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Abstract

Deploying efficient deep learning models in resource-
constrained environments is challenging due to their
growing scale and complexity. Knowledge Distillation
(KD) offers a practical solution by transferring knowl-
edge from a large teacher model to a compact stu-
dent model. However, traditional KD methods often
fall short when significant capacity gaps exist. To ad-
dress this issue, we introduce Gap-KD, which utilizes
dynamic temperature scaling and a double decoupling
technique to bridge these gaps. The distillation tem-
perature is adjusted dynamically, progressively increas-
ing the student model’s learning difficulty. A Teacher
Assistant (TA) model is introduced as an intermedi-
ary layer, initially reducing the gap. Building on this,
the outputs of the teacher, TA, and student mod-
els are doubly decoupled, further reducing information
loss and error accumulation. Extensive experiments on
CIFAR-10 and CIFAR-100 datasets with ResNet and
CNN architectures demonstrate that Gap-KD achieves
state-of-the-art performance specifically in scenarios
with significant capacity gaps, highlighting its effec-
tiveness for these challenging conditions. The code is
available at https://anonymous.4open.science/r/Gap-
KD-C411

Keywords: Knowledge Distillation, Deep Learning,
Computer Vision, Neural Networks

1. Introduction

Over the past few decades, deep learning-based
methods[40, 4, 16] has made significant breakthroughs
in a number of areas, including computer vision[40, 19,
34, 48], natural language processing[12, 31], and tar-
get detection[15, 36]. However, most of these successes
have been due to the complexity of the models and the
increase in computational power, which limits precisely
the adoption and deployment to mobile devices[6, 11].
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Figure 1: Problem definition of the large gap between
a teacher and a student model. While the majority of
knowledge distillation research concentrates on model
disparities within a tenfold range, our aim is to tackle
scenarios where the gap extends beyond this threshold.

A case in point is large language model(LLM)[53] such
as the GPT-4[1], LaMDA[43] and LLaMA[45], any one
of them contains billions of parameters. Obviously, de-
ploying these models to devices with limited comput-
ing power is nearly impossible. In this regard, knowl-
edge distillation(KD)[18], as a prominent method of
model compression, has been widely adopted in the
deep learning field.

KD is the method to transfer the knowledge of a pre-
trained teacher model to a lightweight student model.
It works by softening the teacher’s output logits with
temperature to provide additional supervision for the
student model. Specifically, the soft logits contain more
inter-class information than the hard class target of the
student model itself.

Despite the fact that numerous studies[24, 51, 46, 5,
9, 8, 23] on the KD method have demonstrated impres-
sive achievements across a wide array of tasks[13, 30,
37, 35], it is subjected to certain specific constraints
as well. As illustrated in Figure 2, with the increas-
ing model disparity, the improvement of traditional
knowledge distillation methods over the models’ train-
ing outcomes diminishes. When the model gap exceeds
tenfold, the effectiveness of knowledge distillation falls
below the results obtained through the models’ self-
training, marking the ineffectiveness of conventional
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Figure 2: This graph displays the efficacy of KD ver-
sus training from scratch for ResNet models. The hor-
izontal axis categorizes models by their scale ratios,
defined as the parameter count of ResNet-110 relative
to the model in question. The left vertical axis mea-
sures accuracy, while the right vertical axis shows the
accuracy gains from KD compared to scratch training.
Blue and yellow bars indicate the accuracies from KD
and scratch training, respectively. The red line graph
shows the extent of improvement due to KD, and the
black dotted line marks no improvement (improvement
= 0). Notably, KD’s performance falls short when the
scale ratio exceeds 10.

knowledge distillation approaches at this point. Pre-
vious efforts in the field primarily focused on teacher-
student model pairs with relatively minor disparities,
such as ResNet56 and ResNet20, or VGG13 and VGG8,
to circumvent this issue. Nonetheless, the challenge
posed by significant gaps holds substantial relevance in
practical applications. Often, the computational capa-
bilities of the devices designated for deploying distilled
models are fixed, and the disparity between these de-
vices and the larger models intended for distillation
can be quite pronounced. This underscores the criti-
cal importance of addressing how to effectively conduct
knowledge distillation when faced with substantial dis-
parities. In this paper, we define the issue as the ca-
pacity gap problem .

To address the capacity gap problem, [33] proposed
the TAKD method to bridge the gap via an extra aux-
iliary model(teacher assistant) whose size is between
the size of the teacher and the student. There are
two phases of the whole training process. Firstly, the
TA model is trained by the teacher model. Then, the
TA plays the role of the teacher to teach the student.
In this way, the huge gap between the teacher and
the student is split into two parts: the gap between
teacher and TA and the gap between student and TA.
While TAKD achieved a significant performance im-
provement in addressing the capacity gap problem ,
there are still a number of issues. Firstly, the errors
in the TA training process can be easily propagated to

the student, which is referred to as the error avalanche
problem. [41] proposed the DGKD to alleviate the er-
ror avalanche problem by densely guided multiple TAs.
Besides, there is a distillation paths problem with both
TAKD and DGKD. The more TAs used as intermedi-
ate layers, the better the distillation effect achieved.
Specifically, when using CNN-2 as the student model
and CNN-10 as the teacher model on the CIFAR-100
dataset, the accuracy of the complete distillation path
(10 → 8 → 6 → 4 → 2) is 0.86% [33] higher than us-
ing a single TA (10→ 8→ 2). However, this approach
also increases the cost of training. Therefore, determin-
ing how to select the appropriate TA and the distilla-
tion path to achieve a relative balance between compu-
tational cost and effectiveness presents an intractable
challenge.

In this work, we proposed our Gap-KD method to
tackle all of the capacity gap, error avalanche and dis-
tillation paths problems. In Gap-KD, we also adopt
two-stage distillation. In the first stage, the TA model
is trained by the teacher model. In the second stage,
the student model is trained using both the TA and
the teacher models. Inspired by [52], we double de-
couple target class knowledge from teacher and non-
target class knowledge from TA separately, which could
avoid error avalanche problem and alleviate capacity
gap problem .In addition to the above, the tempera-
ture factor is incorporated at both stages of distilla-
tion. This methodology does not merely bridge the
performance gap between the models, but also facili-
tates dynamic adjustment of the temperature, thereby
uncovering more latent details within the models. Con-
sequently, this enhances the model’s competence in ad-
dressing the distillation paths problem to a certain ex-
tent. As a result, our approach can significantly sur-
pass the performance of both TAKD and DGKD along
complete distillation paths, even when utilizing only a
single Teaching Assistant. Overall, the contributions
of this paper are summarized as follows:

• We propose the Dynamic Temperature Module
(DTM) which effectively organizes the distillation
task from easy to hard by dynamically adjusting
the temperature parameter in a rate decay fashion.

• We introduce the Double Decoupling Module
(D2M) which decouples both sources (teacher, as-
sistant, student) and categories (target and non-
target) for distillation. This approach not only
enhances distillation efficiency but also mitigates
error propagation.

• We apply the Gap-KD method to ResNet8 and
plain CNN models on both CIFAR-10 and CIFAR-
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Figure 3: The overall architecture of our proposed method. To address the capacity gap problem, error avalanche
problem, and distillation paths problem in previous approaches, we introduce the Dynamic Temperature Module
(DTM) and the Double Decoupling Module (D2M).

100 image classification tasks and achieved the
state-of-the art results.

2. Related Work

2.1. Knowledge Distillation

Knowledge Distillation(KD), as a popular model
compression method [7], was originally proposed
in [18]. In KD, the computational expensive
model(teacher model) transfers the ”dark knowledge”
to the single computational efficient neural network
(student model) via soft labels from teachers [14, 49].
Since then, KD has been widely adopted across var-
ious learning tasks, especially in vision tasks [20, 26,
3, 29, 49, 27]. Original knowledge distillation starts
with a pre-trained cumbersome teacher model. Then
a light-weight student model is trained under the su-
pervision of the teacher model. To better convey the
information, [18] uses fixed temperature to soften the
logits provided by the teacher, which could provide
more dark knowledge than hard labels and be easier
to be learned by the student. Specifically, given the la-
beled classification dataset D = {(xi, yi)}Ii=1, the stu-
dent mimics the teacher by minimizing the Kullback-
Leibler(KL) divergence loss between their soft output

probabilities:

LKD(qt, qs, τ) =

I∑
i=1

τ2KL(σ(qti/τ), σ(q
s
i /τ)) (1)

where qt and qs denote the logits of the teacher and the
student respectively, τ is the temperature for softening
the distribution, and σ(·) means the softmax function.

2.2. Large Capacity Gap Between Teacher and Student

Quite a bit of past literature [32, 33, 10] has observed
a phenomenon: good teachers do not necessarily teach
students well, just as a college professor who teaches
elementary school knowledge is not necessarily as good
as an elementary school teacher. When the teacher’s
capacity and the student’s are in a certain range, the
better the teacher’s capacity, the better supervision it
provides to the student. However, when the gap be-
tween teacher and student is too large, the student
does not have enough ability to mimic the teacher’s
behavior despite receiving hints.

There are numerous approaches have been proposed
to address the problem. TAKD [33] introduced an in-
termediate teacher assistant model whose capacity is



greater than the student but smaller than the teacher
to bridge the huge gap. Building on this foundation,
DGKD [41] employs a densely connected network of
assistant models to further enhance the effectiveness
of the distillation process. RCO [22] devised a se-
quential learning pathway that progressively mimics
the teacher, guiding the student model through the
teacher’s optimization trajectory.

3. Method

3.1. Motivation

In knowledge distillation, a key challenge is the sig-
nificant capacity gap between the teacher and student
models. The teacher, being more complex, often makes
it difficult for the student model to effectively learn,
leading to the failure of traditional distillation meth-
ods. This situation can be compared to a university
professor teaching advanced concepts directly to an el-
ementary school student, which is highly ineffective due
to the knowledge gap.

The previously proposed approach[33] introduced a
teaching assistant to help bridge this gap. Although
this approach alleviates some of the issues, relying
solely on the assistant can lead to potential errors and
limit the student’s learning potential.

Our approach, inspired by real-world education, ad-
dresses these issues by allowing the student to learn si-
multaneously from both the teacher and the assistant.
In the first phase, the teacher distills its knowledge into
the assistant model. In the second phase, the student
learns from both the teacher and the assistant—the
assistant provides foundational knowledge (basic con-
cepts), while the teacher provides advanced knowledge
(correct answers). The entire process is designed to
mimic the gradual progression of real-world education,
with learning difficulty increasing from easy to hard
by adjusting the distillation temperature from high to
low, making the process more intuitive and effective.

3.2. Overall Architecture

The overall architecture of our proposed method is
illustrated in Figure 3. It consists of two main stages:
Stage I - Training the Teacher Assistant with a Teacher,
and Stage II - Training the Student with both the
Teacher and the Teacher Assistant. Each stage is de-
scribed in detail in section 3.3 and section 3.4 , respec-
tively. To aid understanding of the complete workflow,
the corresponding algorithm is provided in Algorithm
1.

Algorithm 1 Gap-KD
Input: Training dataset D = {(xi, yi)}Ii=1; Pre-trained
Teacher T ; τmax; τmin; Training epochs in stage I : N1

and stage II : N2

Output: Well-trained Student S
Initialize: Epoch i = 1; Temperature value τ = τmax

1: ▷stage I
2: while i ≤ N1 do
3: for each data batch x in D do
4: Forward propagation through T and A to

obtain outputs;
5: Calculate τi based on the Eqn.6 and Eqn.7;
6: Calculate the vanilla KD loss soften by τi

and update A through backward propagation;
7: end for
8: i = i+ 1;
9: end while

10: ▷stage II
11: while i ≤ N2 do
12: for each data batch x in D do
13: Forward propagation to obtain the outputs

from T , S, and A to obtain outputs respectively;
14: Calculate τi based on the Eqn.6 and Eqn.7;
15: Calculate the Ltotal based on Eqn.11,

Eqn.12, Eqn.13, and Eqn.14, update S through
backward propagation;

16: end for
17: i = i+ 1;
18: end while
19: return S

3.3. Stage I :Training Teacher Assistant with a Teacher

In this stage, the TA is being trained under the su-
pervision of both the teacher model and the ground
truth. Without any loss of generality, we assume that
θA(i) represents the TA’s optimized parameters at the
start of i-th epoch, will be updated during the i-th
epoch of training to obtain θA(i+ 1):

LCE(θA(i)) = CE
(
y,A(x; θA(i))

)
, (2)

LKL(θA(i), τi) = τ2i KL(T (x, θT )||A(x, θA(i)); τi),
(3)

L(θA(i), τi) = αLCE(θA(i)) + βLKL(θA(i), τi), (4)

θA(i+ 1)← min
θA
L(θA(i), τi) (5)

Existing literature [18, 28] indicates that the tem-
perature parameter in the distillation process softens
the logits output by the teacher model. This trans-
forms the distribution from one-hot encoding to a
richer distribution containing inter-class relationships,



aiding the student model in learning more dark knowl-
edge. A higher temperature results in a smoother
distribution, facilitating quicker and easier knowledge
transfer to the student model while lowering confidence
in the target class. Conversely, a lower temperature
produces a steeper distribution, focusing the distilla-
tion on the teacher’s maximum logits, which increases
the learning difficulty for the student model but en-
hances confidence in the target class.

Teacher

TA 1 TA 2 TA nTA i
……
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Easy Hard

Temperature Difficulty Distillation Next Epoch

t1 t2 ti tn

Figure 4: Overview of the stage I. By designing a gra-
dient of temperature settings that decrease from high
to low in each epoch, the learning difficulty for TA
progresses from easy to hard, thereby optimizing the
learning efficiency of the TA model.

Following the gradual learning principles in human
education, it is intuitive to progressively decrease the
temperature from high to low, making the student’s
learning difficulty transition from easy to hard. This
approach aligns with the stepwise complexity in human
learning, enabling the student model to quickly absorb
initial knowledge and subsequently focus on details and
accuracy, ultimately achieving optimal learning out-
comes. Inspired by [50], we propose the Dynamic Tem-
perature Module(DTM), take rate decay technique to
change the temperature value τ w.r.t current epoch,
which is empirically observed to help both optimization
and generalization. Let the decay rate δ, be defined by
the formula:

δ =

(
τmin

τmax

) 1
N1−1

(6)

where τmin and τmax represent the minimum and max-
imum temperatures, respectively, and N1 denotes the
total number of epochs in stage I. Then, the tempera-
ture τi at the i-th epoch is given by:

τi = τmax · δi−1 (7)

Subsequently, we soften the teacher’s output for each
epoch utilizing the derived τi, facilitating a graduated

distillation process from simple to hard by progres-
sively decreasing τi from high to low. This approach
effectively mitigates the Capacity Gap Problem. More-
over, in the subsequent stage stage II, it enables the at-
tainment of higher accuracy compared to other meth-
ods employing multiple TAs, despite utilizing only a
single TA, thereby alleviating the Distillation Paths
Problem to a certain extent.

3.4. Stage II :Training Student with Teacher and Teacher
Assistant

In this stage, the student model will be jointly
trained with the TA trained in stage I , the teacher
model, and the true labels.

Inspired by [52], we propose a Double Decoupling
Module(D2M): not only decoupling both the teacher
model and the assistant teacher model, but also decou-
pling the target and non-target class outputs. In this
way, the D2M significantly improves the accuracy and
efficiency of classification. The operational mechanism
of this module will be detailed next.

For a given training instance belonging to the t-th
class, the vector of classification probabilities may be
represented as p = [p1, p2, ..., pt, ..., pC ] ∈ R1×C , where
pi signifies the probability assigned to the i-th class,
with C denoting the total number of class categories.
For any class i, pi can be obtained by:

pi =
exp(zi)∑C
j=1 exp(zj)

(8)

where zi is the logit of i-th class.
The binary probability distribution for a given in-

stance w.r.t. the target class and the aggregate of
all other non-target classes are encapsulated by: b =
(pt, p), where pt is the probability of the target class
and p represents the cumulative probability of all
classes excluding the target, which can be derived as
follows:

pt =
exp(zt)∑C
j=1 exp(zj)

,

pt =

∑C
k=1,k ̸=t exp(zk)∑C

j=1 exp(zj)

(9)

Concurrently, we define p̂ =
[p̂1, ..., p̂t−1, p̂t+1, ..., p̂C ] ∈ R1×(C−1) to exclusively
represent the probability distribution across non-
target classes, explicitly excluding the t-th class. Each
element is calculated by:

p̂i =
exp(zi)∑C

j=1,j ̸=t exp(zj)
(10)
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Figure 5: Overview of the stage II. The target class outputs of the teacher and the student are used to compute
the Target Class KL Loss (TCKL), while the non-target class outputs of the TA and the student are utilized to
calculate the Non-Target Class KL Loss (NCKL). Dynamic Temperature Modulation (DTM) is introduced in the
calculation of both TCKL and NCKL. Finally, a weighted sum of these two components is computed.

Next, we will introduce our loss function of D2M,
Ltotal, is defined as:

Ltotal = αLCE + βLKLt
+ γLKLt

(11)

where α, β and γ are weighting coefficients that bal-
ance the contributions of the respective loss compo-
nents. LCE represents the cross-entropy loss. LKLt

and LKLt
refer to the Kullback–Leibler divergence loss

for the target class and non-target class respectively.

LCE = −
∑
i

yi log(pi) (12)

LKLt = KL(bT ||bS) = pTt log(
pTt
pSt

) + pTi log(
pTt
pSt

)

(13)

LKLt
= KL(p̂A||p̂S)

= pAt

C∑
i=1,i ̸=t

p̂Ai log(
p̂Ai
p̂Si

)
(14)

where yi represents the ground truth label for the i-
th class in a one-hot encoded vector. We formulate

the loss function with the binary probabilities b and
the probabilities among non-target classes p̂, and we
define T , A and S as the teacher, the teacher assistant
and the student respectively.

By employing a D2M approach, we can achieve two
main advantages that make the knowledge distilla-
tion process more effective and precise. Firstly, tra-
ditional KD loss functions highly couple the Target
Class KL Loss (TCKL) with the Non-Target Class KL
Loss(NCKL), overlooking their distinct roles in the dis-
tillation process. Specifically, TCKL conveys knowl-
edge about the difficulty of each training sample, re-
flecting the ease or challenge of identifying each sample;
whereas NCKL contains what’s known as ’dark knowl-
edge’, contributed through coefficients negatively cor-
related with the teacher model’s prediction confidence
for the target category. This means higher prediction
scores result in smaller weights. However, the coupling
in traditional KD methods significantly reduces the in-
fluence of NCKL on well-predicted training samples,
which is undesirable since a teacher model’s high confi-
dence in a training sample indicates the reliability and



value of the transferred knowledge. Moreover, exces-
sive coupling restricts the possibility of independently
adjusting the weights for both parts, thus greatly limit-
ing the distillation effect. Secondly, D2M ensures that
the student model’s learning of the target class relies
solely on the teacher model and the true labels. This
effectively avoids the potential for the teaching assis-
tant model to transmit incorrect information, funda-
mentally solving the error avalanche problem. Through
this method, we can ensure that the student model ac-
quires more accurate and reliable knowledge during the
learning process, thereby improving learning efficiency
and model performance.

4. Experiments

In this section, we evaluate the performance of Gap-
KD on the image classification task. To ensure a com-
prehensive and fair evaluation, we design our experi-
ments in two parts. The first part benchmarks our ap-
proach against the most recent conventional KD SOTA
methods from the past three years. The second part
involves a comparison with state-of-the-art methods
specifically designed to address significant model ca-
pacity gaps.

4.1. Datasets

To maintain consistency with previous work [38, 33,
21, 22, 18] focused on knowledge distillation in the
context of significant model capacity gaps and to fa-
cilitate comparison, we assess Gap-KD on CIFAR-10
and CIFAR-100 datasets [25], which are widely used
as benchmarks for image classification. Both datasets
contain 60,000 of 32 32 RGB images, with 50,000 desig-
nated for training and 10,000 for testing. There are 10
classes for CIFAR-10 and 100 classes for CIFAR-100,
respectively.

Furthermore, we acknowledge that compressing
models to extremely small architectures, such as
ResNet-8 or CNN-2, has limited practicality when ap-
plied to large-scale datasets like ImageNet. The dra-
matic reduction in capacity can lead to a significant
drop in model performance, making the application
of such compact models less meaningful for large and
complex datasets. Thus, we primarily focus on CIFAR-
10 and CIFAR-100, where the feasibility and impact of
our approach can be more effectively demonstrated and
compared against existing methods.

4.2. Part 1: Comparision with state-of-the-art Methods

The first part of our experiments focuses on com-
paring our approach with recent state-of-the-art KD
methods from the past three years, such as DKD[52],
SimKD[9], CTKD[28], LSKD[42]. Additionally, we

compare several common feature-based and logit-based
knowledge distillation methods. We utilize the CIFAR-
100 datasets for this comparison. Both homogeneous
and heterogeneous teacher-student networks are evalu-
ated. For homogeneous networks, we use configura-
tions such as ResNet-110 to ResNet-8, and for het-
erogeneous networks, we employ configurations such
as ResNet-32×4 to MobileNet-V2[39]. The hyper-
parameters for all baseline methods are set according to
their default configurations as provided in their respec-
tive published codes. For LSKD, the MLKD[23]+logit
standardization method is specifically used.

Table 1: Results on the CIFAR-100 dataset. All results
are the average of three independent experiments, bold
indicates the best result, underline represents the sec-
ond best, and ∆ denotes the improvement compared
to the KD method.

Type
Teacher ResNet110 ResNet110 ResNet32×4

74.31 74.31 79.42

Student ResNet8 MobileNet-V2 MobileNet-V2
61.37 65.28 65.28

Feature

FitNet[2] 57.67 61.66 60.83
OFD[17] 61.48
CRD[44] 65.03
SimKD[9] 53.14 69.41 69.13

Logit

Vanilla KD[18] 61.41 68.95 66.83
DKD[52] 58.91 69.25 68.79
CTKD[28] 62.89 69.42 68.42
LSKD[42] 60.97 68.92 68.84

ours 63.99 69.68 69.55
∆ +2.58 +0.73 +2.72

Table 1 compares our method with recent state-
of-the-art KD methods like DKD[52], SimKD[9],
CTKD[28], and LSKD[42] from the past three years.
Notably, in scenarios with significant model discrepan-
cies, our method also achieved the best performance.
This does not imply that our method universally sur-
passes all other methods. In situations with smaller
model discrepancies, other methods tend to perform
better. However, in cases of significant model discrep-
ancies, other methods often perform poorly, sometimes
even worse than vanilla KD. This highlights the neces-
sity of researching and developing KD methods specif-
ically tailored for scenarios involving large model dis-
crepancies.

4.3. Part 2: Comparison with Previous Baseline for Ad-
dressing Significant Model Capacity Gaps

For CIFAR-10 and CIFAR-100, we adopt ResNet
and plain CNN architectures as the foundational mod-
els to establish our baseline performance metrics.
The experimental setups are similar to the TAKD
method[33]. Specifically, for the ResNet-based evalua-



Table 2: Comparing the test accuracy of Pro-
KD[38], TAKD[33], Annealing-KD[21], RCO[22], regu-
lar KD[18], and student without teacher on CIFAR-10
dataset with both ResNet and CNN models

Model Type Training Method Accuracy

ResNet

Teacher(110) from scratch 94.30
TA(20) Vanilla KD 93.35
TA*(20) DTM 93.68

Student(8) from scratch 87.44
Student(8) Vanilla KD 87.89
Student(8) TAKD 88.47
Student(8) RCO 88.90
Student(8) Annealing KD 89.44
Student(8) Pro-KD 90.01
Student(8) ours 90.18

CNN

Teacher(10) from scratch 90.1
TA(4) Vanilla KD 82.39
TA*(4) DTM 83.86

Student(2) from scratch 72.75
Student(2) Vanilla KD 72.43
Student(2) TAKD 72.63
Student(2) Annealing KD 73.17
Student(2) ours 73.25

Table 3: Comparing the test accuracy of Pro-
KD[38], TAKD[33], Annealing-KD[21], RCO[22], regu-
lar KD[18], and student without teacher on CIFAR-100
dataset with both ResNet and CNN models

ResNet

Teacher(110) from scratch 74.31
TA(20) Vanilla KD 71.07
TA*(20) DTM 71.29

Student(8) from scratch 61.37
Student(8) Vanilla KD 61.41
Student(8) TAKD 61.82
Student(8) RCO 61.62
Student(8) Annealing KD 63.10
Student(8) Pro-KD 63.43
Student(8) ours 63.99

CNN

Teacher(10) from scratch 64.89
TA(4) Vanilla KD 60.73
TA*(4) DTM 63.47

Student(2) from scratch 51.53
Student(2) Vanilla KD 51.62
Student(2) TAKD 51.85
Student(2) Annealing KD 53.35
Student(2) ours 53.79

tions, we designated ResNet-110 to serve as the teacher
model, with ResNet-20 fulfilling the role of the Teach-
ing Assistant (TA), and ResNet-8 positioned as the
student model. In parallel, for experiments involving
plain CNN structures[33], a 10-layer CNN was utilized
as the teacher, a 4-layer CNN acted as the TA, and

a 2-layer CNN was implemented as the student model.
The comparative performance of our Gap-KD method-
ology against other established baselines across both
CIFAR-10 and CIFAR-100 datasets is systematically
presented in Table 2 and Table 3. For the ResNet base-
lines, the teacher ResNet-110 is trained from scratch.
The TA is trained by the teacher via vanilla KD, while
the TA* is trained using KD enhanced by DTM. Then
we would like to train a ResNet-8 student via vari-
ous methods and compare their accuracies against our
Gap-KD method. Notably, our method utilizes TA* as
the teacher assistant model while TAKD uses TA.

Table 4: Hyperparameter settings used in the imple-
mentation of our proposed method.

Hyper-parameter ResNet(110→8) CNN(10→2)
Batch Size 64 64

Learning Rate 0.05 0.01
Epochs 240 160

Decay Epochs [150, 180, 210] -
Weight Decay 5e-4 -
Momentum 0.9 0.9
Ce Weight 0.68 3.10

α 8.30 5.88
β 6.20 9.09

τmax 24 20
τmin 1 1

Warm Up 7 33

4.4. Visualization

To intuitively demonstrate the effectiveness of our
method, we use t-SNE[47] visualizations to show the
classification results on the CIFAR-10 dataset, where
the teacher network is ResNet110 and the student net-
work is ResNet8. As shown in Figure 6, compared to
traditional KD, the model trained with Gap-KD ex-
hibits more compact clusters within the same class and
greater separation between different classes, demon-
strating the effectiveness of our method.

5. Ablation Studies

To further validate the effectiveness of the different
modules within our Gap-KD method and to determine
the optimal values for various hyper-parameters, we de-
signed a series of ablation experiments. These exper-
iments systematically remove individual modules and
adjust hyper-parameters to assess their impact on the
overall performance of the model.
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Figure 6: t-SNE visualization of the student logits.

5.1. Ablation Study of the Modules

Table 5: Results of ablation studies in CIFAR-10

Model DTM D2M Accuracy

T:ResNet110
S:ResNet8

× × 87.89√
× 87.34

×
√

89.20√ √
90.18

T:CNN10
S:CNN2

× × 72.43√
× 72.52

×
√

72.80√ √
73.25

Table 6: Results of ablation studies in CIFAR-100

Model DTM D2M Accuracy

T:ResNet110
S:ResNet8

× × 61.41√
× 62.55

×
√

61.72√ √
63.99

T:CNN10
S:CNN2

× × 51.62√
× 53.69

×
√

53.51√ √
53.79

Table 5 and Table 6 present the results of ablation
experiments conducted on the CIFAR-10 and CIFAR-
100 datasets, respectively. Each table outlines two
distinct setups: the first utilizes ResNet110 as the
teacher model and ResNet8 as the student model, while

the second employs CNN10 as the teacher model with
CNN2 serving as the student model. It is evident from
the data that both the DTM and D2M modules con-
tribute positively to the enhancement of distillation
outcomes. Notably, when these modules are combined,
they achieve state-of-the-art performance levels.

5.2. Dynamic Temperature Adjustment Strategy

Table 7 reports presents the outcomes of employ-
ing various temperature adjustment strategies (Fixed,
Linear, Exponential, Logarithmic, Sigmoid, Piecewise,
DTM) in the context of knowledge distillation experi-
ments. The experiments were conducted under two dis-
tinct configurations: the first row details results where
a ResNet110 teacher model and a ResNet20 student
model were utilized on the CIFAR-100 dataset, while
the second row showcases outcomes using a Plane10
teacher model with a Plane4 student model on the
CIFAR-10 dataset. Accuracy (Acc) percentages are re-
ported for each strategy across both setups, highlight-
ing the effectiveness of these methods in transferring
knowledge from teacher to student models. Notably,
the DTM strategy demonstrates superior performance
in both configurations, underscoring its efficacy in tem-
perature adjustment for knowledge distillation. Addi-
tionally, for all strtegies, τmax = 20 and τmin = 1.

5.3. DTM Parameters

Table 8 shows the ablation study results for vary-
ing values of the hyper-parameter τmax of the DTM.
The experiment evaluates the impact of τmax on
the accuracy (Acc) of knowledge distillation from a
ResNet110(teacher network) to a ResNet32(student
network). Values of τmax ranging from 5 to 30 are



Table 7: Comparison of temperature adjustment strategies in knowledge distillation experiments across different
architectures and datasets. And cross all experimental setups, DTM consistently achieves the best results.

Strategy Fixed Linear Exponential Logarithmic Sigmoid Piecewise DTM
Acc1 70.85 70.71 70.80 71.12 71.23 69.84 71.29
Acc2 83.44 83.73 83.67 84.24 83.65 83.91 84.07

Table 8: Ablation study Results for the hyperparameter τmax in the DTM, τmax = 20 works the best.

τmax 5 10 15 20 25 30
Acc 73.11 72.70 72.86 73.25 73.02 73.12

considered, with the accuracy measured to assess the
effectiveness of each setting. The experiment demon-
strates that τmax = 20 yields the highest accuracy,
indicating an optimal point for this hyperparameter in
the context of transferring knowledge between these
specific network architectures.

5.4. Distillation Paths

Table 9: Ablation study Results for distillation paths

PATH TAKD DGKD ours
10 → 8 → 6→ 4→ 2 45.14 48.92 -

10 → 4 → 2 44.92 48.61 53.79

Table 9 demonstrates the performance of TAKD,
DGKD, and our method on the CIFAR-100 dataset,
using CNN10 as the teacher model and CNN2 as the
student model across different distillation paths. The
results indicate that for TAKD and DGKD, a more
complete distillation path yields better performance.
In contrast, our method outperforms both techniques
even when utilizing only one teaching assistant, despite
them employing three teaching assistants. This find-
ing confirms that introducing a single assistant is suffi-
cient to significantly alleviate the distillation path issue
when using the Gap-KD approach.

6. Conclusion

In this paper, we present a two-stage distillation
method incorporating DTM and D2M to effectively
bridge the large gap between teacher and student mod-
els. This approach utilizes a single TA and transitions
from high to low temperatures to ease learning com-
plexity, markedly alleviating the Capacity Gap and
Distillation Path problems. Additionally, our dual de-
coupling strategy prevents the Error Avalanche prob-
lem, enhancing model robustness. Employing these

techniques, our proposed method achieves the state-
of-the-art among the multiple distillation methods.

Future Work

Currently, Gap-KD has only been evaluated on im-
age classification tasks. As a logit-based knowledge dis-
tillation method, it faces challenges in outperforming
state-of-the-art feature-based approaches in object de-
tection due to the absence of positional information in
the logits. In future work, we aim to address this lim-
itation by incorporating mechanisms that can better
capture positional knowledge, thereby enhancing the
applicability of Gap-KD to object detection. Although
Gap-KD achieves state-of-the-art performance in sce-
narios with significant model capacity differences, its
effectiveness slightly lags behind the leading methods
when the model gap is smaller, and vice versa. In fu-
ture research, we plan to develop an adaptive approach
that can dynamically adjust to varying model capacity
differences, ensuring optimal performance regardless of
the size of the gap.
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