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Abstract

The detection of small objects in aerial images is a
fundamental task in the field of computer vision. Mov-
ing objects in aerial photography have problems such
as different shapes and sizes, dense overlap, occlusion
by the background, and object blur, however, the orig-
inal YOLO method has low overall detection accuracy
due to its weak ability to perceive targets of different
scales. In order to improve the detection accuracy of
densely overlapping small targets and fuzzy targets, this
paper proposes a dynamic-attention scale-sequence fu-
sion method (DASSF) for small target detection in aerial
images. First, we propose a dynamic scale sequence
feature fusion (DSSFF) module that improves the up-
sampling mechanism and reduces computational load.
Secondly, a x-small object detection head is specially
added to enhance the detection capability of small tar-
gets. Finally, in order to improve the expressive ability
of targets of different types and sizes, we use the dy-
namic head (DyHead). The model we proposed solves
the problem of small target detection in aerial images
and can be applied to multiple different versions of the
YOLO method, which is universal. Experimental re-
sults demonstrate that when the DASSF method is ap-
plied to YOLOv8, it achieves a 10.2% and 4.2% im-
provement in mean Average Precision (mAP) on the
VisDrone-2019 and DIOR datasets, respectively, com-
pared to YOLOv8n. This performance surpasses that
of current mainstream methods. Additionally, when the
DASSF method is integrated into different versions of
the YOLO model, the detection performance for aerial
images significantly improves compared to the baseline
models.

Keywords: Aerial images, Small target detection, Fea-
ture fusion, Upsampling method.

1. Introduction

Object detection is now widely applied in fields such as
intelligent transportation [6], medical diagnosis [20], indus-
trial manufacturing [35], and re-identification [23]. With

the ongoing advancements in drone technology and the
growing maturity of remote sensing technology, aerial im-
age object detection has emerged as a significant research
area due to its immense potential. However, compared to
traditional object detection in natural scenes, aerial images
present unique challenges. These include a wide range of
target scales, small object sizes, diverse angle variations,
complex backgrounds, and vulnerability to solar radiation
and atmospheric conditions, as illustrated in fig. 1. These
factors greatly complicate the accurate detection and recog-
nition of small targets in aerial images. The YOLO se-
ries networks, while popular, lack effective feature fusion
and scale perception capabilities for objects of varying sizes
and complex shapes in aerial images. In contrast, two-stage
convolutional neural network (CNN) detection methods or
Transformer-based DETR series methods consume exces-
sive computational resources. Therefore, further research
and innovation are essential to improve both the accuracy
and efficiency of object detection in aerial images under
these conditions.

According to the definition in the MS COCO dataset [14]
for object detection, small targets refer to objects with a size
of less than 32 × 32 pixels. Detecting small targets is cru-
cial in many real-world applications. For instance, in agri-
cultural pest control, small target detection technology can
be used to identify pests in crops. By accurately detecting
these tiny targets, it enables farmers to take timely preven-
tion and control measures, ensuring the healthy growth of
crops. In medical image analysis, small target detection is
widely applied in cell detection and lesion identification.
This is especially important in the early diagnosis of tu-
mors, where accurate identification of tiny lesions is crit-
ical for improving treatment outcomes and increasing pa-
tient survival rates. Similarly, in marine biological mon-
itoring, small target detection technology is employed to
identify microorganisms and plankton communities in the
ocean, providing valuable insights for ecological research
and environmental protection.While existing object detec-
tion methods have made progress in these fields, small tar-
gets often occupy very small pixel areas in images and can
easily blend into complex backgrounds, making it difficult
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Figure 1. The primary challenges and obstacles encountered in aerial image object detection.

for traditional methods to effectively extract fine features.
This results in low detection accuracy. Additionally, factors
such as object overlap and image blur further complicate
small target detection, limiting the performance of current
methods when dealing with multi-scale targets.

In this paper, to enhance the detection performance of the
YOLO series network model in aerial images, particularly
for small targets, we propose a YOLO model integrated
with Dynamic-Attention Scale-Sequence Fusion (DASSF).
The main contributions of this paper can be summarized as
follows:

• We propose a new and effective method, DASSF, for
aerial image object detection tasks, which combines
multiple modules to effectively improve the detection
of objects across different scales and categories, espe-
cially small objects.

• We design a dynamic scale sequence feature fusion
(DSSFF) module to accurately and efficiently extract
global high-level semantic information in images of
different scales, which not only reduces the model
complexity but also can accurately detect small objects
through point sampling.

• We conduct detailed and comprehensive comparison
and ablation experiments on the proposed DASSF
method, which demonstrates its effectiveness. Addi-
tionally, we combine it flexibly with multiple YOLO

series methods to showcase the versatility of the ap-
proach.

2. Related Work

2.1. Aerial Image Object Detection

In recent years, research on aerial image target detection
has mainly focused on improving model performance by
improving feature extraction and context learning. For ex-
ample, CFIL [29] introduces a frequency domain feature ex-
traction module [30] and a frequency domain feature inter-
action mechanism to enhance the ability to extract signifi-
cant features and better distinguish targets in complex back-
grounds. MFC [21] proposes a frequency domain filtering
module to further enhance the feature expression ability of
dense targets, thereby performing well in processing com-
plex scenes. LR-FPN [12] improves remote sensing target
detection by strengthening low-level position information
and fine-grained context interaction, especially in applica-
tion scenarios such as agriculture and urban planning. In
addition, PBSL [22] can highlight relevant target features in
aerial images and suppress irrelevant information by intro-
ducing a multimodal alignment method, thereby improving
the robustness of overall detection.

Although these methods have achieved good results in
aerial image target detection tasks, especially in the detec-
tion of dense targets and overlapping targets, they still have
some limitations. First, most methods mainly improve the
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Figure 2. (a) The overall architecture of our proposed DASSF. DSSFF refers to the dynamic scale sequence feature fusion module we
propose. (b) and (c) show schematic diagrams of the DSSFF module, DySample. S represents the upsampling ratio, G denotes the grid
sampling point coordinates, and O indicates the point position offset generated by the dynamic sampling point generator. SH and SW
represent the sampling height and width, respectively. gs2 refers to the number of channels in the feature map after the linear layer. The
remaining components are: TFE, the triple feature encoding module; CPAM, the channel and position attention mechanism; and DyHead,
the dynamic detection head.

average detection accuracy of the overall target, but the de-
tection effect of small targets is limited, especially under
complex backgrounds and blurred conditions, the detection
accuracy is still not ideal. Secondly, many existing meth-
ods are often optimized for specific model structures, lack
versatility, and are difficult to flexibly apply under differ-
ent detection tasks or model frameworks, which limits their
widespread promotion in practical applications.

2.2. Small Object Detection

As a major challenge in the field of target detection,
small target detection has received extensive attention in re-
cent years. Existing research mainly improves the detec-
tion performance of small targets by integrating attention
mechanisms, optimizing loss functions, and extracting fea-
tures in stages. For example, the InsDist [10] method com-
bines feature-based and relationship-based knowledge dis-
tillation to improve the detection effect of small objects in
remote sensing images; in the field of agricultural control,
GA-SGD [32] guides the model to focus on the detection of
small pests by designing selection, crossover, and mutation
operations, thereby improving the detection effect in com-
plex environments; in addition, LESPS [33] uses a point
supervision method for the detection of infrared small tar-
gets, which greatly reduces the cost of manual annotation
and improves detection efficiency; UBDDM [17] achieves
multi-scale recognition of significant areas in the image by
constructing a small target perception module, and achieves
good results in the two-stage bolt defect detection task.

Although these methods have made significant progress

in small target detection tasks in different application fields,
they still have some shortcomings. First, although the two-
stage detection method improves the detection accuracy, its
complex architecture greatly increases the computational
overhead and inference time of the model, making it dif-
ficult to achieve efficient operation in application scenar-
ios with limited resources or high real-time requirements.
Secondly, the knowledge distillation method enhances the
model’s perception of small targets through a large amount
of training, but the distillation process usually consumes
a lot of computing resources, and the training process is
complex and time-consuming, which is difficult to meet the
needs of large-scale practical applications. Finally, many
existing methods still have the problem of insufficient accu-
racy when dealing with dense and overlapping small targets,
especially when the background is complex or the target
is blurred, the detection performance is relatively limited.
These problems limit the performance of existing small tar-
get detection methods in efficient and accurate detection.

3. Method

3.1. The Overall Architecture of DASSF-YOLO

Fig.2 shows the overall architecture of the dynamic-
attention scale-sequence fusion method (DASSF) network
model we designed. We use CSPDarknet53 as the back-
bone network. We utilize ASF-YOLO [9]’s neck network
to enhance the detection of small, dense, and blurry targets
in aerial images. The neck of the network utilizes the TFE
in ASF-YOLO twice for fusing feature maps of different di-
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Figure 3. The structure of the DSSFF. The features are extracted efficiently and accurately through dynamic upsampling, feature map
stacking, and 3D convolution normalization activation operations. The detailed process of dynamic upsampling is shown in algorithm 1.

mensions to obtain rich global channel information. Then
apply the DSSFF to obtain accurate local location informa-
tion. Then, the processed information is effectively inter-
acted through the CPAM. Finally, by adding the x-small de-
tection head and applying the dynamic head (DyHead). The
model can detect objects of various scales in aerial images.

3.2. Improvements to the Neck

3.2.1 Triple Feature Encoding Module

The TFE module is a feature fusion mechanism. First, ad-
just the number of channels of the large, medium and small
feature layers to make them equal through CBS operation.
Then, the large-scale feature map is subjected to a down-
sampling operation of maximum pooling + average pool-
ing, which helps to retain the high-resolution features and
the diversity of semantic information of different objects
in aerial images; for small-scale feature maps, the near-
est neighbor interpolation method is used for upsampling,
which can maintain the richness of local features of low-
resolution images and prevent the loss of small target loca-
tion feature information. Finally, feature maps of different
scales are fused through concat operations.

3.2.2 Dynamic Scale Sequence Feature Fusion Module

The original SSFF module was designed for the P3 layer
and is a key component used to process multi-scale infor-
mation and has the ability to extract features of different
scales. Scale means detail in the image. A blurry image
may lose details, but the structural features of the image can
be preserved, helping to solve the image blur problem in
satellite remote sensing images. The input image of SSFF
is in formula 1.

Fo(w, h) = Go(w, h)× f(w, h). (1)

Where f(w, h) represents a 2D input image with width
w and height h. Go(w, h) is the filter used for smooth con-
volution. This module contains two upsampling operations
for the P4 and P5 layers. The nearest upsampling method
in the original module will lead to the loss of key image
details and requires a lot of calculation and parameter over-
head. Therefore, we introduce DySample [16], an ultra-
lightweight and effective dynamic upsampler to replace the
nearest upsampling method in the original module. The
structure is shown in (b) and (c) of fig.2.

We adopt a static factor sampling method, based on the
theory of adjusting point sampling position offset, to dy-
namically create a sampling set of point positions through
the sample point generator in the feature map. If the input
feature map is X (with size C × H × W), the offset O is ob-
tained by the network through projection and multiplication
by the static factor g.

O = g × Linear(X). (2)

Among them, Linear is a linear layer used to generate the
offset O based on the input feature X, and g is a constant that
controls the size of the offset.

S = G + O. (3)

X’ = Grid sample(X, S). (4)

The generated offset O is added to the original sampling
grid G and then passed into the grid sampling function
along with the original feature map X for upsampling. This
sampling point offset upsampling mechanism helps feature



Algorithm 1 The process of dynamic upsampling
Input: The feature map x of size C × H × W, upsampling multiple scale and groups default to 4.

Output: The feature map X’ of size C × scale × H × scale × W.

1: Generate a 2D convolutional layer for offset and perform normal distribution initialization, and get out1.
2: Generate the initial position for offset calculation, and get out2.
3: Apply out1 to the input x and adjust the range by × 0.25, then append the offset of out2, and then transform it into 2 × -1

× H × W, and get out3.
4: Create a normalized target coordinate grid, and get out4.
5: Add out3 and out4 and normalize them to the [-1,1] interval, and get out5.
6: Use pixel shuffle to upsample coordinates for out5 and adjust the output size, then use grid sample for bilinear interpo-

lation sampling, and get out.
7: return out.

maps of different scales better distinguish boundary areas
and extract object information at varying scales. Moreover,
by controlling the offset position, the overlap of sampling
points is reduced, the positions of sampling points are op-
timized, and thus the computational complexity is mini-
mized. The structure of the DSSFF module is shown in
fig. 3. The pseudocode for dynamic upsampling with a
static sampling factor of 0.25 is shown in algorithm 1.

3.2.3 Channel and Position Attention Mechanism

The CPAM integrates the DSSFF and TFE modules, which
focus on information-rich channels and small object fea-
tures related to spatial location. This allows the model to
more accurately identify and locate small targets in im-
ages, thereby improving the detection capabilities of de-
tailed small objects. Input 1 is the detailed features after
TFE processing as channel attention network, which is used
to effectively capture cross-channel interactions. This is an
attention mechanism that does not require dimensionality
reduction. The capture of local cross-channel interactions is
achieved using 1D convolutions of size k, where the kernel
size k represents the coverage of local cross-channel inter-
actions. Using the output of the channel attention mecha-
nism and the feature map processed by DSSFF as the input
of the position attention network, the position information
of different targets can be extracted.

3.3. Improvements to the Head

3.3.1 Dynamic Head

The aerial imagery targets used in this study presented com-
plex backgrounds. Because the target in the drone image is
blocked by houses and trees and the target in the remote
sensing image is affected by light and clouds. The scale of
the target is easy to change, and the image is easy to be-
come blurred and distorted. Therefore, it is crucial that the
detection method has a full range of perception capabili-

ties. DyHead [3] was proposed by Dai et al, which simulta-
neously combines scale-aware attention (πL) in formula 5,
spatial-aware attention (πS) in formula 6, and task-aware at-
tention (πC) in formula 7, enhances the model’s adaptability
to various target sizes, understanding of object placement,
and context understanding.

πL(F) · F = σ

f

 1

S · C

∑
S,C

F

 · F. (5)

Scale-aware attention (πL) performs average pooling on the
input feature map, then uses a 1 × 1 convolution layer and
ReLU activation function for feature extraction, then uses
the hard-sigmoid function to balance model accuracy and
speed, finally the elements are multiplied with the input fea-
ture map.

πS(F) · F =
1

L

L∑
l=1

K∑
j=1

wl, j · F
(

l; pj +∆pj; c
)
·∆mj. (6)

Spatial-aware attention (πS) first processes the input tensor
using a 3 × 3 convolutional layer to obtain the offset value
of the feature map and the weight term of the feature map
offset, and then weights and sums all features.

πC(F) · F = max
(
α1(F) · FC + β1(F), α2(F) · FC + β2(F)

)
. (7)

Task-aware attention (πC) is first average pooling in the
L × S dimension to reduce the number of channels. Sub-
sequently, two fully connected layers are adopted and ac-
tivated using the ReLU function and then passed through
a normalization layer. Finally, different channel values are
output according to different tasks to complete the task per-
ception of the feature map.

4. Experiment and Analysis

In order to validate the superiority of the proposed
DASSF method, we combine it with YOLOv8n and con-
duct comparison, ablation and general experiments on two
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Figure 4. (a) Size distribution and object count of the VisDrone-2019 dataset; (b) Size distribution and object count of the DIOR dataset.

Table 1. Comparison of detection results of mainstream methods on the VisDrone-2019 dataset.
Method Year Awn Bic Bus Car Mot Ped Peo Tri Tru Van mAP50 mAP50:95

ATSS [34] 2020 10.8 14.1 41.3 74.2 36.3 37.9 18.5 20.5 32.6 36.2 32.2 19.8
Deformable-DETR [36] 2020 13.1 12.0 56.6 69.2 28.1 27.8 16.4 16.1 40.1 36.5 31.6 17.3
Conditional-DETR [19] 2021 8.2 11.3 33.5 62.8 36.5 30.4 25.6 20.2 30.5 30.2 28.9 15.0
DDOD [2] 2021 14.2 18.2 58.5 78.8 47.5 47.4 34.9 27.5 41.0 45.4 40.7 24.8
TOOD [5] 2021 14.2 19.8 56.4 79.3 49.2 46.8 35.4 27.2 40.9 45.6 38.8 24.3
Dab-DETR [15] 2022 15.3 12.7 57.5 66.7 26.2 21.4 14.3 19.7 39.3 38.2 31.1 15.5
YOLOv6n [11] 2022 11.1 5.0 42.9 73.5 31.1 30.0 24.6 18.0 24.2 35.3 29.6 17.1
DAMO-YOLO [31] 2022 11.8 7.2 42.6 75.1 35.6 34.2 27.4 21.2 27.3 36.9 31.9 18.3
RTMDET [18] 2022 14.6 12.1 56.1 75.2 40.4 34.2 28.3 25.1 36.3 41.4 36.4 21.5
YOLO-MS [1] 2023 10.9 7.4 44.7 74.5 34.1 32.8 26.2 19.7 24.3 36.9 31.1 17.6
Gold-YOLO [25] 2023 12.1 8.5 48.8 75.7 37.0 33.9 27.4 22.1 28.2 38.8 33.2 19.3
ASF-YOLO [9] 2023 11.0 7.2 43.8 74.4 33.4 32.8 25.8 19.1 26.6 37.2 31.1 17.9
Baseline [8] 2023 11.0 7.0 44.8 75.1 35.1 33.6 26.9 20.4 27.4 37.5 31.9 18.2
Ours - 17.5 15.2 57.6 82.9 49.7 47.6 39.3 27.8 36.0 47.2 42.1 25.2

datasets. Throughout the experiments, we maintain con-
sistency in hyperparameters and other experimental details.
The comparison results show that our proposed method sig-
nificantly improves the accuracy of small targets in aerial
images. The comparison results show that our proposed
method significantly improves the accuracy of small targets
in aerial images.

4.1. Datasets

In our experiments, we use two datasets. The first is the
Tianjin University AISKYEYE team publicly released the
VisDrone-2019 [4] dataset. This dataset is designed for tar-
get detection in UAV images of remote sensing scenes with
high diversity. The images are annotated with labels for ten
categories, including awning-tricycle (Awn), bicycle (Bic),
bus (Bus), car (Car), motorcycle (Mot), pedestrian (Ped),
person (Peo), tricycle (Tri), truck (Tru) and van (Van). The
dataset is divided into three distinct subsets: 6471 images
for training, 548 images for validation, and 1610 images for
testing. The second is the DIOR [13] remote sensing dataset
was released by Northwestern Polytechnical University in

2018. This benchmark dataset contains 23,463 images and
192,472 instances for object detection in optical remote
sensing images. It covers 20 common places and object cat-
egories, including airplane (AE), airport (AT), baseballfield
(BD), basketballcourt (BT), bridge (BE), chimney (CY),
dam (DM), Expressway-Service-area (EA), Expressway-
toll-station (EN), golffield (GO), groundtrackfield (GR),
harbor (HR), overpass (OS), ship (SP), stadium (SM), stor-
agetank (SK), tenniscourt (TT), trainstation (TN), vehicle
(VE), windmill (WL). The dataset is divided into three dif-
ferent subsets: 14077 images for training, 4694 images for
validation, and 4692 images for testing. The size and cate-
gory distributions of the two datasets are shown in fig. 4.

4.2. Implementation Details and Evaluation Metrics

The hardware configuration of this experiment includ-
es: CPU: AMD EPYC 7551P 32-Core Processor, GPU:
NVIDIA RTX A4000, Memory: 16G. The software envi-
ronment includes: Ubuntu 20.04.1, python 3.8.10, Torch
1.13.1.

The hyperparameter settings are as follows: training is



Table 2. Statistics of all objects in the VisDrone-2019 dataset that are less than 32 × 32 pixels in size.
Category Awn Bic Bus Car Mot Ped Peo Tri Tru Van

Proportion (%) 58.5 82.8 47.4 51.0 83.2 89.0 92.0 61.4 40.5 49.3

conducted for 200 epochs, the batch size is set to 8, param-
eters are updated using stochastic gradient descent (SGD),
the learning rate is set to 0.0001, the weight decay rate is
0.0005, and the intersection over union (IOU) threshold is
set to 0.7.

The data augmentation settings are as follows: the image
hue is set to 0.015, the image saturation is set to 0.7, the
image brightness is set to 0.4, and the image flip probability
is set to 0.5.

In order to evaluate the model’s performance, this exper-
iment uses precision (Pre), recall (Rec), mean average pre-
cision (mAP), and frames per second (FPS) as indicators.

4.3. Comparison with State-of-the-art Methods

4.3.1 Comparisons on VisDrone-2019

We use the VisDrone-2019 dataset to conduct compara-
tive experiments with mainstream target detection meth-
ods, including ATSS, Defor-mable-DETR, Conditional-
DETR, DDOD, TOOD, Dab-DETR, YOLOv6n, DAMO-
YOLO, RTMDET, YOLO-MS, Gold-YOLO, ASF-YOLO.
The comparative experimental results in table 1 show that
our proposed method surpasses the selected target detection
method YOLOv8n and improves the detection accuracy by
10.2%. And it surpassed other mainstream target detection
methods in the table, achieving new SOTA results of 42.1%
and 25.2% in mAP50 and mAP50:95 respectively. The best
detection accuracy was achieved in 8 out of 10 categories.
Due to the addition of a small target detection head and the
application of the DSSFF module, the model’s ability to de-
tect small targets and extract and fuse features of objects
of different scales are enhanced. Excellent detection results
can be achieved for large-sized targets such as buses and
garbage trucks, as well as small-sized targets such as pedes-
trians and motorcycles.

Additionally, to more intuitively demonstrate the impact
of our proposed DASSF method on small target detection
in aerial images, we calculate the proportion of all objects
in the VisDrone-2019 dataset that are smaller than 32 × 32
pixels. The statistical results are presented in table 2. Com-
bined with our comparative experimental results in table 1,
it is evident that the DASSF method excels in small tar-
get detection. With the exception of the 4th (Bic) and 10th
(Tru) categories in the statistics for objects smaller than 32
× 32 pixels, all other object categories achieved the highest
detection accuracy.

4.3.2 Comparisons on DIOR

Furthermore, we also compare the proposed method with
mainstream methods on the DIOR dataset. As shown
in table 3, the proposed method outperforms other main-
stream target detection methods in terms of overall accu-
racy, achieving the best results in 12 out of 20 categories
in the DIOR dataset, with an overall accuracy of 87.1%.
Exceeding Conditional-DETR, TOOD, and RTMDET by
7.9%, 3.1%, and 1.8% respectively on mAP50. Due to the
use of DyHead with self-attention, the model’s ability to
perceive objects of different scales in remote sensing im-
ages is enhanced. Moreover, the DSSFF module solves
the problem of misdetection and leakage of targets such as
chimneys and windmills that are affected by light, clouds
and other factors. And due to the improved upsampling
mechanism in the scale sequence feature fusion module,
which reduces the amount of calculation, the FPS exceeds
the ten target detection methods in the table, ensuring the
real-time performance of the proposed method.

4.4. Ablation Studies and Analysis

4.4.1 Ablation experiments on different modules of
DASSF method

We conduct ablation experiments on the proposed method
on two datasets, and the experimental results are shown in
table 4. Baseline is YOLOv8n. The detection accuracy in-
dex of the baseline model is at the lowest position. The
mAP50 and mAP50:95 of the finally proposed improved
model on the two datasets increased by 10.2%, 7.0%, 4.2%
and 5.2% respectively compared with the baseline model.
This shows that the improved model has a slight increase in
calculation volume and inference time due to the addition of
attention and x-small target detection heads, but can signif-
icantly improve detection performance. With the improve-
ments to DSSFF, mAP50 and mAP50:95 increase by 0.9%
and 0.4% on the VisDrone-2019 dataset, respectively. On
the DIOR dataset, mAP50 and mAP50:95 increase by 2.1%
and 2.9%, respectively, indicating that the feature fusion
mechanism of DSSFF not only aids in identifying dense
small objects but also refines the detection of objects at dif-
ferent scales, as reflected in the high-threshold mAP50:95
metric. For the enhancement of the X-small object detection
head, mAP50 and mAP50:95 rise by 1.8% and 1.4% on the
VisDrone-2019 dataset, and by 3.1% and 4.1% on the DIOR
dataset, respectively. This demonstrates that introducing the
X-small detection head boosts the model’s ability to detect
objects of various scales, especially small-sized ones, thus



Table 3. Comparison of detection results of mainstream methods on the DIOR dataset.

Method AE AT BD BT BE CY DM EA EN GO mAP50 mAP50:95
GR HR OS SP SM SK TT TN VE WL

ATSS 94.8 88.1 93.9 90.7 50.5 90.9 70.5 90.8 76.6 86.7 80.4 56.687.7 65.3 67.1 75.0 94.4 75.1 95.2 64.8 57.6 91.6

Deformable-DETR 90.8 85.3 92.2 85.7 55.2 92.0 70.4 90.5 82.0 85.4 78.0 50.688.1 39.0 72.1 68.9 93.8 67.4 92.4 60.5 59.7 89.7

Conditional-DETR 89.6 89.9 91.0 86.7 55.7 94.2 85.9 92.9 78.8 88.2 79.2 52.989.8 39.8 73.9 59.8 96.3 60.6 92.3 69.5 57.6 90.4

DDOD 94.7 91.8 94.5 91.0 55.7 90.8 77.8 94.1 81.5 88.8 82.9 59.288.8 69.0 70.5 75.7 95.8 78.4 95.8 68.1 62.4 93.6

TOOD 93.3 90.0 92.4 87.3 62.1 94.6 80.5 94.7 82.0 87.7 84.0 60.790.0 64.4 75.8 81.3 94.9 83.6 94.3 72.7 67.1 92.0

Dab-DETR 95.0 91.0 94.1 90.2 55.3 91.7 76.7 93.7 82.4 87.8 82.7 59.389.6 69.1 71.0 76.1 94.6 77.7 95.4 66.9 62.2 93.3

YOLOv6n 95.2 91.3 93.6 91.6 51.7 86.3 75.5 95.1 77.3 86.0 82.9 60.288.2 73.8 67.3 92.8 96.5 82.6 96.4 71.2 56.3 89.9

DAMO-YOLO 95.9 92.6 95.1 92.7 54.8 89.5 80.3 96.6 87.3 90.1 85.5 62.790.8 75.7 70.1 94.0 95.5 85.9 97.2 72.9 61.2 92.6

RTMDET 96.2 94.2 94.4 94.3 56.7 93.6 78.4 96.3 86.0 90.8 85.3 63.190.8 77.8 71.9 77.7 96.5 79.2 96.9 78.1 65.0 92.0

YOLO-MS 95.2 90.9 95.2 90.9 52.4 88.1 76.3 95.1 80.2 86.8 83.9 60.389.4 74.3 68.2 93.7 96.1 85.2 96.8 70.5 60.3 92.6

Gold-YOLO 96.2 93.2 95.8 92.9 57.2 89.9 79.8 96.8 85.9 88.5 85.6 62.790.9 74.7 72.2 94.2 97.0 86.5 97.4 76.2 61.5 94.2

ASF-YOLO 95.2 91.5 94.3 91.8 53.3 87.4 76.7 94.5 80.6 86.4 83.6 60.088.4 73.6 68.6 93.2 96.3 85.4 96.4 68.0 58.2 92.2

Baseline 94.6 89.6 94.1 90.5 51.6 87.1 75.0 93.4 77.8 83.5 82.4 58.688.4 72.9 67.1 92.4 96.3 83.8 95.8 68.5 56.1 89.9

Ours 97.0 92.8 96.6 91.7 56.6 90.0 80.7 96.7 87.9 89.9 87.1 63.891.0 76.0 69.9 95.3 97.3 90.6 97.9 70.7 69.7 95.0

Table 4. Ablation study on VisDrone-2019 and DIOR datasets.

Dataset VisDrone-2019 DIOR
Method Pre Rec mAP50 mAP50:95 Pre Rec mAP50 mAP50:95
Baseline 43.4 31.8 31.9 18.2 87.8 75.9 82.4 58.6
DSSFF 45.4 32.8 33.3 19.3 87.0 77.3 84.5 61.5
X-small 44.1 34.1 33.7 19.6 87.9 79.1 85.5 62.7
DyHead 43.9 33.2 32.6 18.5 87.2 78.1 84.5 59.8

DSSFF+X-small 47.4 36.4 37.2 22.0 89.0 78.5 85.7 62.3
DSSFF+DyHead 48.7 35.3 36.6 21.6 88.3 78.7 85.0 62.2
X-small+DyHead 47.8 35.8 37.0 21.7 88.4 79.5 86.2 63.0

Ours 52.6 40.0 42.1 25.2 88.8 80.7 86.6 63.8

comprehensively improving both mAP50 and mAP50:95 on
the two aerial image datasets. Regarding the improvements
to DyHead, mAP50 and mAP50:95 on the two datasets in-
crease by 0.7%, 0.3%, 2.1%, and 1.2%, respectively, while
the FPS decreases. This indicates that DyHead, which com-
bines size, spatial, and task attention, enhances the overall

expressiveness of the model but also increases the computa-
tional load and inference time. When considering the pair-
wise combination of these three improvements, further ac-
curacy gains can be achieved beyond what each single im-
provement provides. On the DIOR dataset, adding DSSFF
and the X-small detection head surpasses the final proposed



Table 5. Experimental results of DSSFF module and different upsampling methods on VisDrone-2019 dataset.
Method Pre Rec mAP50 mAP50:95 FPS
Bilinear 49.9 38.5 40.6 23.6 34.1
CARAFE [28] 50.0 38.2 40.2 23.5 35.3
Nearest 50.2 38.8 41.4 24.8 45.8
DySample (Ours) 52.6 40.0 42.1 25.2 46.7

Table 6. General experiments on different versions of YOLO for the DASSF method on the VisDrone-2019 and DIOR datasets.
Dataset VisDrone-2019 DIOR
Method Pre Rec mAP50 mAP50:95 Pre Rec mAP50 mAP50:95

YOLOv5n [7] 40.8 31.0 30.4 17.4 86.5 74.8 81.4 57.2
YOLOv5n+DASSF 50.8 39.6 40.9 24.3 88.2 78.2 85.2 61.5
YOLOv7tiny [26] 46.4 37.3 34.4 17.6 84.5 79.3 83.7 56.4

YOLOv7tiny+DASSF 52.1 42.0 41.0 22.8 85.6 75.8 82.4 58.5
YOLOv8n [8] 45.4 32.8 33.3 19.3 87.8 75.9 82.4 58.6

YOLOv8n+DASSF 52.6 40.0 42.1 25.2 88.8 80.7 86.6 63.8
YOLOv9t [27] 43.1 31.8 32.2 18.7 81.6 72.2 78.3 53.9

YOLOv9t+DASSF 46.8 33.9 35.3 20.4 88.8 78.0 84.6 62.9
YOLOv10n [24] 42.9 33.5 33.1 18.8 88.3 77.3 84.8 61.1

YOLOv10n+DASSF 52.9 40.9 42.5 25.4 87.4 79.4 85.8 62.2

DASSF method in terms of the precision metric. However,
this does not change the overall trend of improved detection
accuracy.

4.4.2 Ablation experiments on different upsampling
methods of DSSFF module

We conduct variant experiments on the proposed DSS-
FF module using different upsampling methods on the
VisDrone-2019 dataset. As can be seen from the exper-
imental results in table 5, the upsampling method using
DySample is optimal in all four accuracy indicators and has
the highest FPS. Compared with the original nearest sam-
pling method, precision, recall, mAP50 and mAP50:95 in-
crease by 2.4%, 1.2%, 0.7% and 0.4% respectively. FPS
reaches 46.7. This demonstrates that the DSSFF module we
implement in the model not only enhances detection perfor-
mance but also decreases computational overhead.

4.5. Universal Experiment of DASSF Method

We also experiment with the proposed DASSF method
on two datasets using the YOLOv5n, YOLOv7tiny,
YOLOv8n, YOLOv9t, and YOLOv10n models. Ta-
ble 6 presents the experimental results. Compared
with YOLOv5n, YOLOv7tiny, YOLOv8n, YOLOv9t, and
YOLOv10n, although the Precision of DASSF on the DIOR
dataset is slightly lower than that of YOLOv10n, our pro-
posed DASSF method surpasses the original YOLO models
in terms of Precision, Recall, mAP50, and mAP50:95. This
demonstrates that the proposed DASSF method can be flex-

ibly applied to various mainstream YOLO models, showing
universality while achieving better results in aerial image
target detection compared to the original YOLO models.

4.6. Visualization

Fig. 5 presents a comparative visualization of two dat-
asets using DASSF-YOLOv8 and YOLOv8n. In the figure,
red circles highlight missed detections, while yellow circles
indicate false detections. The analysis demonstrates that the
DASSF-YOLOv8 model not only enhances accuracy in de-
tecting densely overlapping objects, such as motorcyclists
and port areas, but also excels at identifying small targets
obstructed by houses and trees, as well as those in blurred
images. This leads to a reduction in missed detection rates.
Furthermore, the model accurately distinguishes between
positive and negative samples, resulting in fewer false de-
tections.

5. Conclusion

This study proposed an effective aerial image detection
method based on dynamic-attention scale- sequence fusion,
which improves the problem of low detection accuracy of
small targets in aerial images and can be flexibly applied
to different YOLO models. We proposed DSSFF module
to reduce the amount of calculation. By incorporating ad-
ditional x-small detection heads, the detection capability of
small targets can be improved. Enhanced expression capa-
bilities for various types of targets through the use of Dy-
Head. Compared with the baseline method and other main-



(a) 

(b) 

(c) 

Figure 5. Comparison of detection results on VisDrone-2019 and DIOR datasets. The (a) row shows the ground truth result of the image,
the (b) row shows the visualization result of the baseline model, and the (c) row shows the visualization result of our model.

stream detection methods, this approach improved detection
accuracy across various challenging scenarios in aerial ob-
ject detection. However, our method still has the drawback
of not being fast enough during inference. In the future, we
will continue to explore further lightweighting our method
to ensure effective model deployment and operation even in
resource-constrained environments.
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