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Abstract

In the field of image manipulation localization (IML),
the small quantity and poor quality of existing datasets
have always been major issues. A dataset containing
various types of manipulations will greatly help improve
the accuracy of IML models. Images found on pub-
lic forums, such as those in online image modification
communities, are often manipulated using various tech-
niques. Creating a dataset from these images can sig-
nificantly enhance the diversity of manipulation types
in our data. However, due to resolution and clarity is-
sues, images obtained from the internet often contain
noises, making it difficult to obtain clean masks by sim-
ply subtracting the manipulated image from the origi-
nal. These noises are difficult to remove, rendering the
masks unusable for IML models. Inspired by the field
of change detection, we treat the original and manipu-
lated images as changes over time for the same image
and view the data generation task as a change detection
task. Due to clarity issues between images, conventional
change detection models perform poorly. Therefore,
we introduced a super-resolution module and proposed
the Manipulation Mask Manufacturer (MMM) frame-
work, which enhances the resolution of both original
and tampered images to improve comparison. Simulta-
neously, the framework converts the original and tam-
pered images into feature embeddings and concatenates
them, effectively modeling the context. Additionally, we
used our MMM framework to create the Manipulation
Mask Manufacturer Dataset (MMMD), which covers a
wide range of manipulation techniques. We aim to con-
tribute to the fields of image forensics and manipula-
tion detection by providing more realistic manipulation
data through MMM and MMMD. Detailed information
about MMMD and the download link can be found at:

*Corresponding author.

https://github.com/ndyysheep/MMMD.
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1. Introduction

Advances in digital image processing [5] have made soft-
ware like Adobe Photoshop [42] and GIMP [18] more pow-
erful, facilitating widespread image manipulation. Increas-
ingly, there are examples of false information, retouched
photographs, or edited video being released on social me-
dia. In many cases, this information goes ”viral” in just
days, even hours [17]. This proliferation of false informa-
tion and manipulated images threatens public knowledge,
trust, and safety. Thus, image manipulation localization
has emerged, and in some literature, it is also referred to
as ”forgery detection [16]” or ”tamper detection [45].” Its
purpose is to discern whether an input image is manipu-
lated or authentic and to depict the exact manipulated parts
of an image through a mask [40]. These parts are semanti-
cally different from the original content (the original image
before manipulation). It does not include purely generated
images (e.g., images generated from pure text) or the in-
troduction of noise or other non-semantic changes through
image processing techniques that do not alter the underly-
ing meaning of the image. Standard tampered images and
their masks are shown in Fig. 1.

However, a common benchmarking image dataset for al-
gorithm evaluation and fair comparison is still lagging be-
hind [10]. Most existing datasets are manually created and
annotated by researchers [49], with limited tampering types
and techniques, and the volume of datasets is also restricted.
This leads to models with poor generalization and robust-
ness. Therefore, we thought of creating datasets by sourc-
ing a large number of original and manipulated images from
the internet. But we found that images and videos from the
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Figure 1. Tampered images and their corresponding masks for the image manipulation localization task.

internet suffer from compression and clarity issues [4], and
simply subtracting the original and manipulated images re-
sults in noisy images, as shown in the third row of Fig. 2,
that traditional methods struggle to clean up.

Change detection [37, 30] involves identifying differ-
ences at the same location over different times, which is
similar to our task of detecting differences between the orig-
inal and manipulated images. Inspired by this, we treat the
original and manipulated images as changes over time for
the same picture, viewing the dataset generation task as a
change detection task. However, due to the clarity dispar-
ity [41] between the two images in our task, directly using
change detection models is not ideal. Therefore, we intro-
duced a super-resolution processing module to enhance the
details of the two images before generating the mask. This
is the main idea behind our proposed Manipulation Mask
Manufacturer (MMM) framework. Some of the masks we
generated and their corresponding original images and tam-
pered images are shown in Fig.2.

The framework pipeline inputs the original and tampered
images into a Fully Convolutional Network (FCN) [28] to
extract high-level features. These features are aligned using
Maximum Mean Discrepancies (MMD) [38, 29] and con-
catenated. They are then processed through a Cross-scale
Local Attention Block (CSLAB) [7] and a Local Frequency
Encoding Block (LFEB) [7] to enhance resolution and de-
tail. Finally, the features are split, decoded, subtracted, and
a mask is obtained.

Our framework has achieved excellent annotation results
on the IMD2020 [35], NIST16 [21], and CASIAv2 [13]
datasets. Additionally, we created the Manipulation Mask
Manufacturer Dataset (MMMD), containing 11,069 origi-
nal images, tampered images, and masks, with potential
for continuous growth. The dataset includes various reso-
lutions and manipulation types, such as copy-move [1, 8],
splicing [23], transformation [36], Deepfake [34], Image In-
painting [14], Image Morphing [47], Reconstruction [11],
and Image Style Transfer [24]. It features diverse images
like cartoons, portraits, landscapes, interiors, food, and ac-
cessories. The main parameters of our dataset compared to

existing datasets are shown in Table 1. We used MMMD to
train and test MVSS-Net [12] and IML-ViT [31]. Other 10
models pre-trained on CASIAv2 [13] struggled to achieve
high metrics on our dataset, while models trained on our
dataset demonstrated better generalization. This highlights
the limitations of existing datasets.

In summary, our contributions are as follows:

• We propose a Manipulation Mask Manufacturer
(MMM) framework that can accurately annotate the
differences between original and tampered images
even when there is a significant disparity in their clar-
ity.

• We generated a large and diverse Manipulation Mask
Manufacturer Dataset (MMMD) using the MMM
framework to address the shortage of datasets in the
field of image manipulation detection.

• Models pre-trained with our MMMD achieved higher
F1 scores and demonstrated better generalization.
Other pre-trained models struggled to perform well
on our dataset, highlighting the limitations of exist-
ing tampering detection datasets. Our dataset better
reflects real-world tampering scenarios.

2. RELATED WORK

2.1. Existing dataset generation methods

Current methods for generating image manipulation de-
tection datasets include manual manipulation, which in-
volves editing images by hand using tools like Adobe Pho-
toshop [42], a time-consuming and expertise-demanding
process [43]. Automatic manipulation employs software
tools and scripts to rapidly produce large volumes of data,
though these images may look unnatural or have obvious
manipulation traces. Image synthesis combines elements
from different images to create new visual scenes, enhanc-
ing dataset diversity but requiring complex techniques and
substantial processing time [46]. The improved Total Varia-
tion Denoising Method [49] automatically subtracts a tam-
pered image from the original to obtain a noisy mask, which



Figure 2. MMM framework generated result images. From highest to lowest, the sequence is as follows: original image, tampered image,
image obtained by directly subtracting the two images and binarizing with a threshold of 30, and MMM predicted image.

Table 1. The primary datasets in the field of image manipulation localization. Most of these datasets suffer from issues such as limited
quantity, single type of tampering, and inability to grow further, and they are all tampered with by the issuers of the datasets themselves.

Dataset Tampered Images
Image Sources Dataset Growth Type

Self Others Scalable Non-scalable Traditional AI-manipulated

Columbia 180 ✓ − − ✓ ✓ −
CASIAv1 920 ✓ − − ✓ ✓ −
CASIAv2 5,063 ✓ − − ✓ ✓ −
Coverage 100 ✓ − − ✓ ✓ −
NIST16 564 ✓ − − ✓ ✓ −

DEFACTO 149,587 ✓ − − ✓ ✓ −
IMD20 2,010 ✓ − − ✓ ✓ ✓

MMMD(Ours) 11,069 − ✓ ✓ − ✓ ✓

is then denoised, but this method often fails to convert many
types of tampered images due to diverse noise and low gen-
eralization capability of traditional methods.

2.2. Existing change detection methods

In recent years, change detection methods based on deep
learning have rapidly developed. Hao Chen et al. proposed
the Bitemporal Image Transformer (BIT) [6], which con-
verts input images into a small number of semantic tokens,
uses a transformer encoder to model contextual informa-
tion within the compact token space-time domain, and then
projects the context-rich tokens back into the pixel space
through a decoder to enhance the original features. The fi-
nal change detection results are generated through feature
difference images. ChangeFormer [3] uses a transformer-
based Siamese network architecture for change detection
from a pair of co-registered remote sensing images. This
method combines a hierarchical transformer encoder and

a multi-layer perceptron (MLP) decoder, effectively ex-
tracting multi-scale long-range feature differences. This is
similar to image manipulation localization, and multi-scale
techniques are also commonly used in decoders [51]. In
SNUNet-CD [15], ChangeFormer extracts multi-scale fea-
tures of bitemporal images through a hierarchical trans-
former encoder and generates change detection maps by
fusing these feature differences using a lightweight MLP
decoder. However, since the change detection considers the
same image at different times with consistent clarity, it does
not need to account for image degradation. Therefore, ex-
isting change detection models are not effective for our data
generation tasks.

2.3. Existing tampered datasets

The development of datasets in the field of image manip-
ulation detection has been relatively slow. Currently, widely
recognized and used datasets are still those from four or five



Figure 3. The proposed MMM framework. The local sampling operation samples input embeddings based on a grid of coordinates.

years ago, or even from over a decade ago.

Datasets for Traditional Tampering Techniques Al-
most all datasets include traditional tampering methods like
splicing [23], copy-move [1, 8], removal, and various im-
age enhancements to produce “fake” or “forged” images.
Columbia [39] uses cropping and splicing [23], embedding
parts from other images into a single image. CASIAv1 [13]
employs Adobe Photoshop [42] for cutting and pasting, in-
cluding geometric transformations [36] like scaling [2] and
rotation [19]. CASIAv2 [13] adds more post-processing and
has a richer variety of images, divided into eight categories:
scenes, animals, buildings, people, plants, objects, nature,
and textures. COVERAGE [46] consists of real images
taken with an iPhone 6 front camera, processed with Photo-
shop CS4 using methods like translation, scaling, rotation,
free transformation [36], lighting changes, and combina-
tions thereof. NIST [21] uses local pixel modification, com-
pression, noise addition, blurring, and geometric transfor-
mations [36]. DEFACTO [33], based on the MSCOCO [26]
database, aims to produce semantically meaningful forged
images, including splicing [23], copy-move [1, 8], object
removal [9], and warping [20].

Deep Learning-Based Tampering Datasets Modern
image tampering techniques have achieved unprecedented
realism through artificial intelligence and deep learning,
particularly with Generative Adversarial Networks (GANs).
These techniques include deepfakes [34], which can per-
form facial replacement, expression synthesis, and gener-
ate images of non-existent people, making image and video

tampering very realistic [52]. Deep learning also excels in
image restoration and enhancement by denoising, filling in
missing parts, and improving resolution, thus making dam-
aged images look new and low-resolution images appear
clear and detailed. Tools and frameworks such as Tensor-
Flow, PyTorch, Keras, and OpenCV have greatly simplified
the implementation and application of these techniques. In
IMD2020 [35], GANs were used to generate tampered re-
gions of images, and inpainting techniques [14] were em-
ployed to fill in missing or damaged parts of images, mak-
ing them appear natural and coherent. This also presents
greater challenges for image manipulation detection. Cur-
rent models are increasingly in need of diverse data that bet-
ter reflects real-world scenarios.

3. PROPOSED METHOD

3.1. The Pipeline of the Entire Framework

The entire MMM framework is divided into three mod-
ules: feature extraction and concatenation, super-resolution
processing, and feature separation mask generation. We ob-
tain the original images and a large number of tampered
images from the network, keeping only the images of the
same size as our original data. After obtaining the original
and tampered images, we input them into our Manipula-
tion Mask Manufacturer (MMM) framework. The MMM
framework extracts high-level features from the original
and tampered images using a Fully Convolutional Network
(FCN) [28]. These features are aligned with Maximum
Mean Discrepancies (MMD) [38, 29] and concatenated.



Table 2. Performance of Our Model on Different Datasets.

Dataset F1 Precision Recall IoU Accuracy

IMD2020 0.88 0.90 0.87 0.81 0.97
NIST16 0.94 0.95 0.92 0.89 0.98
CASIAv2 0.95 0.96 0.95 0.91 0.98

The idea of concatenating high-level features is inspired by
the Bitemporal Image Transformer (BIT) [6]. During super-
resolution, the concatenated features are processed by the
Cross-scale Local Attention Block (CSLAB) [7] and the
Local Frequency Encoding Block (LFEB) [7] to enhance
the resolution and detail representation of the images. The
framework then separates these embeddings, uses decoders
to generate residual images, and combines them with the
original images. The final mask is produced by comput-
ing the absolute difference between the high-resolution fea-
tures of the original and tampered images. The entire MMM
structure is shown in Fig.3.

3.2. Specific Processing Algorithm

Extraction and Concatenation of Image Features
First, we use a Fully Convolutional Network (FCN) [28]
to extract high-level features from the original image and
the tampered image, respectively. Then, these features are
input into encoder Eθ1 and encoder Eθ2, resulting in the
feature embeddings Z1 ∈ RH×W×C and Z2 ∈ RH×W×C .
Z1 and Z2 are subjected to Maximum Mean Discrepancies
(MMD) [38, 29] calculation to eliminate the differences in
data distribution, allowing the model to focus more on the
differences in content. Simultaneously, Z1 and Z2 are con-
catenated into Z3 ∈ RH×W×2C .

Arbitrary-Scale Super-Resolution Z3 will be projected
by four separate convolutional layers to obtain four latent
embeddings, corresponding to query q, key k, value v, and
frequency f . Since the sizes of the two images are the
same, we use the coordinates and cell of the original im-
age. The original image and the tampered image will gen-
erate 2D high-resolution coordinates based on an arbitrary
upsampling scale r = {rh, rw} in 2D low-resolution co-
ordinates. Next, the 2D coordinates, along with q, k, and
v, will be input into the Cross-Scale Local Attention Block
(CSLAB) [7] to estimate a local latent embedding Z3new ∈
RGhGw×2C . f and the 2D coordinates will also be input
into the Local Frequency Encoding Block (LFEB) [7] to es-
timate a local frequency embedding fnew ∈ RGhGw×2C .
Specifically, Gh and Gw represent the height and width of
the local grids used for performing local coordinate sam-
pling. CSLAB [7] and LFEB [7] estimate Z3new and fnew
as follows:

Z3new = CSLAB(δx, q, k, v) (1)

Figure 4. The framework of CSLAB and LFEB.

fnew = LFEB(δx, f) (2)

δx =
{
xq − x(i,j)

}
i∈{1,2,...,Gh},j∈{1,2,...,Gw}

(3)

CSLAB and LFEB draw on the work of Chen et al. [7],
with specific structures shown in Fig. 4. The primary func-
tion of the Cross-scale Local Attention Block (CSLAB) is
to aggregate cross-scale local feature information, utilizing
query, key, and value features to enhance the model’s ability
to capture fine-grained details, thereby improving the accu-
racy of image manipulation detection. The Local Frequency
Encoding Block (LFEB) is responsible for performing lo-
cal frequency encoding on the input frequency features, en-
hancing the model’s sensitivity to edge and texture informa-
tion by capturing local frequency variations.

Separate image features and generate a mask Z1new

and Z2new are derived from splitting Z3new. Decoder Dϕ1



Table 3. The F1 scores of various models pre-trained on MMMD across different datasets. Left: Pre-trained with CASIAv2, Right: Pre-
trained with MMMD (ours).

Model
Dataset

COVERAGE Columbia NIST16 IMD2020

MVSS-Net 0.26/0.34 0.39/0.49 0.25/0.28 0.28/0.32
IML-ViT 0.43/0.29 0.78/0.81 0.33/0.34 0.33/0.37

and Decoder Dϕ2 respectively utilize these embeddings
along with the provided cell to generate residual images.
Then, the original and tampered images are upsampled and
added element-wise to their corresponding residual images.
This results in the high-resolution high-level features of the
original and tampered images. We subtract these two high-
resolution high-level features and take the absolute value to
obtain the final mask.

Loss Function The loss function of the model is defined
as follows:

L =
1

Hp ×Wp

H∑
h=1

W∑
w=1

l (Phw,Mhw) (4)

Here, Hp×Wp is the total number of pixels in the image,
Phw is the probability distribution of the model at (h,w),
and Mhw is the mask label at position (h,w). l(Phw,Mhw)
is the cross-entropy, which is calculated as:

l(Phw,Mhw) = −
∑
c

M
(c)
hw log(P

(c)
hw ) (5)

where c indexes the classes, M (c)
hw is a binary indicator (0

or 1) if class label c is the correct classification for posi-
tion (h,w), and P

(c)
hw is the predicted probability of class c

at position (h,w). The cross-entropy measures the dissim-
ilarity between the true label distribution and the predicted
probability distribution, and it is used to optimize the model
parameters by minimizing this dissimilarity.

4. EXPERIMENTAL RESULTS AND ANALYSIS

4.1. Creation of Manipulation Mask Manufacturer Dataset
(MMMD)

We crawled images from websites containing tampered
images on the internet, such as Baidu PS Bar. It is an ideal
source for both original and tampered images [49]. Most
users request others to help modify the pictures they pro-
vide. As a result, there are often numerous tampered im-
ages under their posts. We save the original and tampered
images from different posts, allowing us to collect a large
amount of data in a short period. We take the first image of
each post as the original image, like the first row in Fig. 2,
and consider all other images of the same size in that post
as tampered images, like the second row in Fig. 2.

We then subtract the grayscale images of the original
and tampered images to obtain a mask image containing
a significant amount of noise. This is because images un-
dergo irreversible compression and quality degradation dur-
ing transmission over the internet, and they also experience
compression when opened with image editing software like
Photoshop. The original and tampered images contain noise
differences that are imperceptible to the human eye, mak-
ing the directly subtracted mask image unsuitable for use
as training data. The images in the NIST16 dataset are
multi-scale, so we used it to pre-train the MMM frame-
work. Therefore, we input the original and corresponding
tampered images as pairs into our MMM framework, which
consists of three steps: feature extraction and concatenation,
super-resolution processing, and feature separation mask
generation. This process ultimately produces the predicted
mask image shown in the last row of Fig. 2. The predicted
image has significantly reduced noise and can be used for
tamper detection models. Since the first image from the PS
forum is assumed to be original and subsequent ones tam-
pered, but this isn’t always true, it leads to noisy, mostly
white masks. Special tampering techniques also cause noisy
masks. Therefore, masks with more than 70% or less than
1% white area are deemed invalid and removed.

The entire MMMD is divided into three groups: orig-
inal images, tampered images, and predicted masks, each
containing 11,069 images. Each tampered image has a
corresponding original image and mask in the other two
groups. The dataset contains images with different res-
olutions and various manipulation types, including copy-
move[1, 8], transformation [36], Deepfake [34], image in-
painting [14], morphing [47], reconstruction [11], and style
transfer. It encompasses a wide range of image categories,
such as cartoons, portraits, landscapes, interiors, food, and
accessories.

4.2. Accuracy of the Model on Existing Datasets

Our innovative use of deep learning for annotating im-
age manipulation detection datasets has no existing compa-
rable methods. Thus, we train and validate our model on the
NIST16 [21], IMD2020 [35], and CASIAV2.0 [13] datasets
to demonstrate its effectiveness in distinguishing between
original and tampered images. The experimental results
are shown in Table 2. The model performs exceptionally



Table 4. The F1 scores of various models pre-trained on CASIAv2 across different datasets.

Model
Dataset

COVERAGE Columbia CASIAv1 MMMD(Ours)

Mantra-Net 0.08 0.46 0.12 0.09
MVSS-Net 0.26 0.39 0.53 0.26
CAT-Net 0.30 0.58 0.58 0.30
ObjectFormer 0.29 0.34 0.43 0.32
NCL-IML 0.22 0.45 0.50 0.26
TruFor 0.42 0.86 0.72 0.30
IML-ViT 0.43 0.78 0.72 0.24
PSCC-Net 0.23 0.60 0.38 0.32

well on all three datasets, with high levels across all met-
rics (F1, Precision, Recall, IoU, and Accuracy). It demon-
strates strong generalization capability on image manipu-
lation detection datasets, particularly on datasets involving
traditional tampering methods. The performance is slightly
lower on the IMD2020 [35], which uses deep learning tech-
niques such as GANs and inpainting [14], but overall, the
model exhibits good adaptability and performance across
various datasets.

Implementation Details Our models are implemented
on PyTorch. Our training is set with a learning rate of 0.01
and a maximum of 100 epochs. The learning rate decay it-
erations are set to 100. Validation is performed after each
training epoch, and the model that performs best on the val-
idation set is used for evaluation on the test set.

Evaluation Metrics We use the F1-score to evaluate the
performance of our model. It balances between tamper de-
tection (recall) and avoiding false positives (precision), pre-
venting the bias that comes from solely pursuing high recall
or high precision. The formula for F1-score is as follows:

F1-score = 2×
(

Precision × Receall
Precision + Recall

)
(6)

Precision and Recall are expressed using the four met-
rics: True Positive (TP), False Positive (FP), False Nega-
tive (FN), and True Negative (TN). Additionally, we use
IoU (Intersection over Union) to represent the model’s lo-
calization accuracy and Accuracy to evaluate the overall
performance of the model. The formula of IoU is IoU =
TP/(TP + FN + FP) and The formula of Accuracy is
Accuracy = (TP + TN)/(TP + TN+ FN+ FP).

4.3. Effect of the Generated Dataset on Existing Models

IMDL-BenCo [32] reproduces mainstream IML models,
and our model experiments are based on this framework.

We used our MMMD to train two major models, MVSS-
Net [12], and IML-ViT [31], and validated their generaliza-

tion. The results are shown in Table 3.
As shown in the table, MVSS-Net and IML-ViT trained

using MMMD achieved higher metrics across various
datasets compared to models pre-trained on CASIAv2.
They exhibit higher generalization and robustness on
MMMD. Since MMMD is much larger than commonly
used datasets and covers a wider variety of manipulation
types and scenarios, it helps improve the generalization
ability of existing manipulation detection models. Mod-
els pre-trained on MMMD are expected to achieve better
performance on other datasets, which is consistent with our
experimental results.

We used MMMD to validate image manipulation de-
tection models Mantra-Net [48], MVSS-Net [12], CAT-
Net [25], ObjectFormer [44], NCL-IML [50], Tru-
For [22], IML-ViT [31] and PSCC-Net [27], pre-trained on
CASIAv2 [13] and discovered the shortcomings of existing
datasets compared to our MMMD. The results are shown in
Table 4.

As shown in the table, various models pre-trained
on CASIAv2 [13] struggled to achieve high metrics on
MMMD. CASIAv2 is one of the larger datasets in re-
cent years for manipulation detection, covering a wide
range of manipulation types and commonly used as a pre-
training dataset for models. However, models pre-trained
on CASIAv2 exhibited lower metrics on our MMMD com-
pared to other datasets, highlighting the limitations of tra-
ditional datasets. In contrast to our MMMD, these datasets
are smaller in size, cover fewer manipulation types, and are
still somewhat distant from real-world manipulated images.
As a result, models trained on these datasets struggle to per-
form well on real-life manipulated images.

Evaluation Metrics We also use the F1-score to mea-
sure the accuracy of the model’s detection, with the calcu-
lation formula given in Equation 6.

Effect Without Using Super-Resolution When pro-
cessing images directly without using the super-resolution
module, for certain severely degraded images, we still ob-



tain noisy images without super-resolution. These images
are not suitable for use as training data for manipulation de-
tection models.

5. CONCLUSION

In this paper, we creatively propose a Manipulation
Mask Manufacturer (MMM) framework for generating im-
age manipulation detection datasets. It addresses the issues
of small dataset size, poor quality, and limited types of tam-
pering detection in the field of image manipulation detec-
tion. It concatenates image feature embeddings, performs
context modeling, and captures long-range relationships be-
tween pixels. It uses MMD to eliminate the differences in
data distribution. Extensive experiments have validated the
effectiveness of our method. We demonstrated the strong
performance of the MMM framework on existing datasets.
The MMMD dataset we proposed better aligns with the
real-world tampering scenarios that manipulation detection
models must face. This will help these models improve their
generalization and robustness in practical applications. We
also demonstrated that MMMD outperforms other datasets
in training effectiveness.
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