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Abstract

We introduce CosCAD, a novel framework for CAD
model retrieval and pose alignment from a single im-
age. Unlike previous methods that rely solely on im-
age data and are sensitive to occlusion, CosCAD lever-
ages cross-modal contrastive learning to integrate im-
age, CAD model, and text features into a shared rep-
resentation space. This improves retrieval accuracy,
even when visual cues are ambiguous or objects are par-
tially occluded. To enhance retrieval efficiency, we in-
troduce Tri-Indexed Quantized Graph Search, which
accelerates CAD retrieval using an optimized index-
ing structure. For pose alignment, we combine image
and geometric features of CAD models to predict ob-
ject rotation and scale, using an attention-based method
to capture spatial correlations within the scene. This
improves multi-object location estimation and 9-DoF
pose alignment. Experimental results demonstrate that
CosCAD outperforms existing methods such as ROCA
and SPARC in both CAD model retrieval and pose es-
timation. Additionally, it achieves more than a sixfold
speedup in retrieval for large datasets, underscoring its
potential for interactive environments and autonomous
systems.

Keywords: CAD Model retrieval, CAD Model align-
ment, Contrastive learning, Attention

1. Introduction

Advances in 2D perception systems have achieved great
success in object recognition, localization, and classifica-
tion in images [21, 32, 42], driving progress in autonomous
vehicles, machine vision, and virtual/augmented reality.
Despite these advancements, inferring 3D geometry, struc-
ture, and object poses from a single RGB image remains a
challenge. Traditional 2D systems rely on partial views and
visual observations, which are insufficient for fully captur-

ing the 3D information required for applications involving
interaction with the environment.

Recent studies have explored predicting 3D geometry
and pose from 2D visual data [11, 15, 19, 45, 46, 8, 51].
For example, Mesh R-CNN [18] introduced a method for
3D object estimation from real-world images by com-
bining 2D object detection with voxel-to-mesh estimation
to reconstruct object shapes. However, Mesh R-CNN
lacks explicit pose estimation and relies heavily on 2D
feature regression, which limits its accuracy. In con-
trast, methods like Mask2CAD [25, 37], ROCA [20], and
SPARC [27] retrieve and align CAD models directly to
the input image. Databases such as ShapeNet, 3DFuture,
and 3DShapeNet [5, 16, 47] serve as object priors, making
retrieval-based methods promising for inferring 3D infor-
mation from images.

However, retrieval-based methods have limitations: (1)
These methods rely solely on image features, making the re-
trieval process highly sensitive to occlusion, where portions
of objects in the image may be hidden. This significantly re-
duces retrieval precision. (2) The retrieval process usually
involves matching the image feature with each feature of
the CAD model one by one, requiring an exhaustive search
within the database. This significantly reduces retrieval ef-
ficiency. (3) These methods focus on the pose estimation
of individual objects, neglecting relationships between ob-
jects in the scene. However, understanding these relation-
ships can provide valuable contextual constraints and help
resolve ambiguities in object poses, as objects often appear
in similar scene layouts.

To address these limitations, we propose CosCAD, a
novel framework for retrieving and aligning CAD models
from a single 2D image. For CAD model retrieval, we
adopt cross-modal contrastive learning to unify represen-
tations of image features, CAD models, and text (e.g., cat-
egory labels) into a shared representation space. This uni-
fied representation enables the use of combined image and
text inputs to enhance retrieval, with text providing cru-
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cial semantic information to complement CAD model re-
trieval, especially when visual cues are unclear or incom-
plete. To speed up retrieval and avoid exhaustive search
through the CAD database, we propose the Tri-Indexed
Quantized Graph Search (TQGS) method, which constructs
an efficient index structure for the feature vectors of CAD
models. For CAD model alignment, we combine image and
geometric features to predict the rotation and scale of an ob-
ject. We introduce an attention-based method that explicitly
captures positional correlations between multiple objects in
the scene. By leveraging these correlations, our approach
captures crucial contextual information, enabling more ac-
curate multi-object location predictions.

Our core contributions are summarized as follows:

• Developing a shared cross-modal representation from
3D models, text, and images to enable accurate CAD
model retrieval.

• Proposing the Tri-Indexed Quantized Graph Search
method that accelerates CAD model retrieval.

• Leveraging an attention mechanism to exploit spatial
correlations among objects, which results in accurate
location estimation.

2. Related Work

2.1. 2D Object Recognition

Understanding 3D from a single image requires robust
2D recognition capabilities. Thanks to recent breakthroughs
in deep learning, an array of methods has emerged that
demonstrate exceptional performance in tasks such as im-
age classification [22, 42], 2D object detection [32, 33],
and 2D instance segmentation [21, 26]. Recent methods
such as YOLOv8 [24] and EfficientDet [44] have signifi-
cant improved detection speed and accuracy, which are cru-
cial for real-time applications. Additionally, advancements
like Detection Transformers [4] have introduced end-to-end
object detection models that eliminate the need for hand-
designed components, further streamlining the object de-
tection pipeline. Our approach leverages these advances in
2D recognition to facilitate comprehensive 3D object rea-
soning and enhance the accuracy of CAD model alignment
and retrieval. Specifically, we employ a Mask R-CNN [21]
recognition backbone for image feature extraction, which
not only detects but also segments objects within the image.
This subsequently aids in 3D CAD alignment and retrieval.
Additionally, Mask R-CNN is known for its efficiency in
handling both detection and segmentation tasks in a single
forward pass. Compared to other methods, Mask R-CNN
integrates region proposal and mask prediction more effec-
tively, reducing computational overhead. This efficiency
enables real-time retrieval and alignment of CAD models
from a single image.

2.2. Multimodal Representation Learning

Multimodal representation learning has gained signifi-
cant attention recently because of its ability to integrate var-
ious types of data, such as images and text, which improves
model understanding and prediction capabilities. Unlike
unimodal approaches that rely on a single data type, such
as either image or text, multimodal methods explore the
complex interactions between different data types, resulting
in richer and more robust representations. Notably, some
studies focus on image-text pairs, using transformer-based
architectures to capture the interactions between image and
text [43, 35, 31, 29, 28, 9]. Despite their effectiveness, these
models often require substantial computational resources
for training.

Alternatively, models like CLIP [40] and SLIP [38] have
streamlined the learning process by separately encoding im-
ages and text and then aligning their representations across
modalities. This alignment strategy, coupled with the abil-
ity to leverage large-scale noisy datasets, has facilitated ef-
ficient training and robust zero-shot learning. These capa-
bilities have enabled new multimodal tasks, such as text-
guided image editing, object detection without predefined
categories, and grounding language in visual contexts [30].
Additionally, incorporating multimodal information beyond
text and image, such as audio or video, has been shown to
further benefit 3D scene understanding. A recent advance-
ment, PointCLIP [49], applies these multimodal principles
to 3D data by converting point clouds into depth maps,
subsequently utilizing CLIP for zero-shot 3D classification.
While PointCLIP aligns 3D data with 2D images and text,
our method creates a unified representation that integrates
images, text, and CAD models, enhancing CAD model un-
derstanding in both depth and accuracy.

2.3. CAD Model Retrieval and Alignment

The use of CAD model priors for 3D reconstruction has
been a fundamental approach in computer vision for many
years [3, 10, 41, 6, 7]. With the introduction of large-scale
3D shape datasets [5], numerous techniques have emerged
that emphasize CAD model retrieval and alignment through
analysis-by-synthesis methods [48]. Advances in deep
learning, particularly with Convolutional Neural Networks
(CNNs) and Graph Neural Networks (GNNs), have signif-
icantly enhanced the precision and efficiency of these ap-
proaches. Points2Objects [14] advances beyond basic 2D
object detection [13] by directly predicting 9-DoF align-
ments and framing object retrieval as a classification task,
primarily demonstrating effectiveness on synthetic datasets.
In contrast, Mask2CAD [25] provides an efficient method
to simultaneously retrieve and align 3D CAD models to de-
tected objects in an image, leveraging a state-of-the-art 2D
recognition backbone [26, 33]. This innovative use of CAD
representations for lightweight, object-based reconstruction
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Figure 1. Pipline of the proposed CosCAD. Starting with an input RGB image, we perform 2D instance segmentation and assign category
labels to each object. For each detected object, we unify the representations of text, images, and CAD models to retrieve geometrically
similar CAD models. In the CAD model alignment stage, we integrate image features with the geometric features of CAD models to
predict the rotation and scale of each object and estimate their locations using an attention-based method. This enables geometrically
informed CAD retrieval and robust alignment with the image.

and perception has led to the development of patch-based
methods for improved CAD retrieval and its extension to
video inputs in Vid2CAD [37], which offers comprehensive
9-DoF alignment for each object.

Building on these advancements, ROCA [20] proposed
a CAD retrieval and alignment method that incorporates
a differentiable 9-DoF pose optimization, representing a
significant step forward and offering a more robust and
geometry-aware solution for end-to-end CAD alignment.
Unlike traditional methods that rely on straightforward re-
gression models, ROCA introduces a novel approach with
differentiable alignment through dense geometric corre-
spondences, allowing for nearest neighbor retrieval of ob-
jects from a CAD model database. Further extending this
work, SPARC [27] adopts a render-and-compare strategy
using efficient transformer architectures to achieve more ac-
curate and robust 9-DoF pose estimation. This approach
utilizes a novel iterative process, substantially enhancing
alignment accuracy on real-world datasets.

Our approach aims to retrieve and align CAD models
for reconstructing objects in RGB images. Unlike existing
techniques that typically focus on a single data modality for
CAD model prediction, our method employs a cross-modal
strategy by integrating visual and textual data. This integra-
tion enhances the accuracy and robustness of CAD model
retrieval from extensive databases. For CAD alignment, in-
stead of directly regressing the object pose, we combine ge-
ometric features from the retrieved CAD model with image
features from each object mask to predict object rotation
and scale. Additionally, we propose an attention-based lo-
cation estimation method that leverages positional correla-
tions among objects to accurately predict their locations.

3. Method

3.1. Overview

Given an RGB image I with camera intrinsics π and a
database of 3D CAD models S, our goal is to represent
each object in the image with a corresponding CAD model,
aligned with 9-DoF alignment to the image, to provide a
comprehensive and lightweight geometric scene reconstruc-
tion. Figure 1 shows an overview of our approach.

We first detect and segment objects in the 2D image us-
ing a Mask R-CNN backbone [21], estimate category labels
and extract global features via a multi-scale Feature Pyra-
mid Network (FPN) [32]. Next, we unify the representa-
tions of text (category labels), masked images, and CAD
models to retrieve geometrically similar CAD models for
the detected objects. To accelerate retrieval process and
avoid exhaustive searches through the CAD database, we
construct an efficient indexing structure for the feature vec-
tors of CAD models. Then, our method predicts each ob-
ject’s rotation and scale by integrating image features with
the geometric features of CAD models. The translation is
estimated using an attention-based location estimation mod-
ule that leverages spatial relationships between objects. Our
network is trained progressively. It starts with CAD model
predictions using object masks and category labels. Next,
it predicts object poses through a dedicated network super-
vised by CAD models aligned with RGB images.

3.2. Object Detection

We employ a ResNet-50 architecture [22] combined
with a Feature Pyramid Network (FPN) [32] as the back-
bone. This backbone generates a feature map F , which
is then used for instance segmentation through Mask R-
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Figure 2. Overview of CAD Model Retrieval. In the training phase, given triplets of CAD models, text, and images, we train a 3D encoder
to align 3D features with the image features obtained from SLIP’s pre-trained image encoder and the text features derived from its pre-
trained text encoder, using a contrastive loss. In the inference phase, the image mask is encoded into image features, while the category
label is transformed into text features. By combining these two types of features, we form the query feature, which is then used to retrieve
the most similar CAD models from the CAD feature database through feature comparison.

CNN. Mask R-CNN first generates region proposals us-
ing a Region Proposal Network (RPN) on the feature map
F . These proposals are refined through Region of Interest
(ROI) Alignment, ensuring accurate feature alignment with
the proposed regions. Each ROI is then processed by a se-
ries of fully connected layers to predict the object category
and bounding box, producing a set of instance masks mi

along with their corresponding category labels ti. The ob-
ject recognition process identifies objects within the image,
which provide segmentation masks and category labels es-
sential for the subsequent stages.

3.3. Cross-Modal CAD Model Retrieval

For each detected object, we retrieve its corresponding
CAD model. To align 3D representations with holistic
image-text pairs, we employ cross-modal contrastive learn-
ing to unify the representations of image features, CAD
models, and text (e.g., category labels), into a shared rep-
resentation space. As shown in Figure 2, the 3D point
cloud sampled from the surface of the CAD model is used
as input for the 3D encoder, the masked image is fed into
the 2D encoder, and the category label is processed by the
text encoder. Using these triplets, we perform pre-training
to align the representations of all three modalities within
a shared feature space. Specifically, we leverage the pre-
trained vision-language model SLIP [38] and freeze its pa-
rameters during pre-training. We then train a 3D encoder
by aligning its output features with those of SLIP’s image
encoder EI(·) and text encoder ET (·). This approach en-
sures that the rich semantics captured by SLIP’s encoders
are transferred to enhance 3D understanding. The resulting
unified feature space enables various cross-modal applica-
tions across the three modalities, potentially improving the

CAD recognition performance of the underlying 3D back-
bone encoder EP (·).

Cross-Modal Contrastive Learning. As illustrated in
Figure 2, during tri-modal pre-training, given a CAD model
C, a masked instance M , and the corresponding category
label T , we uniformly sample NP points to generate the
corresponding point cloud P . During training, we apply
data augmentations to P , including random point dropout,
scaling of the point cloud, point displacement, and ro-
tational perturbations. These augmentations improve the
model’s robustness and generalization. Next, we extract the
image feature f I = EI(M) and text feature fT = ET (T ).
Our objective is to train the 3D encoder EP so that its 3D
feature fP = EP (P ) aligns with the corresponding image
and text feature space. To achieve this, we utilize a con-
trastive loss to minimize the distance between the 3D fea-
ture and the corresponding image and text feature.

To strengthen the association with 3D features, we
weight the text and image features, enhancing their com-
bined utilization. Here, we form a query feature fQ by
combining the image and text features as follows:

fQ = αf I + βfT , (1)

where α and β are hyperparameters. Then, the contrastive
loss is defined as:

Lcon = −1

2

∑
i

log
exp(fP

i fQ
i /τ)∑

j exp(f
P
i fQ

j /τ)

− 1

2

∑
i

log
exp(fP

i fQ
i /τ)∑

j exp(f
P
j fQ

i /τ)
, (2)

where i and j represent the sampling indices, and τ is a
learnable temperature parameter. The first term ensures the
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Figure 3. Rotation and Scale Estimation. The Geometric Feature Extraction module extracts 3D geometric features from the input CAD
model, retrieved using the mask and category label. For mask feature extraction, we apply the same method used in the object detection
phase, with ResNet as the 2D backbone. We calculate the geometric features for each predicted CAD model and the image features for
each mask. The geometric and image features are combined by element-wise addition, and MLP layers are used to regress plane normals
and their confidence. The rotation is determined based on the regressed plane normals and the scale is regressed using a four-layer MLP.

alignment of the 3D feature with its corresponding query
feature while minimizing its similarity to query features
from other samples. Similarly, the second term ensures the
alignment of the query feature with its corresponding 3D
feature, while reducing its similarity to 3D features from
other samples.

Tri-Indexed Quantized Graph Search. Retrieving
CAD models typically involves matching the image feature
vector to each CAD model feature in an exhaustive database
search. In a database with 3,000 entries, each with a 512-
dimensional feature vector, the worst-case retrieval time can
be 1.2 seconds. To accelerate model retrieval, we propose
a Tri-Indexed Quantized Graph Search. We first index each
CAD model by encoding its 3D point cloud P into a fea-
ture vector fP = EP (P ) using a 3D encoder. We then
apply Locality Sensitive Hashing (LSH) [17] to the feature
vector, grouping similar features into buckets. For a given
feature vector fP , the LSH hash function hi(f

P ) is defined
as:

hi(f
P ) =

⌊
aTi f

P + bi
w

⌋
(3)

where ai is a randomly generated vector, bi is an offset, and
w is the bin width. This method efficiently partitions the
vector space, narrowing the search to a smaller subset of
CAD models that fall within the same bucket as the query.

After identifying the relevant LSH bucket, we organize
its contents using the Hierarchical Navigable Small World
Graph (HNSW) [36]. In HNSW, nodes represent CAD
models, and edges connect their nearest neighbors, form-
ing a multi-layered graph. The upper layers are sparse,
enabling fast pruning of irrelevant nodes, while the lower
layers become increasingly dense, allowing for more accu-
rate fine-grained search. The layers are constructed prob-

abilistically, with each layer connecting nodes based on an
Euclidean distance measure. During the search, the query
feature fQ begins at the top layer and navigates through
the graph, refining its search by identifying closer nodes
based on a distance measure, typically Euclidean distance
d(fP , fQ) = ||fP−fQ||2, until it reaches the bottom layer,
where the nearest neighbors are located. To further improve
retrieval efficiency and reduce storage, we apply Product
Quantization (PQ) [23] to the feature vectors. The feature
vector fP is divided into M sub-vectors, defined as:

fP =
[
fP
1 , fP

2 , ..., fP
M

]
(4)

Each sub-vector fP
i is quantized by identifying the closest

centroid from a codebook Ci, which is built using centroids
learned from the training data with a clustering algorithm
like k-means. These centroids represent common patterns
within the sub-vector space. The quantization function is
defined as follows:

q(fP
i ) = arg min

cij∈Ci

∥fP
i − cij∥22 (5)

This produces a compact representation of the feature vec-
tor, allowing for efficient distance computations during the
matching phase.

During inference, we first hash the query feature fQ into
the corresponding LSH bucket using the same LSH func-
tion. The query then navigates the HNSW structure to iden-
tify candidate CAD models. Finally, we compute the PQ-
based distance between the query feature fQ and the candi-
date feature vectors fP as

d(fP , fQ) ≈
M∑
i=1

∥q(fP
i )− q(fQ

i )∥22 (6)



Finally, the CAD model with the smallest distance is re-
turned as the retrieval result, ensuring efficient and accurate
CAD model retrieval.

3.4. Multi-Object CAD Model Alignment

During CAD model alignment, we combine image fea-
tures with the geometric features of CAD models to pre-
dict the rotation and scale of each object. We introduce an
attention-based method that explicitly captures positional
correlations among multiple objects. These correlations
provide crucial contextual information that enhances multi-
object location predictions. For each object, we estimate
its 9-DoF alignment with the image, including translation
t ∈ R3, scale s ∈ R3, and rotation r ∈ R3. Figure 3 pro-
vides an overview of the module.

Geometric Feature Extraction. Since geometric fea-
tures are essential for pose estimation across different
shapes, we use a Geometric Feature Extraction module
(GFE) to extract features from the input CAD model C, re-
trieved based on the mask and category label. Our GFE em-
ploys a hybrid feature extraction layer from [50], which ex-
tends 3D graph convolution to extract hybrid latent features
from point cloud data. The core component is a deformable
kernel that generalizes the convolution kernel from 2D im-
age processing to handle unstructured point cloud data. In
particular, a GFE kernel KS is defined as

KS = {(kC , wC), (k1, w1), ...., (kS , wS)}, (7)

where S represents the total number of support vectors,
kC = [0, 0, 0]T is the central kernel point, and {ks ∈
R3}Ss=1 denotes the support kernel vectors in 3D space.
Each kernel vector is associated with a corresponding
weight w. GFE applies convolution over the receptive field
RM (pi), which includes the target point and its neighboring
points, alongside their respective features f as:

RM (pi) = {(pi, fi), (pm, fm)|pm ∈ NM (pi)}, (8)

where NM (pi) represents the set of M nearest neighbors of
the point pi. Specifically, the receptive field is determined
using a feature distance metric distf (pi, pj) = ||fi − fj ||.
The key advantage of such design is to extend beyond local
regions, enabling the inclusion of distant points that share
similar features.

Rotation and Scale Estimation. Once equipped with
all required features, we then combine them by element-
wise addition to estimate the scale and rotation parameters.
To accurately represent a 3D object’s rotation, it is essen-
tial to describe its orientation in space using three mutually
perpendicular axes, which define the object’s local coordi-
nate system. Each axis represents a direction in 3D space,
and together, they capture the object’s complete rotational
state. Instead of predicting all three axes separately, we

regress two orthogonal plane normals, as the third axis can
be uniquely determined from their cross product. This ap-
proach guarantees that the axes remain orthogonal and form
a valid rotation matrix.

Specifically, we use MLP layers to regress two planes’
normal ry and rx along with their corresponding confi-
dences cy and cx. To ensure the plane normals remain per-
pendicular, we minimize the following cost function to cal-
ibrate them into ry′ and rx′ .

θ∗1 , θ
∗
2 = argmin cyθ

2
1 + cxθ

2
2

s.t. θ1 + θ2 + π/2 = θ,
(9)

Let θ represent the angle between rx and ry , we then com-
pute: {

θ∗1 = cx
cx+cy

(θ − π/2)

θ∗2 =
cy

cx+cy
(θ − π/2)

(10)

The calibrated plane normals r′y and r′x are derived from

(θ,1θ
)
2 using the Rodrigues Rotation Formula. Based on

these normals, the rotation matrix is computed as R =
[r′x, r

′
y, r

′
x × r′y]. The scale s is predicted through a four-

layer MLP, and both the scale and rotation are optimized
with an L1 loss function, defined as:

Lscale = ∥s− sgt∥1, (11)

Lrot = ∥r − rgt∥1 (12)

Attention-based Translation Estimation. For transla-
tion estimation, we argue that each object interacts with its
surroundings, so we consider all objects in the scene when
predicting its location. This approach allows us to lever-
age contextual information, improving the accuracy of the
predicted object positions. The estimation network is illus-
trated in Figure 4. For every pair of objects in the input im-
age, we compute a relation feature fR to describe their geo-
metric similarity [39]. The relation feature fR is defined as
[∆x,∆y,∆ logw,∆ log h], where the first two terms rep-
resent the normalized differences in the center coordinates
between the target and the other object, and the latter two
terms capture the scale differences through the log ratios
of their widths and heights. The normalized differences in
center coordinates are computed as:

∆x =
x1,n + x2,n − x1,m − x2,m

2 (x2,m − x1,m)
, (13)

∆y =
y1,n + y2,n − y1,m − y2,m

2 (y2,m − y1,m)
(14)

The log ratios of width and height are given by:

∆ logw = log

(
x2,n − x1,n

x2,m − x1,m

)
, (15)

∆ log h = log

(
y2,n − y1,n
y2,m − y1,m

)
(16)
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Figure 4. Attention-based Translation Estimation. Image features
from object detection are used as global features. For each tar-
get object, we compute relational feature to other objects using an
object relation module. The attention module processes the rela-
tional features and image features to derive the location feature.
We then perform element-wise addition of the geometric feature
and location features, followed by regressing the translation t us-
ing a four-layer MLP.

where (x1,m, y1,m, x2,m, y2,m) are the coordinates of the
target object’s bounding box, and (x1,n, y1,n, x2,n, y2,n) are
the coordinates of the other object’s bounding box.

After obtaining the relation feature among all objects,
we employ an attention module to fuse the relation feature
fR and image Global feature fG, producing the location
feature. In this attention process, the relation feature serves
as the key and value, while the image feature acts as the
query.

Specifically, for each object i, we first extract its ini-
tial feature vector fG

i from the global image features and
project it into the query space qi via a linear projection layer
qi = Wqf

G
i , where Wq is a learnable projection matrix. Si-

multaneously, the relation feature fR is mapped into the
key space kj and value space vj by applying linear projec-
tions: kj = Wkf

R
j and vj = Wvf

G
j , where Wk and Wv are

also learnable projection matrices. The attention score is
computed by the dot product of qi and kj , followed by nor-
malization, which serves as a weighted coefficient applied
to the value vectors vj , generating the updated local feature
fL
i :

Attention(qi, kj) =
exp(qi · kj/

√
d)∑N

j=1 exp(qi · kj/
√
d)

, (17)

fL
i =

N∑
j=1

Attention(qi, kj)vj , (18)

where d is the dimension of the feature vectors and N is the
total number of objects in the scene. This attention mech-
anism explicitly models the spatial and geometric relation-
ships between objects, ensuring that the local feature fL

i

incorporates both the target’s own information and its inter-
actions with other objects. After obtaining the updated local
feature fL

i , it is element-wise added with the corresponding
geometric feature fP

i of the target object to generate the
translation feature:

f trans
i =

fL
i + fP

i

2
. (19)

Finally, the translation vector t is predicted using a four-
layer MLP. The translation loss is optimized with the fol-
lowing objective function:

Ltrans = ∥t− tgt∥2 (20)

This design allows the model to fully leverage both the spa-
tial geometry and global semantic information, ensuring
precise alignment between the CAD model and the target
object in the image.

The final alignment loss is defined as:

Lalignment = ωtransLtrans + ωscaleLscale + ωrotLrot,
(21)

where ωtrans, ωscale, and ωrot are hyper-parameters. For
the sake of simplicity and to ensure a balanced contribution
of each component to the overall loss, we set these hyper-
parameters to equal values: ωtrans = ωscale = ωrot =

1
3 .

This approach enables end-to-end training for alignment,
directly influencing the predicted pose derived from the im-
age and CAD model, resulting in more accurate alignment
estimates.

4. Experiment

4.1. Data and Evaluation

We compare our method with Mask2CAD-b5 [25], a
9-DOF architecture based on the original Mask2CAD.
Mask2CAD-b5 incorporates object depth and scale predic-
tion to produce 9-DoF alignments. Furthermore, we com-
pare our approach with single-image-based 3D object de-
tectors, including Total3D [39] and MDR [34]. Total3D
predicts room layouts and object poses and generates ob-
ject meshes from a single image. For a fair comparison in
pose estimation, we evaluate its Object Detection Network.
MDR performs joint 3D object detection and voxel-based
coarse-to-fine object reconstruction; we compare against its
3D CenterNet-based detector. Since both methods rely on
room layout, we provide ground-truth rotations. All base-
lines are trained on the ScanNet25k dataset.

Dataset. All our experiments are conducted on the Scan-
Net25k dataset [12], which is also utilized in ROCA [20].
This dataset contains 20k training images and 5k validation
images, with both sets sampled from videos across various
scenes. For training data preparation, we project the models
from Scan2CAD to corresponding image views to generate



Table 1. Alignment Accuracy on ScanNet in comparison to current methods. Total3D-ODN and MDR-CN are the 3D object detectors of
Total3D and MDR-CenterNet, respectively. In both detectors, we provide ground-truth rotations in lieu of layout estimation. Mask2CAD-
b5 refers to Mask2CAD that predicts full 9-DoF alignment. Our method, ROCA, and SPARC all predict full 9-DoF alignment. In
our ablations, CM denotes Corss-Model CAD model retrieval, GFE denotes the Geometric Feature Extraction module, MF denotes the
combination of mask features, and ATE denotes Attention-Based Translation Estimation.

Method bathtub bed bin bkshlf cabinet chair display sofa table class instance
Total3D-ODN 10.0 2.9 16.8 2.8 4.2 14.4 13.1 5.3 6.7 8.5 10.4
MDR-CN 5.8 5.7 0.9 9.9 5.4 28.1 11.5 11.5 8.1 9.7 15.3
Mask2CAD-b5 8.3 2.9 25.9 3.8 5.4 30.9 17.3 5.3 7.1 11.9 17.9
ROCA 22.5 10.0 29.3 14.2 15.8 41 30.4 15.9 14.6 21.5 27.4
SPARC 25.8 25.7 24.6 14.2 20.8 51.5 17.8 28.3 15.4 24.9 31.8
Ours CM 23 16.8 27.4 18.0 29.9 43.2 24.2 17.9 21.7 20.2 28.3
Ours CM+GFE 23.5 15.0 29.0 17.3 32.9 43.8 30.1 19.2 20.1 25.6 32.1
Ours CM+GFE+MF 22.1 17.0 28.9 19.9 32.1 45.5 25.3 18.9 22.7 25.8 32.5
Ours CM+GFE+MF+ATE 24.9 18.9 31.1 20.8 33.1 45.4 27.5 19.9 24.6 27.4 33.2

Table 2. Retrieval-Aware Alignment Accuracy on ScanNet.
Method bathtub bed bin bkshlf cabinet chair display sofa table class instance
Mask2CAD-b5 7.5 2.9 23.3 2.8 4.2 23.0 12.0 3.5 6.0 9.5 13.8
ROCA 20.8 10.0 26.7 8.5 11.9 32.1 22.5 14.2 11.8 17.6 21.7
SPARC 22.1 13.3 21.7 8.7 15.4 42.1 13.5 19.5 12.5 18.8 25.3
Ours w/o CM 21.3 12.2 18.8 6.9 16.1 33.6 20.6 15.1 10.2 17.2 21.2
Ours 22.2 17.4 29.2 18.4 29.2 42.1 25.9 17.4 21.2 24.8 30.3

object detection, segmentation, and depth data. The input
images are processed at a resolution of 360× 480 pixels.
Alignment Accuracy. To assess the 9-DoF alignment per-
formance, we use an alignment accuracy metric similar to
that in ROCA [20] and SPARC [27]. The alignment accu-
racy is defined as follows: an alignment is considered cor-
rect if the object classification is accurate, the translation
error is ≤ 20cm, the rotation error is ≤ 20◦, and the scale
ratio is ≤ 20%. The scale ratio is computed using the for-
mula serror = |

∑
i=x,y,z(s

pred
i /sgti − 1)|, allowing errors

in different directions to offset each other, unlike the stan-
dard formula serror =

∑
i=x,y,z |(s

pred
i /sgti )− 1|.

Retrieval-Aware Alignment Accuracy. To further evalu-
ate our method, we use a retrieval-aware alignment accu-
racy metric inspired by ROCA. This metric takes into ac-
count both the alignment correctness and the accuracy of
the required CAD model. All CAD candidates are restricted
to those in the ScanNet scene, consistent with previous re-
trieval approaches [1, 37, 2].

4.2. Results

Tables 1 and 2 present the alignment accuracy and
retrieval-aware alignment accuracy, respectively. Our
method outperforms SPARC in alignment accuracy by 2.5%
and improves class and instance averages by 1.4%. Fur-
thermore, in terms of retrieval-aware alignment accuracy,
our method demonstrates a significant improvement over
SPARC, with gains of 6.0% in class accuracy and 5.0% in
instance accuracy.

Figure 5 presents a qualitative comparison of CAD re-
trieval and alignment on ScanNet images. Our method
demonstrates more robust and accurate object alignments
across various image views and object types. Figure 6 illus-
trates the performance of our model in a range of challeng-
ing real-world scenarios, demonstrating its effectiveness in
accurately predicting 3D structures.

4.3. Ablations

Effectiveness of Cross-Modal CAD model Retrieval. To
assess the impact of cross-modal CAD model retrieval on
the overall performance, we conducted an ablation study by
excluding this component from the CosCAD framework.
The resulting model, denoted as Ours w/o CM, struggles
to retrieve CAD models. As shown in Table 2, our com-
plete model demonstrates a substantial 7.6% improvement
in retrieval-aware alignment accuracy compared to the vari-
ant without CM. This decline reveals the critical importance
of using cross-modal information (text and image) to im-
prove the retrieval process. The unified representation and
alignment of features across modalities play a key role in
retrieval, leading to improved alignment accuracy.
Effectiveness of rotation and scale estimation. Another
key component of our approach is the Geometric Feature
Extraction module (GFE), designed to effectively extract
3D geometric features combined with mask features (MF)
for rotation and scale estimation. We evaluate its contribu-
tion through an ablation study by incrementally adding the
GFE components and MF. The variant without the Geomet-
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Figure 5. Qualitative comparison on RGB images from ScanNet. We compare CosCAD to ROCA and SPARC in terms of object alignment
across various complex scenes. Our approach consistently demonstrates significantly more accurate alignments, especially in challenging
environments with diverse objects and occlusions.



Figure 6. Sampled predictions from our method. The figure illustrates the performance of our model, showing its ability to accurately
predict 3D structures from 2D images in a range of challenging real-world scenarios. These examples reveal the robustness of our method
in capturing complex geometries, object poses, and spatial relationships across diverse scenes, demonstrating its strong 3D understanding
capabilities even in cases with occlusions, varying object types, and intricate environments.

ric Feature Extraction module (i.e., Ours CM) and without
MF (i.e., Ours CM+GFE) showed a noticeable reduction in
alignment accuracy compared to the complete model (Ours
CM+GFE+MF). Specifically, the inclusion of the Geomet-
ric Feature Extraction module (Ours CM+GFE) improved
alignment accuracy from 20.2% to 25.6%, and adding MF
(Ours CM+GFE+MF) further increased accuracy by 0.2%.
These results reveal the effectiveness of GFE in capturing
both local and global geometric features. The ability of
GFE to adapt to the geometric diversity of objects signif-
icantly enhances the alignment performance.

Effectiveness of Attention-Based Translation Estima-
tion. Incorporating attention-based translation esti-
mation has proven to be a crucial enhancement in our
framework. An ablation study, where this feature was
incrementally added, showed a notable improvement in
model performance. Beginning with the basic model (Ours
CM+GFE+MF), adding the attention-based translation esti-
mation component (Ours CM+GFE+MF+ATE) resulted in
a 1.2% increase in alignment accuracy, highlighting its sig-
nificance. This attention-based mechanism leverages con-
textual and spatial relationships between objects, enabling
more accurate position estimation. This approach not only
improves the precision of translation predictions, but also
contributes significantly to the overall robustness and appli-

Table 3. CAD model retrieval speed (in seconds) between tradi-
tional search method and TQGS. The traditional method processes
each query by directly comparing vectors, while TQGS utilizes a
more structured retrieval approach.

Method
Model

Number
Feature

Dimension Traditional Search TQGS

3000
256 0.7 0.1
512 1.2 0.2

1024 2.1 0.3

10000
256 1.2 0.1
512 3.5 0.3

1024 6 0.5

cability of the model across diverse scenarios.
Effectiveness of Tri-Indexed Quantized Graph Search.
To assess the efficiency of our Tri-Indexed Quantized Graph
Search (TQGS) method, we conducted an ablation study
comparing it to a traditional search method. The traditional
method directly compares feature vectors, whereas TQGS
employs a more structured retrieval approach. As shown in
Table 3, with a feature dimension of 512 and a database of
3,000 CAD models, the traditional method takes 1.2 sec-
onds to retrieve a relevant model, while TQGS reduces this
time to 0.2 seconds, representing a 6x speedup. When



the number of models increases to 10,000, the traditional
method requires 3.5 seconds, while TQGS completes the
retrieval in just 0.3 seconds, resulting in an 11.7x speedup.
This substantial reduction in retrieval time demonstrates the
scalability and efficiency of TQGS. These results empha-
size the critical role of the TQGS framework in significantly
accelerating CAD model retrieval, especially in large-scale
scenarios. The ablation study shows that TQGS not only
reduces retrieval time but also maintains accuracy, making
it a vital component for efficient and scalable CAD model
retrieval.

Limitations. Despite its effectiveness, our method has
some limitations. First, it assumes that the CAD models in
the database are comprehensive and cover all possible ob-
jects in the images. If an object in the image lacks a corre-
sponding CAD model, our method may not accurately rep-
resent it. Second, the method heavily depends on the quality
of the 2D object recognition process. Therefore, any inac-
curacies in object detection will directly impact overall per-
formance. Future work will focus on addressing these lim-
itations by expanding the CAD model database to cover a
broader range of objects and improving the accuracy of the
2D object recognition process. Additionally, we aim to de-
velop methods that can handle objects without correspond-
ing CAD models, potentially through generative modeling
or learning-based approximations.

5. Conclusion

In this work, we introduced CosCAD, a novel frame-
work that leverages cross-modal CAD model retrieval and
an attention-based method to significantly improve the ac-
curacy of CAD model alignment with a single image. Our
method outperforms existing techniques, demonstrating the
effectiveness of integrating cross-modal information and es-
timating object locations by exploiting spatial correlations
among objects. Various ablative studies further validate the
importance of these components, emphasizing their contri-
butions to the overall performance of the framework.

In future research, beyond addressing the above limita-
tions and their improvements, another promising direction
is joint retrieval and pose estimation, rather than the current
method of processing each object individually. We believe
that this strategy could improve the retrieval results and the
accuracy of the pose estimation.
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