as

γ⃗x
(i) := ax(i) · γ⃗

x
(i) +

(
1− ax(i)

)
· γ⃗x

(i−1) (1)

This method of computing γ⃗x takes into account previous
directions of the local principal curves, thereby aligning
with the good continuation principle. Then the algorithm
of computing local principal curve can be described as Al-
gorithm 2.

Algorithm 2 Computing Local Principal Curve
Input: A suitable bandwidth h and a starting point x(0).

1: Set x = x(0).
2: Calculate the local center of mass µx around x.
3: Perform a principal component analysis locally at x.
4: At the i-th step, update γ⃗x

(i) at x using Equation 1, then
update x as µx + h · γ⃗x

(i).
5: Repeat steps 2 through 4 until the stopping condition is

satisfied.
Return: The local principal curve represented by a se-

quence of points.

Since we only consider closed curves here, we set the
stopping condition as d(x0, x) < h when the iteration has
been repeated more than once. Note that the Algorithm 2
obtains a local principal curve represented by a sequence of
points by advancing a fixed step size at a time, in practice,
it is convenient to set the step size equal to the bandwidth
parameter h [13, 14].

Now, we provide a discussion regarding the rationale be-
hind our parameter selection, based on certain properties of
local principal curves. Einbeck and Zayed have presented
some asymptotic properties for localized principal compo-
nents and local principal curves [14], and we will offer ad-
ditional theoretical discussions related to our work, particu-
larly focusing on the connections between the local princi-
pal curves obtained by the proposed algorithm and the per-
sistent 1-cycles.

We first illustrate a property of the local center of mass
µx around a point x. That is, the Euclidean distance
d(µx, x) is less than the bandwidth parameter h if the ker-
nel function is selected as Gaussion kernel function [13].

Figure 6. Comparison of local principal curve (red) and represen-
tative cycle (green). The representative cycle shows more obvious
turns.

Since the local center of mass focuses on considering points
around x, by properties of the Gaussian kernel function
we can approximately analyze µx by considering only the
points whose distance to x is less than h.

Proposition 2. If the kernel function KH(x) is selected as
n-dimensional Gaussion kernel function, the following in-
equality holds: d(µx, x) < h, x ∈ Rn.

The proof is available in Supplementary Information.
The following theory asserts that the local principal

curves obtained from the proposed algorithm can serve as
good approximations of representative cycles of the origi-
nal curves, which can have a simpler shape, especially in
the case of large noise. See Fig. 6 for an example.

Theorem 1. Suppose P is a point cloud sampling from a
closed curve, v0 represents one end of the positive 1-simplex
v0vm of the persistent 1-cycles of this curve, and h rep-
resents the length of v0vm. Assuming the local principal
curve L with a starting point x0 = v0 and bandwidth h is
denoted by the sequence of vertices L := x0x1 · · ·xnx0,
then there exists a persistent 1-cycle C := v0v1 · · · vmv0
such that for every xi ∈ L, there exists at least one vj ∈ C
satisfying d(xi, vj) < h. Therefore, L can serve as an ap-
proximation of C.

The proof is available in Supplementary Information.

Remark 1. This theory still holds if P is sampled from more
than one curves (including situations of intersecting curves),
since for each curve we can compute a local principal curve
and derive the corresponding persistent 1-cycle.

If we introduce a parameter α to restrict the extent to
which the sampling points deviate from the original curve,
then, based on the bandwidth parameter h determined by the
positive 1-simplex as well as α, we can provide an upper-
bound estimate of the distance from the obtained local prin-
cipal curve to the original curve.



Theorem 2. Let S represent the original sampling curve
and P denote the sampling point cloud. Considering the
projection P̃ = {p̃}p∈P of P onto the true curve S, we
assume the existence of α > 0 such that

∥p̃− p∥ ≤ α,∀p ∈ P.

Let L be the resulting local principal curve with bandwidth
h. Then

sup
x∈L

inf
v∈S

d(x, v) < h+ α.

Thus, the distance from the local principal curve to the orig-
inal curve is controlled by h and α.

The proof is available in Supplementary Information.
Hence, if the sampling point cloud has a small deviation

from the curve and the sampling is dense enough, then the
generated local principal curve will have a smaller deviation
from the true curve.

4.3. Removing duplicate curves

As we previously mentioned that different positive 1-
simplices may produce duplicate local principal curves,
thus requiring a filtering condition to exclude these dupli-
cates. Here we filter these duplicate curves by consider-
ing the overlap points in the certain neighborhoods of the
curves, and call the filtering condition as the overlap condi-
tion.

Definition 5. (Overlap Condition) Let L1 and L2 be two lo-
cal principal curves, with h1 and h2 as their bandwidth pa-
rameters respectively. Denote P1 as the points in the sam-
pling point cloud P satisfying a distance to L1 less than h1,
and P2 as the points in the sampling point cloud P satis-
fying a distance to L2 less than h2. Denote the number of
elements in a set by “#”, if

#(P1 ∩ P2)/#P1 > 0.5 or #(P1 ∩ P2)/#P2 > 0.5

we say that L1 satisfies the overlap condition with L2.

We assume there is no overlap between different sam-
pling curves, thus checking if the number of overlapping
points exceeds half is sufficient to determine whether they
represent the same sampling curve.

In practice, we can establish a set wherein each new
principal curve can be compared with the existing princi-
pal curves in this set. This process allows us to determine
if the overlap condition is satisfied. If a curve satisfies the
overlap condition with another existing one, it is discarded,
and a new round of computation begins with the next signif-
icant positive 1-simplex. Otherwise, the curve is added to
the set. Ultimately, the set contains all the principal curves
representing the original sampled curves without duplica-
tion.

4.4. Fitting with smooth curves

To derive a better quality reconstruction curve, since the
output of Algorithm 2 is a sequence of points represent-
ing vertices of the obtained local principal curve, we can
directly fit these vertices with a smooth curve, usually a
B-spline curve. This can remain the shape of local prin-
cipal curve that approximates the sampling closed curve,
meanwhile improved smoothness of resulting curve. Fur-
thermore, various techniques can be employed to enhance
the fitness of the B-spline curve and thus improve the qual-
ity of the reconstructed curve. One such technique is the
least-squares progressive-iterative approximation (LSPIA)
method [8] for optimizing the derived B-spline curve. Sup-
pose a local principal curve L with bandwidth h and a fit-
ted B-spline curve S have been derived, given that there
could be additional sampling curves apart from the one rep-
resented by L, we exclusively focus on the subset P ′ of the
original sampling point cloud P that is contained within a
local neighborhood of L:

P ′ = {p ∈ P |∃x ∈ L with d(x, p) ≤ h}

This implies that P ′ only comprises points near the original
sampling curve corresponding to L, excluding points sam-
pled from other curves. Subsequently, the LSPIA method
can be utilized to optimize S based on P ′, thereby deriv-
ing a smooth curve, which consequently leads to an im-
proved reconstruction of the point cloud. By employing this
method for all initially fitted B-spline curves, the quality of
all reconstructed curves can be enhanced.

The whole separation and reconstruction process can be
described as the following Algorithm 3.

Algorithm 3 Human Perception Faithful Closed Curve Re-
construction Algorithm
Input: A point cloud P sampled from some closed curves.

1: Initialize S as an empty set.
2: Compute persistent homology of P to derive the sorted

significant positive 1-simplices using Algorithm 1.
3: For each significant positive 1-simplex e do
4: Denote the two vertices of e as x0 and x1, and denote

the length of e as h.
5: Use Algorithm 2 to extract the local principal curve

L by setting the original point as x0 and bandwidth as
h.

6: If L does not satisfy the overlap condition with all
the existing curves in S then

7: Fit L with a smooth curve and add it to S.
8: End if
9: End for

Return: The set S containing all curves representing orig-
inal sampling curves.



5. Experiments and Discussions

In this section, comparisons with previous methods are
first provided. Then, experimental results of the proposed
method, along with some of its applications, are presented.
Finally, we will give some discussions.

5.1. Influence of starting points and bandwidth

As previously mentioned, the selection of starting point
and bandwidth significantly influences the quality of a lo-
cal principal curve. Thus we initially compare the proposed
method to the original algorithm [13], which computes lo-
cal principal curves using randomly selected starting points
and manually set bandwidth parameters. It is clear that
randomly selecting the starting point is unsuitable for deal-
ing with the challenge of reconstructing intersecting closed
curves, due to the possibility of the random point falling on
the sampling point cloud of the same curve multiple times.
In scenarios involving a large number of curves, numerous
random repetitions of the selection may be necessary to en-
sure that at least one point was selected in the sampling
point cloud for each curve. Furthermore, concerning the
selection of the bandwidth parameter, a parameter that is
excessively large will yield a local principal curve that in-
adequately or wrongly approximates the point cloud, while
one that is too small will lead to an inaccurate local princi-
pal component analysis, resulting in a “locally sparse” point
cloud that prematurely stops the computation of the princi-
pal curve. Therefore, manually selecting the bandwidth pa-
rameter may involve tedious attempts to gradually increase
it from a very small value.

Fig. 7 illustrates the results of comparing randomly se-
lected starting points and unsuitable bandwidth parameters
with our method, where we randomly select starting point
for each sampling curve, and select bandwidth parameters
less than half the length of the positive simplex (Fig. 7 (a))
and greater than twice the length of the positive simplex
(Fig. 7 (b)), respectively. We can see that a bandwidth
that is too small can result in an erroneous local principal
component analysis and impede the curve searching pro-
cess. Conversely, an excessively large bandwidth can lead
to an inaccurate approximation of the point cloud and mis-
handling of intersections. In comparison, our method (Fig.
7 (c)) succeeds by automatically selecting appropriate start-
ing points and bandwidth values, which is a significant ad-
vantage.

5.2. Comparison with other methods

We also compare the proposed method with several state-
of-the-art curve reconstruction approaches. Given that the
intersection positions between different curves are locally
non-manifold, we choose to compare our method with three
state-of-the-art methods: method in [28], PEEL method

[35] and optimal transport method [7], all of them are able
to handle non-manifold cases. The comparison results are
illustrated in Fig. 8. In Fig. 8 (a), unwanted edges ap-
pear since noise causes the algorithm to incorrectly process
points near intersections. In Fig. 8 (b), the algorithm gen-
erates unwanted edges around the intersection and fails to
reconstruct some edges. In Fig. 8 (c), the algorithm also
creates unwanted edges around the intersection, and a gap
is mistakenly formed. Importantly, none of them is capable
of directly separating a single closed curve from the original
point cloud, let alone fitting them separately with a smooth
curve. They can only extract a general skeleton (such as a
graph) of the entire point cloud. In contrast, our method
successfully separates and reconstructs each closed curve
by utilizing an ordered sequence of points to represent them
(Fig. 8 (d)), which constitutes a significant advantage of the
proposed approach.

5.3. Experimental results

We start by demonstrating the robustness of our method
to noise. Fig. 9 display the results of the proposed method
as noise is gradually increased within the same point cloud.
Evidently, the proposed method can successfully extract
each curve even in the presence of large noise, aligning with
human visual perception. Therefore, our method exhibits
robustness to the effects of noise.

Then we present several experimental results, recon-
structed from point clouds by fitting with B-spline curves
and optimizing by LSPIA method. In Fig. 10 (a–c), re-
sults of some combined geometric shapes are depicted,
and Fig. 10 (d–f) show examples of reconstructing closed
curves in cartoon designs. It is evident that our method can
reconstruct both intersecting and non-intersecting closed
curves. Moreover, the proposed method can also extract
self-intersecting curves. In Fig. 10 (g), an example is shown
where one curve with two self-intersecting points forms
three loops due to self-intersecting. Our method correctly
reconstructs this curve while handling the self-intersecting
points, resulting in a representation that conforms to human
visual perception.

Finally, we show some results of our approach in real ap-
plications. First, we present some reconstruction examples
of patterns. These patterns are commonly found in the do-
main of graphic design, which are composed of closed base
shapes. By sampling the pixels representing these shapes
from images, we can obtain the corresponding point clouds.
Subsequently, the proposed method is utilized to compute
reconstructed curves representing these base shapes, with
the outcomes depicted in Fig. 10 (h). Furthermore, we
present several results of reconstructing trajectories 1. In
Fig. 11 (a), two closed trajectories for hiking around the
West Lake (a famous natural attraction in Hangzhou, China)

1https://www.2bulu.com/track
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Figure 7. Comparison with method using randomly selected starting points and manually set bandwidth parameters. (a) Bandwidth is less
than half the length of the positive simplex. The computation of principal curves prematurely stops (see the blue circles), since too small
bandwidth will lead to inaccurate local principal component analysis. (b) Bandwidth is larger than twice the length of the positive simplex.
The results fail to approximate the point cloud and handle intersecting points correctly. (c) Our experimental results.

(b)(a)

(c) (d)
Figure 8. Comparison with other state-of-the-art approaches. (a) Results of method in [28]. Unwanted edges appear due to noise points near
intersections. (b) Results of PEEL method [35]. The algorithm generates unwanted edges around the intersection and fails to reconstruct
some edges. (c) Results of optimal transport method [7]. Unwanted edges around the intersection appear, and a gap is mistakenly formed,
as shown in the blue circles. (d) Our experimental results, where different closed curves are drawn in different colors.

are depicted. The blue dots on the figure represent public
GPS location data with minor noise, collected by the hikers
at intervals during the hike. Consequently, reconstructing
the curves from this point set will allow for an approxima-
tion of the hiking routes, and may help to discover some
paths that are not marked on the map. Using the proposed
algorithm, we conducted the reconstruction and obtained
two heart-shape like closed curves. Similarly, in Fig. 11

(b) there are three intersecting closed trajectories, and three
closed curves are successfully separated and reconstructed,
again demonstrating the effectiveness of our method.

In the following we will discuss the quality of the gen-
erated principal curves. One index to assess the suitability
of the bandwidth parameter h is the self-coverage [13]. It
means the fraction of all data points which are found in a



Figure 9. Illustration of the robustness of our method to noise. As the noise is gradually increased from left to right, our method successfully
reconstructs all the curves.

(a)
(b) (c)

(d) (e) (f)

(g)

(h)

Figure 10. Some of our experimental results. Different curves are plotted in different colors.

certain neighborhood of the principal curve, defined as

CL(h) = #{p ∈ P |∃x ∈ L with ∥x− p∥ ≤ h}/n

where P is the given point cloud, n is the number of points
in P , and L is the local principal curve. It is a monotonically

increasing function of h and will finally reach the value 1.
Therefore, on the condition that the shape of the point cloud
can be approximated, the closer the self-coverage is to 1,
the better the quality of the principal curve is considered
to be. In our problem of approximating intersecting closed



(a) (b)
Figure 11. The blue dots are public GPS location data with minor noise, the colored curves are reconstruction results of hiking trajectories
using our method. (a) Two intersecting trajectories. (b) Three intersecting trajectories.

Table 1. Self-coverage of the resulting principal curves
Point Clouds in Fig. 10

Fig. 10 (a) 0.999 Fig. 10 (e) 1.000
Fig. 10 (b) 1.000 Fig. 10 (f) 1.000
Fig. 10 (c) 0.996 Fig. 10 (g) 1.000
Fig. 10 (d) 1.000 Fig. 10 (h) 1.000

Point Clouds in Fig. 11
Fig. 11 (a) 0.972 Fig. 11 (b) 0.998

curves, we can compute the self-coverage of all obtained
local principal curves. Table. 1 shows the self-coverage of
some experimental results, which proves that the bandwidth
parameter given by our method is appropriate.

5.4. Limitations

There are some limitations of the proposed method.
First, the topological understanding through persistence di-
agrams remains a technique under active research and de-
velopment. At the current stage of the methodology, when
dealing with certain types of noisy point sets or intersect-
ing conditions, the topological understanding may yield an
incorrect count of significant points, indicating a limitation
of the current topological understanding method. Nonethe-
less, we anticipate that further exploration of persistent ho-
mology will yield additional methods for achieving a more
accurate topological understanding of point clouds based on
persistence diagrams in the future. Additionally, owing to
the underlying principle of the local principal algorithm, it
is more suitable for fitting smooth curves [12–14]. Conse-
quently, for curves with sharp corners, this algorithm may
not perform optimally. In fact, as shown in Fig. 11, the

resulting curves fail to retain some sharp corners depicted
in the original point clouds, although they generally pro-
vide good approximations of entire point clouds. Moreover,
the proposed method cannot automatically reconstruct open
curves yet.

6. Conclusions

In this paper, we propose a human perception faithful
curve reconstruction approach that adheres to the good con-
tinuation principle of human visual perception. Specifically,
it can automatically separate and reconstruct intersecting
closed curves from noisy point clouds. Initially, we com-
pute the persistent homology of the point cloud to gain a
topological understanding and to identify relevant topologi-
cal information, particularly focusing on the significant pos-
itive 1-simplices. Subsequently, the local principal curves
are calculated to approximate the original curves, with pa-
rameters selection according to the results of the persistent
homology. Finally, we fit each local principal curve with a
smooth curve to obtain the final reconstructed curves of the
original sampling curves. This method combines the ad-
vantages of both persistent homology and principal curves,
making it effective for handling noisy point clouds and in-
tersection cases, thereby producing faithfully reconstructed
results aligned with human perception. The effectiveness of
the proposed method is also validated through experiments.

In our future work, we plan to explore additional meth-
ods of topological understanding and curve approximating
for reconstructing closed curves to overcome current lim-
itations. Furthermore, we will research human perception
faithful methods for open curve reconstruction based on



principal curves, with the choice of its parameters poten-
tially informed by other dimensions of persistent homology.
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[23] B. Kégl and A. Krzyzak. Piecewise linear skeletonization us-
ing principal curves. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 24(1):59–74, 2002. 3
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