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Abstract

Underwater image semantic segmentation is widely
used in the recognition and navigation of vision-guided
underwater robots. However, due to issues such as in-
sufficient underwater scene illumination and turbidity
of the water, the contrast between targets and back-
grounds is low. Existing underwater semantic segmenta-
tion methods ignore the recognition differences between
underwater images, making it challenging for models to
extract sufficiently robust visual features from noisy un-
derwater images. To address this problem, we propose
SEA-Net, which incorporates a SEA-Adapter and Vi-
sual Prompt Tuning. In the framework, we use a sever-
ity metric to address various complex noise problems in
underwater images. The severity metric classifies all un-
derwater images into High and Low-severity images and
combines the Visual Prompt Tuning of two-branch al-
ternating training, this allows the model to learn more
robust visual features from different perspectives. On
both the SUIM and DeepFish benchmarks, our pro-
posed SEA-Net outperforms state-of-the-art methods in
underwater image semantic segmentation tasks.
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prompt tuning, adapter

1. Introduction

Underwater semantic segmentation is closely related to
industrial information and has wide applications in ma-
rine engineering, resource development, and ocean moni-
toring. Accurately identifying underwater objects and en-
vironments enhances operational efficiency, optimizes re-
source exploration and development processes, and im-
proves environmental monitoring and protection in ma-
rine industries. This technology offers precise underwater
scene understanding, providing crucial information to sup-
port decision-making and operations. More and more re-
searchers are increasingly focusing on the field of under-
water vision tasks [21], which includes underwater image

SEA-Net is significantly better than UISS-Net in severe scenario, 
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Figure 1. Qualitative results of underwater image semantic seg-
mentation on the SUIM benchmark. For High and Low-severity
images, we show the corresponding ground-truth map and the re-
sults of UISS-Net and our proposed SEA-Net method. We high-
light some improved predictions with white dashed circles. It is
evident that the performance of UISS-Net and SEA-Net is similar
when processing Low-severity images. However, when processing
High-severity images, the SEA-Net outperforms UISS-Net.

target detection [50], underwater image enhancement [1],
underwater image semantic segmentation [38]. Underwa-
ter image semantic segmentation provides powerful support
for underwater robots to explore and exploit resources, and
underwater image semantic segmentation models can pro-
vide the corresponding semantic information to better help
underwater robots identify marine targets.

However, the quality of underwater images is often un-
stable due to light absorption and scattering in the water,
resulting in an overall blue-green color tone in underwa-
ter images. Decreased image quality leads to low contrast
between targets and backgrounds, color deviations, blurry
edges, and details of objects, as well as uneven bright-
ness [35], which restricts the application of underwater
robots in real scenes.

Existing underwater image semantic segmentation meth-
ods, such as those proposed by Islam et al. [19], Liu et
al. [29], and He et al. [16] ignore the difference in recog-
nition difficulty between various underwater images, result-
ing in models struggle to extract sufficiently robust visual
features from underwater images with noises such as low-
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lighting complexity and lack of generalization to images in
the presence of other underwater noises. Inspired by Gong
et al. [12,13,23], we propose SEA-Net to address this prob-
lem, which consists of a SEA-Adapter and Visual Prompt
Tuning. In the framework of SEA-Net, we provide a novel
solution for the underwater image semantic segmentation
task, e.g.we use the severity metric to unify the various com-
plex noise problems of underwater images and direct the
model to focus on the severity of the image recognition dif-
ficulty. The severity metric classifies all underwater images
into High and Low-severity images and combines Visual
Prompt Tuning with two-branch alternating training, which
enables the model to learn more robust visual features from
different perspectives. Visual Prompt Tuning, a learnable
component within the SEA-Net, activates visual prompts to
enhance High and Low-severity images. This mechanism
ensures the two branches progressively highlight different
severity levels, directing the model’s focus toward the sever-
ity rather than specific underwater noises of the image. As
shown in Fig. 1, the SEA-Net outperforms UISS-Net when
processing High-severity images. We also design a SEA-
Adapter specifically for underwater scenarios, which con-
sists of a Down-Projection, a ReLU Activation Function, an
Up-Projection, a 3x3 Convolution, and a Residual Connec-
tion sequentially to optimize the low-level features.

Our contributions are summarized as follows:

• We provide a new perspective on underwater image
semantic segmentation tasks by proposing a novel
Severity-Aware Network called SEA-Net. The frame-
work employs a severity metric to unify the High-
severity and Low-severity images and guides the
model to focus on the severity of the recognition diffi-
culty of the underwater images.

• SEA-Net consists of a SEA-Adapter and Visual
Prompt Tuning. The SEA-Adapter is designed to be
more compatible for underwater scenarios, where both
the visual prompts and the SEA-Adapter can automati-
cally update during training, without the need to adjust
these hyperparameters manually.

• SEA-Net achieves a 3.8% higher mean Intersection
over Union (mIoU) compared to the state-of-the-art
on the SUIM benchmark for underwater semantic seg-
mentation, with an improvement of 1.1% mIoU in pa-
per. This demonstrates the effectiveness of the pro-
posed method in learning robust features from noisy
underwater images, aiding underwater robots in better
recognizing marine life.

2. Related Work

2.1. Underwater image semantic segmentation

In recent years, semantic segmentation models based on
deep learning methods have made great progress, such as
FCN [28], VGG [37], and ResNet [16]. He et al. propose
ResNet, which extracts features hierarchically and upsam-
ples the low-dimensional features through a decoder net-
work to generate the final semantic labels. Ronneberger et
al. [34] propose U-Net architecture, which significantly im-
proves performance by reusing the output of each encoder
layer. Badrinarayanan et al. [2] use the pixel indexes in the
encoder that performs maxpool for unpooling, thus elim-
inating the need for upsampling. Chen et al. [4] propose
DeepLabv1, which uses atrous convolution to keep the re-
ceptive field consistent based on VGG. Chen et al. [5] intro-
duce ASPP to add multi-scale training and larger receptive
fields. Chen et al. [6] improve ASPP and propose both cas-
cade and parallel architectures.

All of the above methods have achieved better results on
natural images. However, the quality of underwater images
is highly unstable, primarily due to light absorption by wa-
ter. Therefore, directly transferring the aforementioned se-
mantic segmentation methods to underwater images would
be ineffective [41]. In recent years, researchers are commit-
ted to presenting underwater segmentation datasets and pro-
cessing underwater images, Lian et al. [26] have proposed
the first underwater image instance segmentation dataset
UIIS to facilitate the training and evaluation of underwater
instance segmentation models, which provides an in-depth
discussion of instance segmentation of underwater scenes.
Islam et al. [19] propose the first large-scale semantic seg-
mentation dataset for underwater images, which provides a
new benchmark for future research on semantic segmenta-
tion of underwater images. Wang et al. [39] use image en-
hancement based on multi-space transform to improve the
quality of the original image. Liu et al. [29] introduce an
unsupervised color correction method (UCM) module into
the encoder structure of the framework to improve the qual-
ity of the images. He et al. [17] use a lightweight network
to assist the backbone model and enhance the robustness
of the model to better adapt to the images of the under-
water scene. SAM, which is the vision foundation model,
has achieved excellent results in many application scenarios
such as Zhang et al. [47], Li et al. [24], Zhang et al. [48].
Very recently, Xu et al. [42] apply SAM to the underwa-
ter foreground segmentation task, achieving better perfor-
mance on underwater foreground segmentation. O’Byrne
et al. [32] propose to use realistic synthetic images to train
models.



2.2. Visual Prompt Tuning

Prompt-based learning [20] is initially proposed in Nat-
ural Language Processing (NLP), it involves only a few pa-
rameters in the input space to fine-tune large pre-trained
models for downstream tasks. Subsequently, prompt tuning
has tended to be investigated in the field of computer vi-
sion (CV). Many approaches [22, 33, 43, 51] conduct some
attempts to prompt visual language models (VLMs) in the
form of text, and Jia et al. [20] first introduce the concept
of ”visual prompt” as a learnable vector. Bahng et al. [3]
treat prompts as continuous task-specific vectors and indi-
vidual image perturbations (e.g.soft prompts) are learned by
backpropagation with frozen model parameters to demon-
strate that prompts are feasible in the CV domain. Gong
et al. [13], [12], [23] propose to classify images into
High and Low-severity images in the unsupervised domain
adaptation semantic segmentation task (UDASS), instruct-
ing the model to learn domain-invariant features, but ignor-
ing scene-specific features.

2.3. Adapter

The concept of Adapter is first introduced in NLP [18],
which acts as a compact and scalable module for fine-tuning
large pre-trained models to each downstream task [7]. In
the field of computer vision, Adapters have been recently
used in the vision foundation model and vision-language
foundation model, such as Li et al. [25] suggest fine-
tuning ViT [11] for target detection with minimal modi-
fications. Zhang et al. [46] propose Tip-Adapter, which
trains Adapters without any backpropagation, instead of
creating weights through a key-value caching model con-
structed from a small number of training sets, through this
non-parametric approach, performance-optimized adapter
weights can be obtained without any training. Chen et al. [9]
propose ViT-Adapter, which utilizes adapters to enable or-
dinary ViTs to perform a variety of downstream tasks. Chen
et al. [7] propose SAM-Adapter, which is the first method to
apply Adapters to the pre-trained segmentation foundation
model SAM for camouflage target detection and shadow de-
tection. In this work, we propose the SEA-Adapter based on
a vanilla adapter [18], which is designed to adapt to under-
water scenes and optimize low-level features.

3. Method

3.1. Architecture

Inspired by U-Net, the overall architecture of our SEA-
Net adopts a U-shape structure, using ResNet50 [16] as
the backbone, we also follow [17], which uses an aux-
iliary network [15] for feature extraction in the encoder
part to extract richer semantic information. The SEA-Net
mainly consists of a SEA-Adapter and Visual Prompt Tun-
ing. Severity-Aware Network uses a severity metric to unify

various complex noise problems of underwater images, then
all underwater images will be classified into High-severity
and Low-severity images based on the severity metric. Vi-
sual Prompt Tuning is a learnable component based on the
Severity-Aware Network. When the Severity-Aware Net-
work determines the image as a High-severity image, the
visual prompts are activated and added to the High-severity
images to enhance the High-severity images. Similarly,
when the Severity-Aware Network determines the image
as a Low-severity image, the visual prompts are activated
and added to the Low-severity images to enhance the Low-
severity images. By training the dual branches alternately
in this way, the model learns more robust visual features
from different perspectives. SEA-Adapter, which absorbs
prompt information from the visual prompts and optimizes
the model’s low-level features. The overall structure of
SEA-Net is shown in Fig. 2.

3.2. Severity-Aware Network

Severity-Aware Network is primarily designed to clas-
sify input images into High-severity and Low-severity im-
ages with a severity metric. Visual Prompt Tuning is a learn-
able component, which is built on top of the Severity-Aware
Network to enhance the High and Low-severity images by
adding visual prompts.

3.2.1 Severity metric

Severity-Aware Network utilizes a severity metric to ad-
dress various noise issues in underwater images, treating
all noisy pixels in underwater images as severity pixels.
Firstly, the input image X ∈ RH×W×C is converted to a
grayscale image Xg ∈ RH×W , where H , W , and C de-
note the height, width, and number of channels of the image
respectively. Then, the noisy pixels in the grayscale image
with grayscale values lower than the grayscale threshold α
are considered as High-severity pixels. As grayscale values
between 0 and 50, the image is very dark and details may
be difficult to discern, we set the grayscale threshold α to
40. We then calculate the ratio of High-severity pixels in
all pixels of the original image. If this ratio is higher than
the severity threshold τ , the image is classified as a High-
severity image. Otherwise, it is classified as a Low-severity
image. As is shown in Fig. 3(b), the darker regions in the
image represent High-severity pixels, while the brighter re-
gions represent Low-severity pixels.

severity metric =

{
High, if Xg<α

H×W > τ

Low, else
(1)

3.2.2 Visual prompt

We represent the visual prompts as V PT ∈
RHvpt×Wvpt×C , the number of visual prompts for
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Figure 2. Overview of our proposed SEA-Net framework. It consists of three parts: Visual Prompt Tuning, Backbone, and SEA-Adapter.
Blue arrows indicate the flow for data pre-processing, green arrows indicate the flow for Low-severity images, red arrows represent the
flow for High-severity images, and gray arrows represent the flow for forward propagation. Given original images, we first pass them
through severity metric and Visual Prompt Tuning to obtain High and Low-severity images, then we pass them to Backbone to obtain the
final features.

each image is 3, Hvpt = Wvpt = 64. To avoid excessive
masking the image by the visual prompts, the three visual
prompts are added at the top two corners and the center
of the image respectively. As is shown in Fig. 3(c), the
equations for adding the visual prompts to an image are as
follows:

XH = Xh + 3 · V PTh (2)

XL = X l + 3 · V PT l (3)

X̂ = XH ∪XL (4)

where Xh, X l denotes a High-severity image and a Low-
severity image respectively. V PTh, V PT l denotes a High-
severity visual prompt and a Low-severity visual prompt re-
spectively. XH , XL denotes the High-severity images and
Low-severity images after adding the visual prompts, re-
spectively. X̂ denotes the enhanced images.

3.3. SEA-Adapter

We design a SEA-Adapter for underwater scenarios,
which is based on the vanilla adapter. It consists of Down-
projection, RELU Activation Function, Up-projection, 3x3
Convolution, and a Residual Connection.

This SEA-Adapter optimizes the low-level features
F1, F2 among the five features [F1, F2, F3, F4, F5] output
from Backbone. In this process, the SEA-Adapter aims
to leverage beneficial prompts from visual prompts to bet-
ter optimize the latent features of the model. The pipeline
equation of SEA-Adapter is as follows:

ˆ
F1

H/L = F
H/L
1 +Adapter

(
F

H/L
1

)
(5)

(a) Original Image (c) Image with VPT(b) Image with severity metric

High-severity

Low-severity

Severity Threshold = 0.05 SizeVPT = 64×64 NumVPT = 3

Figure 3. Visualizations of High and Low-severity pixels and vi-
sual prompts on a single image from the SUIM dataset. We set the
severity threshold to 0.05 and set the size of visual prompts to 64,
and the number of visual prompts to 3.

ˆ
F

H/L
2 = F

H/L
2 +Adapter

(
F

H/L
2

)
(6)

where
ˆ

F
H/L
1 ,

ˆ
F

H/L
2 represent the feature maps for High and

Low-severity features respectively.

3.4. Overall training flow

The whole training flow is shown in Fig 2. The Severity-
Aware Network classifies input images into High-severity
images and Low-severity images based on a severity metric.
Visual prompts are explicitly added to both types of images
to generate enhanced High and Low-severity images. These
images are then fed into a Backbone Network to obtain five
features at different levels. The SEA-Adapter is used to
further optimize two of the lower-level features. Finally,
the features from all five layers are upsampled, multiplied,
and concatenated to form the final feature map. The entire



training process is supervised by the loss function Lfinal .
SEA-Net utilizes both the binary cross-entropy loss [27]
and the dice loss functions [31]. While the cross-entropy
(CE) loss function excels in multi-classification scenarios
by effectively measuring the disparity between model pre-
dictions and actual labels, it also promotes faster conver-
gence and enhanced performance. Nonetheless, it demands
strong model stability and can be sensitive to uneven sam-
ple distributions. On the other hand, the dice loss function is
skilled at handling significant imbalances in sample classes,
prioritizing foreground region extraction during training. To
address dataset irregularities and expedite model conver-
gence, we combine both loss functions. The loss function
is concerned with both the model’s accurate prediction of
segmentation boundaries (Dice Loss) and the model’s ac-
curate classification of foreground and background (BCE).
The equations for the cross-entropy loss function and dice
edge segmentation loss function are as follows:

LBCE = −
N∑
i=0

yiln (p (xi)) (7)

Dice coefficent =
2TP

2TP + FP + FN
(8)

LDice loss = 1− Dice coefficent (9)

where N is the number of samples, yi is the label of the
sample, and p (xi) is the foreground probability of predict-
ing the sample xi.

L1 = LBCE(GT, predict (x)) (10)

L2 = LDice loss (GTseg ,predict (xseg )) (11)

Where L1 is the main network loss function, GT is the
exact semantic labels, predict(x) is the obtained segmen-
tation result, LBCE is the computation process of cross-
entropy loss. L2 is the edge loss, GT seg is the edge label
obtained from the real semantic label of the real semantic la-
bel, predict (xseg) is extracted from the edge extracted from
the segmentation result, LDice loss is the calculation process
of the dice loss. The loss function of SEA-Net is as follows:

Lfinal = L1 + L2 (12)

4. Experiments

4.1. Datasets and training setup

SUIM proposed by Islam et al. [19] is a large-scale
dataset for underwater image semantic segmentation bench-
mark. It contains annotations for eight object classes, in-
cluding Fish and Vertebrates (FV), Coral Reefs and Inverte-
brates (RI), Aquatic Plants and Sea-grasses (PF), Wrecks

Image 1

Image 3

Image 4

Image 2

(a) Original (b) UISS-Net (c) SEA-Net (d) Ground Truth

BW HD PF WR RO RI FV SR

Figure 4. Quantitative experiments between UISS-Net and SEA-
Net on the SUIM dataset. For each target image, we show the
corresponding ground truth map and the results of UISS-Net and
our proposed SEA-Net. We highlight some improved predictions
with blue dashed circles.

or Ruins (WR), Human Divers (HD), Robots (RO), Sea-
floor and Rocks (SR), and Background (Waterbody) (BW).
1525 RGB images are used for training and validation,
while 110 images are used for benchmark evaluation of the
model. The images in SUIM have different resolutions in-
cluding 1906 × 1080, 1280 × 720, 640 × 480, 256 × 256.
DeepFish proposed by Saleh et al. [36] consists of approx-
imately 40,000 underwater images collected from 20 Aus-
tralian tropical marine environment habitats. The dataset
initially contained only classification labels, and 300 fish
semantic segmentation labels were added later. In this pa-
per, the training and test sets are divided according to the
ratio of 9:1. The images in both datasets are preprocessed
and resized to 512 × 512. The proposed method is trained
for 100 epochs on NVIDIA RTX 3090 GPU with Pytorch
version 1.13.0. In addition, we follow the UISS- Net [17],
with the initial learning rate set to 0.0004, weight decay set
to 0.0001, and momentum set to 0.5.

4.2. Evaluation criteria

In order to thoroughly assess the model’s performance,
we have chosen mean Intersection over Union (mIoU),
mean Pixel Accuracy (mPA), and Precision (Accuracy) as
the evaluation metrics. mIoU is the average of the ratio be-
tween the intersection and union of predicted results and
ground truth for all classes. mPA is the average ratio of cor-
rectly classified pixels for each class. Accuracy is the ratio
of pixels that are correctly classified into their respective



Table 1. Comparison between SEA-Net and current mainstream models on the SUIM benchmark. We present the per-class and mean IoU
(mIoU). We highlight the best and second-best results in each column in bold and italics, respectively

Model
IoU (%)

mIoU (%)BW HD PF WR RO RI FV SR

U-Net [34] 79.46 32.25 21.85 33.94 23.65 50.28 38.16 42.16 39.85
U-Net(ResNet) 90.14 72.53 2.37 62.65 59.19 69.93 73.13 69.31 62.41

U-Net(VGG) 90.03 79.81 4.25 62.23 51.43 71.23 74.11 68.27 62.73
SegNet [2] 80.63 45.67 17.45 32.24 55.72 47.62 43.92 51.51 46.85

SUIM-Net [19] 80.64 63.45 23.27 41.25 60.89 53.12 46.02 57.12 53.22
PSPNet [49] 82.51 65.04 28.54 46.56 62.88 55.8 46.78 55.98 55.51
DeepLab [4] 81.82 50.26 17.05 43.33 63.6 57.18 43.56 55.35 51.52
LEDNet [40] 82.96 58.47 18.02 42.86 50.96 58.13 46.13 54.99 51.36

BiseNetv2 [44] 83.67 59.29 18.27 39.58 56.54 58.16 47.33 56.93 52.47
UISS-Net [17] 87.18 87.03 29.48 71.27 84.11 70.7 79.44 67.54 72.09

UISS-Net (test) 89.11 80.88 24.37 68.54 79.22 69.78 76.95 65.96 69.35 (+0.00)
SEA-Net (ours) 89.75 84.69 38.45 71.11 80.49 72.68 79.11 68.92 73.15 (+3.80)

categories out of the total number of pixels, assuming that
Pi, (i ∈ N) is the accuracy for each class at pixel i, mIoU,
mPA, and Accuracy are defined as:

mIoU =
1

N
×
∑(

TP

TP + FP + FN

)
(13)

Accuracy =
TP + TN

FP + TP + FN + TN
(14)

mPA =
1

N
×
∑

(Pi) (15)

where N denotes the number of categories, TP denotes the
number of pixels correctly predicted by the model as pos-
itive samples, FP denotes the number of pixels that the
model correctly predicts as positive samples, TN denotes
the number of pixels that the model correctly predicts as
negative samples, and FN the number of pixels that the
model incorrectly predicts as negative samples.

4.3. State-of-The-Art performance comparison

Table 1 and Table 2 summarize the performance of our
method SEA-Net compared with state-of-the-art methods
on the SUIM and DeepFish benchmark respectively. Table
1 shows that our proposed SEA-Net method performs much
better on average than all state-of-the-art methods on the
SUIM benchmark. This advantage is derived from improve-
ments over several classes such as aquatic plants and sea-
weed (PF), coral reefs, and invertebrates (RI), we achieved
the best or second-best performances for all classes. We
also present visual comparisons of the proposed SEA-Net
with UISS-Net on the SUIM dataset in Fig. 4. Table 2
shows that our proposed SEA-Net method performs much
better on average than all state-of-the-art methods on the
DeepFish dataset and Fig. 5 presents visual comparisons
of the proposed SEA-Net with UISS-Net on the DeepFish
dataset. It is evident that, compared with the other methods,
our method can not only provide sharper edges of classes in

Low-severity images, such as aquatic plants and seaweed,
but also improve the detection of classes in High-severity
images, such as signs and lights. This demonstrates the ef-
fectiveness of the proposed SEA-Net on underwater images.

Table 2. Comparison between SEA-Net and current mainstream
models on the DeepFish benchmark. We present the per-class and
mean IoU (mIoU). We highlight the best and second-best results
in each column in bold and italics, respectively

Model
IoU (%)

mIoU (%)Background Foreground

SUIM-Net [19] 99.03 78.4 88.71
SegNet [2] 98.89 68.94 83.91

PSPNet [49] 99.11 71.35 85.23
FCN [28] 99.15 72.61 85.88

DeepLabv3 [6] 99.21 66.3 82.75
HANet [10] 99.25 81.37 90.31

DGCNet [45] 99.21 81.42 90.32
MFAS-Net [14] 99.15 84.86 92.01

DPANet [8] 99.31 82.56 85.88
UISS-Net [17] 99.55 90.55 95.05

UISS-Net (test) 99.49 89.03 94.26 (+0.00)
SEA-Net (ours) 99.57 90.73 95.15 (+0.89)

4.4. Ablation study analysis

4.4.1 Ablation study on different components

To better understand the impact of each component of our
SEA-Net, we conducted an ablation study by selectively de-
activating each component and measuring the effect on the
performance of the underwater semantic segmentation task.
Specifically, we defined five nested subset models:

(1) VPT: Using the basic architecture from U-Net with vi-
sual prompts in Section 3.2.2 and BCE loss (Eq. (10)
and Dice loss (Eq. (11)). We set the number of vi-
sual prompts to 3 without severity metric and severity
threshold to 0.05.



Table 3. Ablation study of SEA-Net components on the SUIM Dataset. VPT means SEA-Net without the severity metric. SM means
SEA-Net with the severity metric. We highlight the best and second-best results in each column in bold and italics, respectively

Input Size VPT SM SEA-Adapter mIoU (%) mPA (%) Accuracy (%)

512 × 512 69.35 (+0.00) 78.26 86.98
512 × 512 ✓ 70.22 (+0.87) 78.95 87.20
512 × 512 ✓ ✓ 71.77 (+2.42) 80.34 88.23
512 × 512 ✓ 70.87 (+1.52) 79.62 87.23
512 × 512 ✓ 71.45 (+2.10) 79.90 87.56
512 × 512 ✓ ✓ 73.15 (+3.80) 81.52 88.01

(2) SM: We set the number of visual prompts to 3 with the
severity metric and severity threshold to 0.05.

(3) SEA-Adapter: Using the basic architecture from U-Net
with SEA-Adapter in Section 3.3.

(4) VPT+SEA-Adapter: Further adding the SEA-Adapter
based on VPT.

(5) SM+SEA-Adapter: Further adding the SEA-Adapter
based on SM.

The results are presented in Table 3 showing that our over-
all SEA-Net resulted in a performance gain of 3.8% over
the basic architecture in mIoU. The VPT (Visual Prompt
Tuning) alone is responsible for a 0.87% improvement, the
SM (Visual Prompt Tuning with severity metric produces an
additional 1.23% improvement, and the SEA-Adapter pro-
vides a 1.52% improvement. This verifies the importance
of the Visual Prompt Tuning, severity metric, and SEA-
Adapter components of our SEA-Net.

4.4.2 Ablation study of Visual Prompt Tuning

The size, number, and position of the visual prompts may
impact the learning process. To verify this, we set differ-
ent sizes of visual prompts during training, such as 8 × 8,
16 × 16, 32 × 32, and 64 × 64. As shown in Table 4, the
performance of visual prompts with the size of 64 × 64 is
better than the other sizes of visual prompts, which achieves
71.45% mIoU. However, the performance of visual prompts
with the size 8 × 8 and 16 × 16 are relatively lower com-
pared to the others. The reason for this could be smaller
mask areas constrain the model’s representational capacity
for specific tasks, preventing it from adequately capturing
the features of the images, which causes models to learn
worse.

Meanwhile, we also set different numbers of visual
prompts such as 1, 3, 4, 5. As shown in Fig. 6(b), the per-
formance of visual prompts with the number 5 is better than
other numbers of visual prompts, which achieves 72.13%
mIoU. However, the performance of visual prompts with
the number 1 is relatively lower compared to the others. The
reason for this could be few mask blocks introduce more di-
verse conditions, which causes models to learn worse.

Image 1

Image 2

Image 3

Image 4

(a) Original (b) UISS-Net (c) SEA-Net (d) Ground Truth

Figure 5. Quantitative experiments between UISS-Net and SEA-
Net on the DeepFish dataset. For each target image, we show the
corresponding ground truth map and the results of UISS-Net and
our proposed SEA-Net.

UISS-Net crops images by placing gray bars on the in-
put image to prevent distortion. However, if visual prompts
are placed on the gray bars, the model might learn unrelated
features. Therefore, we have also examined how the posi-
tion of the visual prompts affects performance. Based on
the three visual prompts, we arranged them with different
starting positions. The first set has center positions at 200
and corner positions at 320. The second set is centered at
200, with corner positions at 400. The third set has a center
position of 200 and corner positions at 448. The fourth set
has a center position of 200 and corner positions at 496. As
shown in Table 5, the visual prompts with center positions at
200, and two corner positions at 400 perform better than the
visual prompts with other positions, which achieves 71.05%
mIoU.
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Figure 6. Ablation study of the severity threshold and visual prompt on the SUIM dataset by line graph visualization. The results show that
the selection of severity threshold and visual prompt can significantly impact the performance of the model.

Table 4. Sensitivity analysis of Visual Prompt Size on the SUIM
dataset. We highlight the best results in each column in bold

Visual Prompt Size 8×8 16×16 32×32 64×64

mIoU 69.30 68.53 70.10 71.45
mPA 78.40 77.85 79.13 79.90

Accuracy 86.28 84.45 87.17 87.56

Table 5. Sensitivity analysis of Visual Prompt Position on the
SUIM dataset. We highlight the best results in each column in
bold

Visual Prompt Position 320 400 448

mIoU 71.45 71.12 70.31
mPA 79.90 79.84 79.37

Accuracy 87.56 87.05 86.97

4.4.3 Ablation study of severity threshold

We apply the severity threshold in our method: τ . The
setting of the severity threshold also has an effect on the
model’s performance as well. In order to verify this, we set
different severity thresholds during training, such as 0.01,
0.02, 0.05, 0.08, 0.1. As shown in Fig. 6(a), the model per-
forms best at τ = 0.05, which achieves 71.45% mIoU.

Table 6. Sensitivity analysis of SEA-Adapter Position on the
SUIM dataset. We highlight the best results in each column in
bold

SEA-Adapter Position mIoU mPA Accuracy

[F1] 70.87 79.62 87.23
[F2] 70.62 79.20 88.15

[F1,F2] 71.77 80.34 88.23
[F1, F2, F3] 70.01 78.89 85.99

[F1, F2, F3, F4] 66.15 75.50 84.71
[F1, F2, F3, F4, F5] 69.10 77.50 86.11

4.4.4 Ablation study of SEA-Adapter

We apply the SEA-Adapter in our method. The position of
the SEA-Adapter also have an effect on the model’s perfor-
mance as well. In order to verify this, we set different posi-
tions of SEA-Adapter by adding SEA-Adapter after each of
the five features [F1, F2, F3, F4, F5] output from Backbone.
As shown in Table 6, the model performs best when adding
SEA-Adapter after F1, F2, which achieves 71.77% mIoU.

4.5. Limitations and future work

As illustrated by the previous experimental results (Fig.
4 and Fig. 5), the proposed SEA-Net performs well in most
situations. However, it still has some limitations, for exam-
ple, it may fail to detect some underwater fish clusters with
very small sizes. Therefore, in future work, we will investi-
gate how to improve the performance by training our model
with the help of boundary detection. For example, bound-
ary detection [30] can be helpful for learning a clearer con-
tour for each object. Despite this, differences in biologi-
cal species and water quality in various marine regions can
cause models to perform differently. As a result, future ef-
forts may involve creating specific datasets for different sea
areas and utilizing unsupervised domain adaptation tech-
niques for semantic segmentation to enhance the model’s
generalization across diverse underwater environments.

5. Conclusions

In this paper, we propose a new approach that uses a
severity metric to unify various complex noise problems
in underwater images. The proposed SEA-Net consists of
a SEA-Adapter and Visual Prompt Tuning. The Severity-
Aware Network addresses all the noise problems in under-
water images through a severity metric, and Visual Prompt
Tuning is a learnable component built on the Severity-
Aware Network. This approach achieves state-of-the-art
performance on both underwater semantic segmentation
datasets SUIM and DeepFish, offering new insights for fu-



ture research. Nonetheless, variations in biological species
and water quality across different marine regions may lead
to divergent model performance. Thus, future endeavors
may entail the creation of specialized datasets for distinct
sea areas and the application of unsupervised domain adap-
tive semantic segmentation methods to enhance model gen-
eralization across diverse underwater environments.
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