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Abstract

Multi-contrast MRI super-resolution (SR) techniques
require the simultaneous acquisition of multiple con-
trasts from the same subject, which is often challeng-
ing in real-world clinical settings. In this paper, we
propose a novel agent-conditioned multi-contrast MRI
SR with cross-subject adaptation, termed AgentMRI.
AgentMRI is the first attempt to improve the quality
of target contrast images using external auxiliary con-
trasts from different subjects. It expands the traditional
attention mechanism from a triplet to a quadruplet for-
mat (Query, Agent, Key, Value), where the agent can
be trained to capture commonalities from the auxiliary
contrast. These commonalities represent foundational
anatomical and tissue structure features that are share-
able, rather than details specific to a particular con-
trast. By interacting the agent with the target contrast,
AgentMRI dynamically adjusts the model adapting the
agent’s knowledge to the target contrast image. This
adapting process assists in identifying inherent connec-
tions between the auxiliary and target contrasts, even
when they are not directly paired. Our extensive testing
on fastMRI and clinical datasets demonstrates that our
AgentMRI sets a new benchmark, surpassing state-of-
the-art methods across various evaluation metrics.

Keywords: Magnetic resonance imaging, super-
resolution, agent attention.

1. Introduction

Magnetic Resonance Imaging (MRI) is a non-invasive
technique that generates images of the human body’s inter-
nal tissues using strong magnetic fields and radiofrequency
pulses [11]. Compared to other medical imaging technolo-
gies, such as Computed Tomography (CT) and Positron
Emission Tomography (PET), MRI offers several advan-
tages, including superior soft tissue contrast, absence of
ionizing radiation, and the ability to acquire functional and
metabolic information. This makes MRI particularly useful
in neurological, musculoskeletal, cardiovascular, and onco-
logical imaging. However, MRI also has limitations that im-
pact its clinical utility. One primary limitation is its longer
imaging times, which can lead to patient discomfort, in-
creased susceptibility to motion artifacts, and higher costs
due to prolonged use of the MRI system [32]. Another lim-
itation is the lower signal-to-noise ratio (SNR) in MRI com-
pared to CT and PET. Factors like magnetic field strength,
coil quality, and imaging parameters affect SNR. Lower
SNR can result in grainier images, obscuring fine anatomi-
cal details crucial for accurate diagnosis and treatment [41].
Therefore, accelerating MR imaging and improving its SNR
have become prominent research topics.

In clinical settings, MR scanners sequentially acquire
images in different modalities following specific imaging
protocols tailored to diagnostic needs. For the same sub-
ject, each imaging modality often provides consistent data
across multi-contrast and modality-specific anatomical and
physiological information. The multi-contrast attributes of
MRI have inspired researchers to exploit the complemen-
tary information among modalities that share analogous
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anatomical structures [6, 8, 30], where T1-weighted im-
ages (T1WIs) and T2-weighted images (T2WIs), as well as
proton density and fat-suppressed proton density-weighted
images (PDWIs and FS-PDWIs), provide complementary
structural perspectives. Due to the inherent physical prop-
erties of MRI, T1WI is generally easier to acquire than
T2WI because it requires shorter repetition times (TR) and
echo times (TE). Specifically, within the same imaging se-
quence, the acquisition time for T2WI tends to exceed that
for T1WI due to the longer TR requirements of T2, as seen
with T2SE acquisition times being longer than those for
T1SE. This multi-modal imaging strategy utilizes faster-
acquired modalities as auxiliary contrast images to guide
and accelerate the imaging of target modalities with slower
acquisition speeds, which has been verified by previous
study [23,25,31]. For example, bicubic interpolation, Lanc-
zos resampling, sparse representation, dictionary learning,
and patch-based methods have been extensively applied in
multi-modal MR imaging SR tasks. Qu et al. [35] integrated
nonlocal means filtering with parallel imaging for MRI SR.
Wang et al. [44] utilized Laplacian pyramids and adaptive
sparse representation for multi-modal medical image fusion
to achieve MRI SR work. Recently, the focus has shifted
towards leveraging the capabilities of deep learning to ad-
dress the challenges inherent in MRI SR. For example, Feng
et al. [6] designed a multi-stage integration network that ex-
plores the dependencies among hierarchical stages in multi-
contrast images. Li et al. [25] used transformer attributes to
transfer the contextual information from auxiliary contrast
to target contrast features across different scales, which sig-
nificantly enhances the super-resolution quality of images.
Li et al. [28] introduced a novel diffusion model for multi-
contrast MRI SR which fully utilizes the prior knowledge
from the diffusion model (DM) to ensure that the recon-
structed MR images remain undistorted.

Despite significant advancements in processing multi-
contrast MRI data, practical applications still face chal-
lenges in acquiring complete datasets of all contrasts for
each patient due to regional development disparities and
acquisition time and cost constraints [10]. Indeed, we ob-
serve that unpaired multi-contrast data still share common-
alities, such as fundamental anatomical structure features
(e.g., joint spaces, cartilage areas, cerebral cortex regions,
and ventricular systems) present in the images. As shown
in Fig. 1, (a) and (b) are a pair of FS-PDW and PDW knee
MR images from different subjects in the fastMRI dataset,
and (c) and (d) are a pair of T2W and T1W brain MRI im-
ages from different subjects in a real-world clinical dataset.
Although these MR images are from different individuals,
certain consistent anatomical and tissue structural features
are present across different modalities and subjects. These
common features offer constructive guidance for the SR of
target images. Moreover, learning specific knowledge be-

(a) FS-PDWI (b) PDWI

(c) T2WI (d) T1WI
Figure 1. Examples of four different imaging modalities. Images
(a) and (b) show fat-suppressed proton density-weighted imaging
(FS-PDWI) and proton density-weighted imaging (PDWI) from
different subjects in the fastMRI dataset. Images (c) and (d) rep-
resent T2-weighted imaging (T2WI) and T1-weighted imaging
(T1WI) from different subjects in a real-world clinical dataset. De-
spite their differences (marked by the red boxes), these different
modalities from different subjects share fundamental anatomical
and tissue structure features (marked by the green, blue-gray, and
orange boxes).

tween contrasts, such as the capability of T1WI to describe
morphological and structural information, can effectively
complement the generation of T2WI [1,7,27,51]. This com-
plementarity of multi-contrast information encourages us to
explore multi-contrast features in MRI SR tasks, thereby
enhancing image quality and diagnostic precision. Impor-
tantly, the vast online resources of medical images remain
underutilized, motivating us to explore the correlations be-
tween different contrasts as well as subjects and repurpose
extensive publicly available medical image data to generate
high-quality target images from unpaired data [2].

To tackle this challenge, we introduce AgentMRI, an
agent-conditioned technique for multi-contrast MRI SR that
embraces cross-subject adaptability. This approach is de-
signed to uncover both the commonalities and distinctive-
ness present in data across subjects, ultimately enhancing
the target contrast. Different from previous methods that
rely on paired images, despite the absence of paired im-
ages, AgentMRI expands the traditional attention mecha-
nism from a triplet to a quadruplet format (Query, Agent,
Key, Value) to extract and capture shareable foundational
anatomical and tissue structure features from auxiliary con-
trast. The interaction between the agent and the target con-



trast guides the model to focus on task-specific features,
adapting auxiliary contrasts in the cross-subject to the target
image. This adaptation process helps to identify the intrin-
sic connections between auxiliary and target contrasts, even
when they are not directly paired.

For clarity, the main contributions of our work are sum-
marized as follows:

• AgentMRI is the first to achieve SR of target contrasts
using cross-subject auxiliary contrast images. Clini-
cally, AgentMRI enables cost-effective multi-contrast
MRI using public datasets for auxiliary contrast with-
out requiring pairing with target images.

• We develop an agent-conditioned multi-contrast MRI
SR approach that employs agent vectors to enable the
model to transfer knowledge across different contrasts
and subjects. This method adapts cross-subject auxil-
iary contrast data through an agent-conditioned mech-
anism, infusing beneficial features into the target im-
age, e.g., foundational anatomical structures, and sup-
plementary information.

• We conducted extensive experiments on the fastMRI
and clinical medical image datasets, demonstrating
that AgentMRI yields superior results over the state-
of-the-art.

2. Related Work

2.1. MR Imaging

In clinical practice, magnetic resonance imaging (MRI)
provides excellent soft-tissue contrast for clinical diagno-
sis and research. Image SR and reconstruction significantly
improve the quality and speed of MRI imaging. Tradi-
tional MR image SR methods, such as bicubic interpola-
tion [4], iterative deblurring algorithms [16, 39], and com-
pressed sensing (CS) [12], have made significant strides in
multi-frame MR image SR tasks. However, these methods
offer limited information when processing individual im-
ages and usually rely on prior data information. In recent
years, deep learning-based SR methods have demonstrated
superior performance due to their ability to fully exploit the
inherent attributes of images contained in extensive training
datasets. For instance, Qui et al. [34] applied convolutional
neural networks (CNNs) for knee MR image SR, and Lyu et
al. [30] used ensemble learning for brain MR image SR. Jin
et al. [20] employed UNet to capture spatial information for
addressing inverse problems in MRI. More recently, genera-
tive adversarial networks (GANs) have been applied to MR
images SR. For example, Jiang et al. [18] proposed a fused
attentive generative adversarial networks framework to gen-
erate SR MR images from low-resolution (LR) MR images.
Li et al. [26] incorporated attention mechanisms and cyclic

loss within GANs for pelvic image SR. To learn essential
regional feature representations from single MR images,
Zhang et al. [49] introduced the squeezed and inspired in-
ference attention network, demonstrating its effectiveness.
Qui et al. [33] developed a gradual back-projection resid-
ual attention network to reconstruct MR images SR. Feng et
al. [9] proposed an end-to-end task transformer network that
integrates MRI reconstruction and SR into a single frame-
work. Salvetti et al. [37] introduced a residual attention
model using 3D convolutions and nested residual connec-
tions for multi-image super-resolution in remote sensing.
However, the above methods usually focus only on single-
contrast images, such as T1WI or T2WI, ignoring the multi-
contrast information in MRI data.

2.2. Multi-modal Representation Learning

Multi-modal representation learning [19] extracts shared
features from diverse data modalities such as text, images,
and speech. For example, Kwon et al. [22] used the in-
herent properties of image-text paired data to implicitly
learn the cross-modal alignment between language tokens
and image patches for reconstructing the masked signal
of one modality using another. Liu et al. [29] proposed
an autoencoder-based multi-view missing data completion
framework to learn a general representation of Alzheimer’s
diagnosis. Given the strong capability of multi-modal tech-
nology in representation learning [47], it has recently been
widely applied in medical images. For instance, Tsai et
al. [40] proposed a multi-modal transformer for unaligned
multi-modal MRI sequences, demonstrating the effective
integration of heterogeneous MRI data. Zhang et al. [48]
utilized graph neural networks to fuse PET and MRI data,
enhancing tumor segmentation and treatment planning by
using spatial and functional information from both modal-
ities. In contrast to the multi-contrast MR image segmen-
tation task, the super-resolution (SR) task divides images
into auxiliary and target contrasts. Given its shorter acqui-
sition time, the auxiliary contrast can guide the restoration
of the target contrast. For example, Lyu et al. [30] demon-
strated that fusing multi-contrast information in high-level
feature spaces yields superior results compared to low-level
pixel-based combinations. Li et al. [25] pioneered hierar-
chical transformer networks for joint multi-contrast MRI
reconstruction and SR. Feng et al. [6] proposed a multi-
stage feature fusion mechanism where features from pre-
vious stages guide the learning of subsequent target fea-
tures in multi-contrast SR tasks. Li et al. [25] pioneered
the application of transformers in multi-contrast MRI SR,
introducing a transformer-empowered multi-scale contex-
tual matching and aggregation network. Li et al. [27] later
enhanced this approach by integrating wavelet transforms
with a cross-attention mechanism, further improving per-
formance. However, existing multi-modal representation
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Figure 2. Architecture of the proposed agent-conditioned multi-contrast MRI SR network and cross-modal agent transformer. ‘CBAM’
and ‘IM’ refer to the channel-spatial attention module and the layer attention module, respectively, and have the same design as in [6].

learning for MR images SR generally integrates data from
different modalities acquired simultaneously from the same
subject. In contrast, our method implicitly learns common-
alities among multi-contrasts from different subjects.

2.3. Vision Transformer

Transformer was originally proposed as a sequence-to-
sequence model in natural language processing (NLP) for
tasks such as machine translation [24]. Due to its power-
ful and flexible modeling capabilities, researchers began ex-
ploring its application to computer vision tasks. For exam-
ple, Dosovitskiy et al. [5] first proposed the Vision Trans-
former (ViT), which splits an image into multiple fixed-size
patches and processes these patches as sequences. Follow-
ing this, various variants and improvements of the trans-
former framework emerged [15]. ViT’s powerful learn-
ing capability benefits from the self-attention mechanism.
However, it faces challenges due to the quadratic complex-
ity of Softmax attention. To reduce computational costs,
several variants have been proposed, such as the sparse
global attention of PVT [42], the convolution-like attention
of NAT [17], and the deformable attention of DAT [45].
These methods, however, inherently limit the global recep-
tive field of self-attention. On the other hand, linear at-
tention addresses this issue by reducing the complexity to
O(N) [21]. For instance, FLatten Transformer [13] intro-
duced a focused function and adopted depthwise convolu-
tion to maintain feature diversity. Efficient Attention [38]
applied the Softmax function to both Q and K. While these
methods are effective, the expressive power of linear atten-

tion remains limited.
In this work, we propose a high expressiveness and ef-

ficient cross-modal agent transformer, where the agent is
trained to capture commonalities from the auxiliary contrast
and guide the target contrast to dynamically adjust and learn
these commonalities, thus achieving SR tasks between un-
paired MR data.

3. Methodology

3.1. Overall Architecture

Our approach adopts a novel perspective, allowing the
use of an HR reference image yref ∈ RH×W from dif-
ferent subjects to guide the SR reconstruction of the tar-
get image xtar ∈ Rh×w. Specifically, for a 2× enlarge-
ment scale, the HR reference image yref has dimensions
H = W = 320, while the target image xtar has input di-
mensions h = w = 160. As illustrated in Fig. 2, our pro-
posed network can accept HR reference images from any
patient as an auxiliary input. We explore the commonali-
ties and distinctiveness of the same stage features from the
two branches. Subsequently, we capture agent commonali-
ties that are not specific to any contrast. We then broadcast
these commonalities back to each target feature, allowing
them to interact with the target contrast. This process dy-
namically adjusts and learns to adapt to the commonalities
of the target contrast. This approach better transfers knowl-
edge between unpaired data and provides beneficial features
for unpaired target images and subjects.



3.1.1 Feature Iterative Extraction

To explore commonalities and distinctiveness from auxil-
iary contrast images of different subjects, we use a cascaded
residual layer [50] to extract multi-stage features. First, we
apply separate 3 × 3 convolutional layers to extract the ini-
tial LR and HR representations. Specifically, this opera-
tion converts the single-channel input to a 64-channel fea-
ture representation, where the HR reference representation
is denoted as F0

ref ∈ R64×320×320. Here, we rescale the LR
target representation of size 64 × 160 × 160, according to
the scaling factor of the SR task to match the spatial dimen-
sions of F0

ref . The feature representation of each branch at
any stage is as follows:

Fn+1
tar = FA(F

n
tar,F

n
ref ), Fn

ref = Fn
ref (F

n−1
ref ). (1)

Here, n and N (n ∈ N ) represent the index of the cur-
rent residual group and the total number of residual groups
across all branches, respectively. FA denotes the cross-
modal agent transformer (CMAT) module, and Fn

ref is the
residual group at the nth stage. Throughout the entire pro-
cess, both residual features Fn

tar and Fn
ref maintain a con-

sistent feature dimensionality of 64 × 320 × 320, ensuring
spatial alignment across all residual groups and promoting
effective knowledge transfer across different contrasts and
subjects.

3.1.2 Agent-Conditioned Feature Learning

Inspired by [14], we designed the CMAT module to identify
the inherent connections between reference and target con-
trasts, even in the absence of direct pairing. Specifically,
we use agent tokens as intermediaries for transferring key
knowledge across contrasts and between subjects. By ex-
panding the traditional attention mechanism from a simple
triplet (Query, Key, Value) to a quadruplet that includes an
Agent component, the agent token A can capture common-
alities and specific knowledge. As shown in Fig. 2, the shal-
low features Ftar ∈ R64×320×320 and Fref ∈ R64×320×320

are fed into the CMAT module to extract and capture share-
able foundational anatomical and tissue structure features
from auxiliary contrasts. Our specifically designed agent
tokens A originate from reference contrast data to guide the
model to concentrate on task-specific features. To further
facilitate the interaction between the agent and the target
contrast, our designed query vector Q originates from the
target branch. Formally, we have the following definitions:

(Q,A,K, V ) =(WFtar,avgpool(WFref ),

WFref ,WFref ),
(2)

where W denotes the matrix for generating tokens, and
avgpool is an average pooling operation. The query vec-

tor Q formulated as Q ∈ RH×L×d, where H = 8 is the
number of attention heads, L = 102400 is the number of
tokens, and d = 8 is the per-head embedding dimension.
Similarly, the key vector K and value vector V have the
same shape as Q, i.e., K, V ∈ RH×L×d. The agent tokens
A are defined as A ∈ RH×La×d, where La = 49 is the
number of agent tokens.

Through this agent-conditioned mechanism, knowledge
transfer across different contrasts and subjects is achieved.
These agent tokens not only learn commonalities but also
effectively broadcast this information back to the query to-
kens Q of the target contrast, thereby dynamically adjust-
ing cross-subject reference contrast data and supplementing
beneficial features. The above process is formulated as fol-
lows:

Fn+1
tar =Reshape(Softmax(Q,A,Softmax(A,K, V ))

+ DWC(V )) + Fn
tar,

(3)
where Softmax denotes Softmax attention, and DWC de-
notes a 3 × 3 depthwise convolutional operation. It is worth
noting that our designed CMAT contains multiple cross-
modal agent blocks. In these blocks, the tokens for K and
V are computed from the feature Fref , while the tokens
for Q are computed from the output of the previous block.
This design allows the agent tokens to continuously trans-
fer knowledge of commonalities and distinctiveness in data
across subjects, enabling the target branch can absorb foun-
dational anatomical details.

3.1.3 Image Reconstruction

Finally, inspired by [6], we employ a CBAM and an IM
module to reveal responses from all dimensions of the
feature map. The output of the final CMAT, FN

tar ∈
R64×320×320, is fed into the CBAM module to obtain the
ˆFN
tar ∈ R64×320×320. Furthermore, our model stores

the intermediate features at each stage. To maintain fea-
ture diversity, these features are activated through the lin-
ear layer IM module to obtain the enriched representation
Fres ∈ R64×320×320. After that, a 1 × 1 convolutional
layer is used to obtain the final reconstructed target SR im-
age x̂tar ∈ R1×320×320, which can be written as:

x̂tar = Conv(Fres ⊕ ˆFN
tar ⊕ F0

tar), (4)

where ⊕ means element-wise summation.

3.1.4 Loss Function

The L1 loss is used to evaluate the SR results of the target
image:

L = λtar∥x̂tar − xtar′∥1 + λref∥ŷref − yref∥1, (5)
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where λtar and λref weigh the trade-off between the target
image and reference image reconstruction.

3.2. Cross-Modal Agent Block

As shown in Fig. 3, the agent tokens A ∈ RH×La×d act
as intermediaries for Q ∈ RH×L×d and K ∈ RH×L×d,
collecting commonalities knowledge from the reference
branch and then broadcasting these commonalities back to
the target branch. Recall that Eq. 2 provides an overview of
the representations of query, key, value, and agent tokens.
Agent tokens A, serving as a commonalities feature query
agent, capture commonalities from reference contrasts dur-
ing training. These commonalities reflect shareable foun-
dational anatomical and tissue structure features rather than
specific details of a particular contrast. Therefore, the agent
features we capture Fagg ∈ RH×La×d are characterized by
foundational anatomical commonalities. Furthermore, the
introduced agent bias helps maintain spatial consistency in
the model. The features of agent commonalities Fagg can
be represented as:

Fagg = Softmax

(
A(K)⊤√

dk
+B1

)
V, (6)

where B1 ∈ RH×La×L is the agent bias for the commonali-
ties calculation, dk = 8 represents the channel dimension of
K, and the calculation methods for A, K, Q and V refer to
Eq. 2. After that, we use A as the key (differently from the
first instance) and the features of agent commonalities Fagg

as the value, while employing the original query matrix Q
for a second round of global attention calculation. This pro-
cess enables the precise allocation and broadcasting of the
features of agent commonalities onto the query tokens of

the target contrast. Consequently, this approach guides the
target contrast to focus on learning commonalities while en-
hancing its understanding of the distinctiveness of different
anatomical structures. This method delves deeper into the
intrinsic connections between the auxiliary and target con-
trasts, even though they are unpaired. To augment the diver-
sity of target features, a depthwise convolution is employed
at the end to preserve the feature diversity of the reference
branch, and can be expressed as:

Fglo = Softmax

(
Q(A)⊤√

dk
+B2

)
FV

agg + DWC(V ),

(7)
where B2 ∈ RH×L×La serves as the agent bias for the sec-
ond attention calculation, and FV

agg ∈ RH×La×d represents
the value in the second attention calculation is directly com-
puted from features of agent commonalities Fagg . Finally,
we derive the output of the cross-modal agent block, de-
noted as Fglo ∈ R1×102400×64.

4. Experiments

4.1. Datasets

We evaluated the performance of our proposed network
on three datasets, including two in-house brain datasets:
SMS and uMR, and one public multi-contrast MRI dataset:
fastMRI [46]. For fastMRI, the largest open-access raw
MR image dataset, we use the unpaired PDWI contrast
to guide the SR of FS-PDWI contrast, randomly filter out
200 and 40 PDWI and FS-PDWI brain volumes for train-
ing and validation, respectively, as unpaired experimental
configurations. The SMS dataset was acquired with fully



Table 1. Quantitative metrics results on three datasets with 2× enlargement scales. The best quantitative metrics results are marked in red.

Dataset fastMRI [46] SMS uMR

Metrics SSIM↑ PSNR↑ NMSE↓ SSIM↑ PSNR↑ NMSE↓ SSIM↑ PSNR↑ NMSE↓

Unet [36] 0.2287 22.5696 0.2246 0.7678 34.8329 0.0111 0.6515 33.8070 0.0264

UnetSN [43] 0.5034 25.1499 0.1252 0.9754 39.4558 0.0038 0.9813 39.6306 0.0067

McMRSR [25] 0.6767 30.0768 0.0449 0.8969 38.8810 0.0044 0.9709 39.8956 0.0063

MINet [6] 0.6941 31.0488 0.0377 0.9832 41.8756 0.0022 0.9867 42.0970 0.0038

HAT [3] 0.7000 31.4128 0.0356 0.9850 41.7250 0.0023 0.9855 41.3772 0.0045

AgentMRI 0.7007 31.5696 0.0348 0.9867 42.3221 0.0020 0.9904 42.2374 0.0037

Table 2. Quantitative metrics results on three datasets with 4× enlargement scale. The best quantitative metrics results are marked in red.

Dataset fastMRI [46] SMS uMR

Metrics SSIM↑ PSNR↑ NMSE↓ SSIM↑ PSNR↑ NMSE↓ SSIM↑ PSNR↑ NMSE↓

Unet [36] 0.0015 12.8584 2.2429 0.5459 27.9188 0.0552 0.4310 27.0451 0.1281

UnetSN [43] 0.0065 14.2090 1.5879 0.8683 31.3687 0.0248 0.8192 32.0166 0.0394

McMRSR [25] 0.5513 27.2725 0.0810 0.4674 31.0003 0.0269 0.8533 33.6797 0.0264

MINet [6] 0.5837 28.4560 0.0633 0.8719 32.8143 0.0175 0.8393 34.2608 0.0230

HAT [3] 0.6004 29.4626 0.0516 0.9198 33.4658 0.0151 0.9413 34.5221 0.0217

AgentMRI 0.6008 29.5927 0.0507 0.9045 33.5515 0.0148 0.9401 34.8800 0.0200

k-space sampling using a clinical 3T Siemens Magnetom
Skyra scanner on 155 subjects, where each MR scanning
parameter was as follows: T1WI with TR = 2001 ms, TE =
10.72 ms; T2WI with TR = 4511 ms, TE = 112.86 ms. Both
sequences had a slice thickness of 5 mm, a matrix size of
320 x 320 x 20, and a field of view of 230 x 200 mm2. The
uMR brain dataset was acquired using a 3T whole-body
scanner on 50 subjects, where each MR scanning parameter
was as follows: T1WI with TR = 2001 ms, TE = 10.72 ms;
T2WI with TR = 4511 ms, TE = 112.86 ms. Both sequences
had a slice thickness of 4 mm, a matrix size of 320 x 320
x 20, and a field of view of 220 x 250 mm2. The SMS and
uMR datasets are randomly matched subjects-wise with a
ratio of 7:1:2 for the training, validation, and test sets as
unpaired experimental configurations.

4.2. Baselines

We compared our AgentMRI with various recent state-
of-the-art methods to demonstrate its effectiveness, includ-
ing two single-contrast SR methods: (1) Unet [36], a widely
used convolutional network for biomedical image tasks; (2)
UnetSN [43], an SR algorithm that restores low-resolution
images with unknown and complex degradation using spec-
tral normalization; (3) HAT [3], an SR algorithm that uses
hybrid attention to fully exploit the potential of transformers

in image restoration tasks, and two multi-contrast methods:
(4) McMRSR [25], an MRI SR algorithm that matches and
aggregates multi-scale context between contrasts to model
long-range dependencies in both reference and target im-
ages; (5) MINet [6], an MRI SR algorithm that integrates
multi-stage representations between the reference and tar-
get contrasts. For a fair comparison, all baselines were re-
trained with their predefined parameter configurations.

4.3. Implementation Details.

Our model is implemented in PyTorch and runs on a sin-
gle NVIDIA RTX 3090 GPU with 24GB of memory. We
use the Adam optimizer with a learning rate of 1e-3 and a
mini-batch size of 8 for network training over 35 epochs,
with the first-moment and second-moment coefficients set
to 0.9 and 0.999, respectively. The hyperparameters λtar

and λref are set to 0.7 and 0.3, respectively, and N is set
to 6. The cross-modal agent attention head number is set to
8, and the patch size is 1×1. Following [14], the number of
agent tokens is 49.

4.4. Quantitative Results.

We evaluated our SR results by computing the SSIM,
PSNR, and NMSE between the super-resolved image and
the fully sampled ground truth image. Tabs. 1 and 2 present
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the quantitative comparison between our proposed method
and various baselines under 2× and 4× enlargement us-
ing unpaired configurations, respectively. As shown, our
method yields the best results in terms of PSNR and NMSE

metrics, demonstrating that AgentMRI can effectively ex-
plore the intrinsic connection between the reference con-
trast and the target contrast, even when they are not di-
rectly paired. We note that single-contrast methods are



far less effective than multi-contrast models. Furthermore,
multi-contrast SR models are less effective than our method
because they struggle to capture foundational anatomical
features from unpaired data. These models are unable to
achieve effective interaction between reference and target
contrasts, resulting in the inability of the captured com-
monalities and distinctiveness knowledge to adapt to target
contrast images effectively. More importantly, even though
reconstructing SR images at 4× enlargement, our method
can still outperform previous methods, which can be at-
tributed to providing beneficial information supplements
for target contrast data across subjects through an agent-
conditioned mechanism. Although SSIM did not signifi-
cantly outperform existing methods in some experiments,
we attribute this to the sensitivity of SSIM to noise in the
dataset. In contrast, the improvements in PSNR and NMSE
more objectively reflect the robustness of the model. Our
AgentMRI achieves 31.5696 dB and 29.5927 dB in PSNR
on the fastMRI dataset, 42.3221 dB and 33.5515 dB on the
SMS dataset, as well as 42.2374 dB and 34.8800 dB on the
uMR dataset.

4.5. Qualitative Evaluation

To further evaluate the robustness of our method, we
conducted a quantitative analysis of the performance of
AgentMRI. Figs. 4 and 5 show SR results and error maps
for unpaired fastMRI, SMS, and uMR at both 2× and 4×
enlargements. The SR images indicate that single-contrast
methods can restore the basic structure of the MR image.
However, multi-contrast SR methods improve the results,
with fewer structural losses. Specifically, our AgentMRI
produces high-quality images with clear details, minimal
checkerboard effects, and less structural loss, effectively
restoring the entire structure of the knee or brain. This
is attributed to the proposed agent-conditioned mechanism,
which has excellent learning abilities in both commonalities
and distinctiveness. More importantly, the error maps for
different enlargement scales demonstrate that our method
yields the smallest errors across various datasets.

4.6. Ablation Study

4.6.1 Component Analysis

Here, we investigate the importance of each key compo-
nent of AgentMRI. To verify whether the agent-conditioned
multi-contrast MRI SR possesses cross-subject adaptability,
we designed seven different variants, i.e., w/o B1, which
uses cross-modal Softmax attention calculation [40] with-
out capturing the spatial information of agent commonal-
ities through agent bias; w/o B2, which directly employ
agent feature Fagg for the second Softmax attention cal-
culation to evaluate whether agent bias can direct focus to
task-specific features by sharing agent commonalities with
the target branch; w/o DWC, which uses agent attention

without a depthwise convolution (DWC) module to evaluate
whether the knowledge of commonalities and distinctive-
ness from the unpaired reference and target contrast can in-
ject diversity features into the target image; w B1, which
performs only Softmax attention calculation between the
agent bias B1 and agent tokens A; w B2, which performs
only Softmax attention calculation between the agent fea-
tures Fagg and agent tokens A; w DWC, which only uses a
depthwise convolution (DWC) module without agent atten-
tion. We conducted additional ablation studies by restor-
ing and comparing the vanilla attention with our CMAT,
referred to as w Cross-Vanilla Att.. The vanilla
attention follows the traditional Query-Key-Value triplet,
where the query vector is generated from target image fea-
tures, and the key and value vectors are derived from the
reference contrast data. Unlike our CMAT, vanilla attention
does not use agent features to extract cross-subject shared
information, relying instead on reference contrast data for
feature fusion. The quantitative metrics for each variant
model across three datasets at the 2× enlargement scale and
the 4× enlargement scale are presented in Tabs. 3 and 4, re-
spectively. The qualitative results are also presented in Fig.
6. It can be observed that all variant models perform worse
than our AgentMRI. This indicates that removing these key
components leads to a performance decline, thereby veri-
fying their importance in AgentMRI. Specifically, w/o B1

has the lowest performance, supporting our initial hypoth-
esis that even unpaired multi-contrast data have common-
alities that can guide the SR of the target contrast. w/o
B2 outperforms w/o B1 because the agent bias can bet-
ter guide the reference contrast to adapt to the target im-
age. Similarly, the performance of w/o DWC also shows a
decline, as the depthwise convolution module helps to in-
ject diversity features. Furthermore, the experimental re-
sults show that when only B1, B2, and DWC are used, the
performance is inferior to that of the complete AgentMRI
model. w Cross-Vanilla Att. underperforms com-
pared to AgentMRI because the model fails to integrate
cross-subject auxiliary contrast data into the target image
without agent tokens, as evidenced by the lower PSNR and
SSIM metrics, and the higher NMSE metric. In summary,
AgentMRI outperforms other models, demonstrating its ro-
bust ability to maximize the use of commonalities in un-
paired data.

4.6.2 Hyperparameter Analysis

We conducted a hyperparameter ablation analysis on the
uMR dataset to evaluate the impact of different parameter
settings for the weights λtar and λref . As shown in Tab.
5, the results indicate that the trade-off between the val-
ues of λtar and λref is important for optimal model perfor-
mance. Specifically, when the weights are equal, the model



Table 3. Ablation study on different variants under three datasets with a 2× enlargement scale. The best quantitative metrics results are
marked in red.

Dataset fastMRI [46] SMS uMR

Metrics SSIM↑ PSNR↑ NMSE↓ SSIM↑ PSNR↑ NMSE↓ SSIM↑ PSNR↑ NMSE↓

w/o B1 0.6925 30.9664 0.0384 0.9729 41.9054 0.0022 0.9666 41.8241 0.0041

w/o B2 0.6843 30.6074 0.2246 0.9726 42.2453 0.0020 0.9395 40.8532 0.0051

w/o DWC 0.6906 30.8367 0.0388 0.9779 41.2401 0.0025 0.9664 41.7416 0.0041

w Cross-Vanilla Att. 0.6862 30.7800 0.0395 0.9768 41.0214 0.0027 0.9871 42.0681 0.0038

w B1 0.6973 31.2315 0.0362 0.9851 42.0130 0.0027 0.9833 42.0570 0.0038

w B2 0.6937 30.9651 0.0381 0.9841 42.1152 0.0021 0.9738 41.9699 0.0039

w DWC 0.6980 31.3462 0.0358 0.9860 42.1825 0.0020 0.9835 42.2111 0.0037

AgentMRI 0.7007 31.5696 0.0348 0.9867 42.3221 0.0020 0.9904 42.2374 0.0037

Table 4. Ablation study on different variants under three datasets with a 4× enlargement scale. The best quantitative metrics results are
marked in red.

Dataset fastMRI [46] SMS uMR

Metrics SSIM↑ PSNR↑ NMSE↓ SSIM↑ PSNR↑ NMSE↓ SSIM↑ PSNR↑ NMSE↓

w/o B1 0.4604 25.3290 0.1307 0.8324 33.0821 0.0165 0.8494 33.6912 0.0268

w/o B2 0.5323 26.7480 0.0924 0.7589 33.0083 0.0168 0.7789 33.4524 0.0285

w/o DWC 0.5356 26.7596 0.0940 0.8439 33.2791 0.0157 0.8196 32.7649 0.0338

w Cross-Vanilla Att. 0.5485 27.3697 0.0815 0.7949 30.4481 0.0315 0.9158 34.3611 0.0226

w B1 0.5768 27.7572 0.0726 0.9015 33.3044 0.0157 0.9090 34.5627 0.0215

w B2 0.5430 26.813 0.0907 0.8277 32.7762 0.0180 0.8323 32.6149 0.0354

w DWC 0.5873 28.6027 0.0600 0.9019 33.3554 0.0155 0.9029 34.6077 0.0212

AgentMRI 0.6008 29.5927 0.0507 0.9045 33.5515 0.0148 0.9401 34.8800 0.0200
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Figure 6. Ablation study of the key components in our method, where w/o B1, w/o B2, w/o DWC, w Att., w B1, w B2, and w DWC
represent seven variations of our model. Here, w Att. refers to w Cross-Vanilla Att.. Visual SR results and error maps of
different variations on the uMR dataset with 2× enlargement scale.



Table 5. Ablation study on different parameter settings under uMR with a 2× enlargement scale. The best quantitative metrics results are
marked in red.

Hyperparameter SSIM↑ PSNR↑ NMSE↓

λtar=0.5, λref=0.5 0.9861 42.2273 0.0037
λtar=0.3, λref=0.7 0.9680 41.3301 0.0046
λtar=0.8, λref=0.2 0.9681 41.8269 0.0040
λtar=0.2, λref=0.8 0.9621 40.8509 0.0051
λtar=0.5, λref=1 0.9836 42.2365 0.0037
λtar=1, λref=0.5 0.9847 42.1555 0.0037

λtar=0.7, λref=0.3 0.9904 42.2374 0.0037

shows the second-best performance. However, when the
model relies too heavily on reference contrast, performance
significantly declines, suggesting that reference data alone
cannot adequately restore the fine details of the target im-
age. Similarly, an overemphasis on target contrast does not
result in performance improvements, demonstrating the in-
dispensable role of unpaired reference contrast in providing
task-specific information and supplementary details. The
best performance was observed when the weights slightly
favored the target contrast, indicating that prioritizing the
target data helps enhance SR quality, while the unpaired
reference data still provides beneficial features. Based on
the results of the ablation study, we find that setting λtar to
0.7 and λref to 0.3 yields the best performance.

5. Conclusion

In this work, we focus on exploring the commonalities
and distinctiveness between unpaired MR images to en-
hance MRI with target contrast. For this purpose, we intro-
duce agent-conditioned multi-contrast MRI SR with cross-
subject adaptation, which can achieve SR of target images
under the guidance of any HR reference contrast. Specifi-
cally, AgentMRI mines commonalities independent of the
target contrast through a trained agent and then interacts
with the target contrast to guide the model to focus on task-
specific features. In the future, we will explore repurposing
the abundant yet untapped medical image resources to fur-
ther investigate the potential relationships between unpaired
data.
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