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Abstract

Visual Emotion Analysis (VEA) aims to research
what emotions are evoked in the viewer by watching vi-
sual content. Existing methods often operate on pixel-
level, neglecting the complexity and abstract process of
emotion. To tackle this challenge, we propose a novel
multi-dimension full scene integrated network, focusing
on scene feature, background style information and fa-
cial region. For making the proposed network more rel-
evant to effective information, we leverage the channel
attention mechanism and we design a multi-dimension
loss function to distinguish the basic emotion categories
mixed with each other. Experiments show our proposed
method outperforms the state-of-the-art approaches on
four public visual emotion datasets, especially where it
outperforms existing state-of-the-art methods by a large
margin, +4.22% on the Emotion6 dataset at six classes
classification accuracy. Moreover, ablation study and vi-
sualization prove the effectiveness of our method.

Keywords: Visual Emotion Analysis,Emotion Predic-
tion, Attention Mechanism, Multi-Dimension Loss.

1. Introduction

Visual Emotion Analysis (VEA) aims to investigate
the emotions elicited by visual content in emotional im-
ages [24]. With the rapid growth of social media, the num-
ber of images posted by users on it has skyrocketed. VEA
provides an alternate way to understand users’ behaviors
and emotions for smart recommendation and opinion min-
ing. Despite the substantial progress in computer vision
tasks, ranging from conventional natural image classifica-
tion (e.g. ImageNet-1k and CIFAR-10) to more fine-grained
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Figure 1. The images with distinct categories from emotion dataset
FI. It is evident that emotional images encompass a plethora of
content, such as human faces, background styles, objects and so
on.

tasks like CUB-200, VEA presents a more great challenge.
The biggest challenge of VEA is the affective gap which
means a disparity between pixel-level information in the
image and the abstract emotional information perceived by
users. Existing methods addressing the affective gap can be
categorized into traditional and deep learning approaches.
Traditional methods rely on image statistical information
and hand-crafted descriptors such as covariance matrices
and color histograms. Deep learning methods leverage the
potent representation capabilities of Convolutional Neural
Networks (CNN) to extract global and local image features.

However, these methods often operate on pixel-level, ne-
glecting the complexity and abstract process of emotion. In
this work, we try to fit the affective gap in a more holistic
and definite aspect. Specifically, we focus on three types of
features: scene feature, background style information and
facial region. The most influential factor in determining the
emotional impact of an image is its scene feature, providing
overarching information about the image.

Drawing from Face Superiority Effect [18], our brain



exhibits a robust ability to recognize face. When faces
present in emotional images, they significantly influence
the conveyed emotion, as mentioned in [|7]. Therefore, fa-
cial information within images emerge as a crucial feature
for emotions prediction. While not all images contain ex-
plicit semantic or facial information, such as the majority
of scenic images, they still convey intense emotional mes-
sages. For instance, images of blue sky, white clouds, and
dark clouds share semantic similarity but express divergent
emotional tones. Termed background style information, this
information encompasses elements like colors, shapes, and
textures, being an indispensable component for VEA. Exist-
ing methods handle basic emotion categories discretely and
independently, yet this way overlooks the inherent correla-
tions within emotions, rendering it unable to distinctly dif-
ferentiate between basic emotion categories. For instance,
in the Valence-Arousal-Dominance(VAD) emotion model,
Anger is closely related to Disgust, while being far apart
from Surprise. Consequently, the penalty in the loss func-
tion for misclassifying Anger as Disgust or Surprise should
differ theoretically. However, this gap is disregarded in
discrete dimension. Motivated by this, we integrate dis-
crete and continuous dimensions, proposing a novel multi-
dimension cross entropy loss function.
Our contributions can be summarized as follows:

* We propose a novel framework called multi-dimension
full scene integrated visual emotion analysis network
based on theory and experience. We focus on scene
feature, background style information and facial region
in images for VEA and design three specific branches
to extract features of emotional images. Our method
outperforms the state-of-the-art on four public visual
emotion datasets.

e We utilize the channel attention mechanism to make
the proposed network automatically learn the more
emotionally inclusive information in scene feature and
background style information, through cross-channel
interaction and channel weight assignment.

* We design a novel multi-dimension cross entropy loss
function combining discrete and continuous dimen-
sions, improving the accuracy of the classification out-
comes.

2. Related Works

Traditional Methods:Traditional methods base on im-
age statistical information and hand-crafted descriptors.
Machajdik et al. [12] extracted specific image features and
combined them to predict emotions, which consisted of
color, texture, composition, and content. Zhao et al. [206]
used the principles of art including balance, emphasis, har-
mony and so on, to complete both classification and regres-
sion tasks. Borth et al. [1] constructed the visual sentiment

ontology and proposed visual concept detectors, i.e. Sen-
tibank, for predicting emotions. While effective on numer-
ous small datasets, these approaches are limited in capturing
all significant aspects of emotions.
Deep Learning Methods:More recently, CNN-based
methods with powerful representation ability have also been
employed in VEA. She et al. [16] designed a weakly super-
vised coupled network (WCSNet) for joint sentiment de-
tection and classification with sentiment map. It discov-
ered emotion regions to predict emotions in an end-to-end
manner, and performed better than the basic CNN meth-
ods. Zhang et al. [25] proposed a novel CNN model to
explore discriminative representations consisting of content
and style representation for image emotions recognition.
Zhao et al. [27] developed polarity-consistent deep atten-
tion network which integrated attention into a CNN back-
bone with an emotion polarity constraint for fine-grained
visual emotion regression. Yang et al. [22] proposed a
stimuli-aware VEA method consisting of stimuli selection,
feature extraction and emotions prediction with three spe-
cific networks.Recently, Xu et al. [20] proposed a novel
multi-level dependent attention network called MDAN. It
consisted of multi-head attention and level-dependent class
activation map, classifying emotions both globally and lo-
cally in a simultaneous manner. It investigated fine-grained
emotions prediction with competitive performance. Feng et
al. [4] proposed a sentiment-oriented pretraining method
that was based on the human visual sentiment perception
mechanism, as a means of addressing the lack of high-level
concepts related to sentiment. Part of the framework they
proposed employ self-supervised learning, but the entirety
of the approach remains a supervised learning paradigm.
Learning from these methods, we are more concerned
with holistic and definite information. In this paper, we
propose a three-branch network, which integrates scene fea-
ture, background style information and facial region,with
channel attention mechanism and multi-dimension cross en-
tropy loss function to fit affective gap.

3. Methodology

In this section, we introduce a novel multi-dimension full
scene integrated network for emotions prediction from min-
ing the full scene of the image. As shown in Fig. 2, our pro-
posed framework mainly consists of three branches, namely
Fore-Net, BS-Net, and Face-Net. We employ Fore-Net to
extract scene feature, utilize BS-Net to extract background
style information and capture facial expression with Face-
Net from the image.

3.1. Feature Extraction

We leverage three specialized branches, Fore-Net, BS-
Net, and Face-Net to extract corresponding features, respec-
tively.
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Figure 2. The proposed network architecture. We construct a three-branch network which consists of Fore-Net, BS-Net, and Face-Net.
Given the same input image, three branches network work respectively for extracting feature. These features will be integrated into the
hybrid vector of various emotion information to predict emotions. Besides, we leverage the channel attention mechanism and design a
multi-dimension loss function to improve the performance of proposed network.

(1) Fore-Net: In this work, we use ResNet-101 as the
backbone of Fore-Net, initialize it with pre-trained param-
eters from ImageNet and fine-tune it on emotion dataset.
Specifically, it consists of five convolutional blocks and a
Global Average Pooling (GAP) layer, which is described in
Eq. (1). In Fore-Net we can get the feature V; by:

Fs = FCNTelel(Is)a (1)
Vs - Gavg(Fs)a (2)

where F'C'N,.s101 is the fully convolutional network in
ResNet-101,/; denotes the input image and G4 is the
following GAP layer. F, € R%X%X% represents the fea-
ture maps extracting from the last convolutional layer and
V, € R% represents the extracted scene vector. Specif-
ically, w, h are the spatial size of the feature map while
dq = 2048 is the dimension of the scene vector.

Particularly, another important component of Fore-Net is
the channel attention mechanism following [19]. It utilizes
a local cross-channel interaction strategy to automatically
cover the range of channel interactions through an adaptive
method. In this work, we embed it into each convolutional
block of backbone, making the network better focus on im-
portant features and suppress unimportant ones. It is worth
noting that BG-Net also uses this channel attention. The
calculation method is simplified as follows:

Fa = Gavg(Fin)a (3)
W = o(C1Dy(F,)), 4)

where F}, is the feature extracted by CNN backbone, with
dimension of ¢ * w * h, representing channel, width, and
height and G,y denotes GAP layer. In Eq. (4), C1Dy, is
1D convolution with kernel size of &k, 0 means sigmoid ac-
tivation function, and W represents the weight matrix of
channel with dimension of ¢ % 1 * 1. The kernel size k is
adaptively determined by:

loga(c) + b

Y v

k= TZ}(C) = ) (5)

odd

where (c) is a mapping of channel ¢ which can be calcu-
lated as the rightmost, with the hyper-parameter of v and
b. The value |t|,qq indicates the nearest odd number of ¢.
Finally, we utilize the weights matrix to weight the feature
F;,, and get the result of F,4:

Fout:W*Fin7 (6)

where F,,; stay the same with F},, in dimension.

(2) BS-Net: BS-Net stands for Background Style Net
and is used to extract background style information like
colors, textures, and shapes. Following [5], the Gram Ma-
trix operation on the output of the convolutional layer gives



some information about the overall style with the image.
Specifically, we use the same backbone as Fore-Net, and
obtain the feature extracted by the 1st, 2nd, and 3rd convo-
lutional block, namely Iy1, Ip2, and I3. Then we perform
Gram Matrix operation on the shallow features shown in
Eq. (8). The operation method is as followed:

X, = I, @)
Gi=X; X", 8)

where i € {1,2,3}, denotes different depth of fully convo-
lutional blocks and X; represents the feature maps extracted
by different layer from backbone. We combine the obtained
gram feature G; as background style feature V}, with the di-
mension of do = 832, which is the sum of the first three
output dimensions of ResNet-101:

Vi = concate |Gy, Ga, G3) , (©)

(3) Face-Net: The size of faces appearing in emotional
images is relatively small, which does not necessitate the
use of a very large network. Many previous works[22]
have also employed a shallow deep networks. So we adopt
ResNet-18 as the backbone to construct Face-Net, with pre-
trained parameters from FER2013 dataset [6] and fine-tune
it on emotion dataset. We choose face detection library
Dlib [9] as face extractor. Specifically, Dlib first detects the
face in each image and then crops the facial region with size
of 48x48 for further processing as facial information if face
exists. In case where Dlib fails to detect a face, it outputs
nothing. When multiple faces are present in an image, we
only select the face with the largest area as the feature I.
When DIib does not detect a face, we use a zero vector to
replace the facial information shown in Eq. (10). Then we
put the facial feature to the backbone. Specifically, Face-
Net consists of five convolutional blocks and a global aver-
age pooling layer. The feature V; extracted by Face-Net is
from:

G(wg (FCN7‘6818 (If))7 Vf S Rd3 y If exists
Vf = —
0 , else
(10)

where FFCN 415 is the fully convolutional networks in
ResNet-18 and G4 is the following GAP layer. Besides,
V; € R% represents the feature with dimension d3 = 512.

3.2. Emotions Prediction

We introduce feature fusion module and multi-
dimension cross entropy loss function here.

(1) Feature Fusion: We integrate the previously ex-
tracted features, which serve as the ultimate emotion fea-
ture V.., for classification. These features will be fed into

a fully connected layer to obtain the emotions prediction.
Vemo = concate [V, Vi, V], (11)

where V,,,,, € R%Td2+ds denotes final emotion feature.

(2) Multi-Dimension Cross Entropy Loss: We com-
bine basic cross entropy loss function based on normal dis-
crete dimension and continuous cross entropy loss func-
tion as a novel multi-dimension loss function. The contin-
uous loss function focuses on the Arousal dimension which
means the intensity of emotion, and we employ it as a crite-
rion to subdivide emotional categories into high-arousal and
low-arousal. Specifically, Fear, Amusement, Anger, and
Disgust are high arousal categories, while Awe, Content-
ment, Excitement, and Sadness belong to low arousal cate-
gories according [14]. We augment the basic cross entropy
loss with an auxiliary continuous loss function of emotion.
Our approach imposes greater penalties for misclassifica-
tions both in emotion categories and emotion arousal, aim-
ing to enhance the performance of model in capturing subtle
variations in emotion intensity. We compute the predicted
probabilities as:

p (7,) — eXp(y(imo(i))
> XD (Yemo (1))
where Yepmo (1) is the output from last fully connected layer,

Pemo(?) is the predicted probabilities. Then we represent
the arousal probabilities as follow:

12)

c/2
high — arousal : pari (1) = Zpemo (Z)7 (13)
i=1
c
low — arousal : parq (0) = Z Demo (1), 14)
i=C/2

where p,,; can be viewed as the prediction probability of
high-arousal and low-arousal. The high-arousal emotions
are correspond to the former C'/2 positions in pe,,, while
the low-arousal emotions are the rest C'/2 respectively. We
calculate these two loss functions separately:

‘Cemo = - Z Qemo(i) log(pemo(i))a (15)
.
Lari = — Z Garl (]) log (parl (]))7 (16)
=0

where ¢emo (%) and qqri () are real labels. The whole multi-
dimension cross entropy loss can be formed as:

Ecls-mul = Eemo + /\Larla (17)

where A is a hyper-parameter balancing the importance be-
tween the two losses and is further researched in ablation
study. Finally, the whole network is optimized through
Eq. (17).



Table 1. Comparison with previous work on six public emotion datasets with top-1 accuracy (%). The bold numbers indicate the best,

while the underscored numbers indicate the second best.

Method Emoset FI Emotion6 Artphoto Abstract IAPSa
Traditional Methods
Sentibank [ 1] - 49.23 35.24 53.96 50.68 73.58
PrinciplesofArt [26] - 46.13 34.84 63.65 62.13 58.86
DeepSentibank [2] - 51.54 42.53 68.54 66.48 75.88
Visual Backbone Methods
AlexNet [10] 59.85 59.85 44.19 67.03 61.96 72.24
VGG-16[11] 65.52 65.52 49.75 68.16 62.41 74.78
ResNet-101 [7] 76.49 66.16 51.60 69.36 63.56 75.09
CAE [3] 75.77 66.76 59.56 74.33 70.41 84.89
EVA [?] 76.26 66.93 63.71 75.63 7091 86.87
VEA SOTA Methods
WSCNet [16] 76.32 67.88 58.25 72.86 64.45 82.25
StyleNet [25] 77.11 68.85 59.60 - - -
PDANet [27] 76.59 68.05 59.34 74.62 67.13 80.92
Stimuli-aware [22] 78.40 72.42 61.62 - - -
MDAN [20] 76.41 69.39 59.85 78.12 72.34 85.96
Probing-oriented [4] 76.88 70.70 60.41 75.78 69.90 86.16
Ours 78.01 71.03 67.93 82.10 78.18 89.74

4. Experiments

In this section, we evaluate the proposed method on six
public visual emotion datasets. We compare our proposed
method with the state-of-the-art methods, along with abla-
tion study on architecture of our proposed method. Besides,
we show more details like confusion matrix, failure cases
analysis, and visualization result.

4.1. Datasets

We evaluate our framework on six public visual emo-
tion datasets, including the Emoset [21], FI [23], Emo-
tion6 [15], ArtPhoto [12], Abstract [12] and IAPSa [13].
Emoset dataset is the largest well-labeled emotion dataset
with 3.3 million images in total, and 118,102 of these im-
ages carefully labeled by human annotators. It is labeled
with eight emotion categories as amusement, anger, awe,
contentment, disgust, excitement, fear and sad. FI dataset is
collected from the Flickr and Instagram with 23,164 images
and it has eight categories in keeping with Emoset. Emo-
tion6 dataset contains 1,980 images with six emotion cate-
gories, anger, disgust, fear, joy, sad, and surprise. Moreover,
we also evaluate the proposed method on three small scale
datasets, namely, Artphoto, Abstract and IAPSa datasets.
They consist of 806, 280, and 395 photos, respectively.

4.2. Implementation Details

Our framework is implemented using PyTorch. We
train the proposed network using stochastic gradient descent
(SGD) for 60 epochs on an NVIDIA TESLA V100-PCIE
GPUs with 16 GB onboard memory. Batch size, learning
rate, weight decay and momentum are set to 32, 0.0005,

0.0005 and 0.9, respectively. The learning rate is drop by
a factor of 10, every 10 epochs. The two largest datasets,
Emoset and FI are randomly split into training set (80%),
validation set (5%) and test set (15%) following the same
configuration in [21]. The others are split into 80% and
20% for training and test, respectively. In addition, a 224
x 224 size is randomly cropped from each original image,
and a horizontal flip is applied to the cropped image.

4.3. Comparison with the State-of-the-art Methods

To verify the effectiveness of our framework, we first
compare it with the state-of-the-art methods on the large-
scale datasets Emoset, FI, and Emotion6, as shown in Ta-
ble 1. The compared methods can be divided into traditional
methods and deep learning ones. For traditional meth-
ods, they are Sentibank [1], Principles-of-Art et al. [26],
and DeepSentibank [2]. Besides, we also conduct ex-
periments on typical visual backbones like Alexnet [10],
VGG-16 [11], ResNet-101 [7], CAE [3] and EVA [?]
which are initialized with the pre-trained parameters on
ImageNet and then fine-tuned on each dataset respec-
tively. For deeep learning methods, they are WCSNet [16],
PDANet [27], Stimu-Aware et al. [22], MDAN [20] and
Probing-oriented [4]. As seen in Table 1, our framework
demonstrates competitive performance and outperforms the
state-of-the-art methods on Emotion6 which indicates our
proposed network holds certain advantage in VEA.

We further evaluate the effectiveness of the proposed
method on three small-scale datasets, including Artphoto,
Abstract, and IASPa. We use 5-fold cross-validation and
report the average result follow the setup in [28]. As the
emotion category of anger contains only 8 and 3 samples



in the IAPSa and Abstract, respectively, it is insufficient to
perform the 5-fold cross-validation. Thus, we remove the
category of anger on these two datasets following [23]. It
is worth mentioning that the missing data represented by
“-” in Table 1 is caused by lacking both classification re-
sults and open source codes. Our method outperforms the
state-of-the-art methods on Abstract, Artphoto, and IAPSa
particularly. The result shows our network has robustness
which performs comparable on both large-scale and small-
scale datasets.

4.4. Ablation study

We perform ablation study on the network architecture
and hyper-parameter \.

(1)Network architecture analysis: We perform abla-
tion study on the proposed network to reveal the effect of
each branch and channel attention mechanism(Att) on the
classification performance. We remove one of the mod-
ule from the entire network at a time separately to show
the contribution of each module. It is noteworthy that,
since the Fore-Net and the BS-Net share a common back-
bone network, removing the global feature means that this
branch network does not output global features but only
background style information, and vice versa for remov-
ing the background style information. As shown in the
Table 2, the overall performance is degraded after remov-
ing the any module, showing that the four modules are in-
deed useful. The performance decreases most when Fore-
Net is removed, indicating that Fore-Net is most important,
consistent with our expectation. In addition, we find that
removing other module like BS-Net or Face-Net performs
differently on different datasets. In Fig. 3, we visualize and
reconstruct the parts that the different branches focused on.
As we can see, when a face appears in the image, Face-
Net will focus more on the part related to face. We restore
the extracted image features of BS-Net to show what it ex-
tracted, and the entire network can focus on the most critical
information of the image. Visualization result shows that
the structure of our proposed method is reasonable.

Table 2. Ablation study of structure on Emoset, FI, and Emotion6
datasets with classification accuracy (%).

Component Dataset
Fore BS Face Att | Emoset FI Emotion6
v v v 77.60  69.25 63.64
v v v 76.56  69.59 63.89
v v v 64.55 52.56 42.17
v v v 76.21  68.05 64.55
v v v v 78.01 71.03 67.93

Table 3. Hyper-parameter analysis of A on each dataset with clas-
sification accuracy (%).

A |Emoset FI  Emotion6 Artphoto Abstract IAPSa

0| 77.84 70.87 67.19 76.63 7636 89.61
0.1 78.01 71.03 67.93 82.10 78.18 89.74
0.2| 77.88 70.14 66.92 80.86  76.11 88.31
0.3| 77.66 70.01 64.39 78.40 7455 88.05

(2)Hyper-parameter analysis: Parameter A controls
the proportion of the continuous part in the loss function
Eq. (17), which is a decisive hyper-parameter for the classi-
fication results. As shown in Table 3, when A is not equal to
zero, performance has definitely improved. The loss func-
tion L,,; does not necessitate a significant weight, and the
best performance is achieved when A = 0.1.

5. Failure Cases Analysis

We present the classification results through a confusion
matrix in Fig. 4, revealing all classification results. It can
be observed that a significant number of samples labeled as
Amusement are misclassified as Contentment and Excite-
ment. Conversely, many samples labeled as Contentment
and Excitement are also classified as Amusement. This
indicates that there are notable commonalities among the
categories of Amusement, Contentment, and Excitement,
which degrades the model’s performance to distinguish be-
tween these classes. Additionally, a small subset of Excite-
ment samples is inaccurately categorized as Awe. Focusing
on these specific categories, we analyze the possible rea-
son behind the misclassification. Then we show some of
the most representative and misclassification examples from
Emoset dataset in Fig. 5.

Take the first row for an example, the image from last
column is labeled with Amusement but is classified as Con-
tentment. Amusement implies a quality of being witty,
playful, and entertaining. Contentment entails a stable
sense of peace, ease, and satisfaction. The last image de-
picts several individuals sitting on a grassy lawn, smil-
ing. The background includes sunlight and trees, evoking
a warm, comfortable, and peaceful ambiance. In contrast
to the former two images, it is observed that the third im-
age lacks the pronounced rhythmic and dynamic qualities
present in the first image. Instead, it exhibits a highly sim-
ilarity with the second image, and the proposed network
tends to predict it with Contentment understandably.

Examining the last image in the second row, it is labeled
with Excitement but is classified as Awe. Excitement arises
from the novelty, uniqueness, or desirability of something,
manifesting in increased heart rate, breathing, and perspira-
tion. Awe is experienced when one encounters something
greater or more powerful than oneself, evoking feelings of
being overwhelmed and magnificent. The main content of
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Figure 4. Confusion Matrix of overall prediction performance on
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this image is people walking on a mountain, with the back-
ground consisting of mountains and the sky, imparting a
solemn and magnificent atmosphere. The scene feature,
background style, and facial region of this image differ sig-
nificantly from the dynamic and rhythmic qualities of the
first image. However, it bears considerable semantic simi-
larity to the second image, justifying the network’s predic-
tion of Awe.

These instances of failure cases are primarily attributed
to the complexity and subjectivity inherent in emotions. As
observed from the preceding discussion, it is evident that the
fundamental emotional categories are not entirely mutually

exclusive. There exist subtle commonalities between them.
Moreover, one image may elicit not just one but multiple
emotions. Consequently, employing a multi-label approach
for annotating emotion images and developing correspond-
ing multi-label learning methods to address this issue may
represent a future direction of development.

6. Classification Performance Visualization

We employ the t-SNE [&] algorithm to visualize the clas-
sification performance of our method on the Emoset dataset
in Fig. 6. For comparison, we also present the t-SNE vi-
sualization results of the existing method, MDAN. It can be
observed that the sample points in our results exhibit greater
cohesion and clearer boundaries between categories. Our
method demonstrates superior classification performance
compared to MDAN.

7. Conclusion

In this paper, we propose a novel multi-dimension full
scene integrated visual emotion analysis network, consist-
ing of Fore-Net, BS-Net and Face-Net, focusing on scene
feature, background style information and facial region.
Moreover, we leverage channel attention mechanism to cap-
ture relationships between different channels, enhancing
the feature representation capability. Besides, we devise a
novel multi-dimension cross entropy loss function combin-
ing discrete and continuous dimension. Experiments show
our approach outperforms the state-of-the-art methods on
four public visual emotion datasets, demonstrating the ro-
bustness and effectiveness of our method. Our framework
with comprehensive consideration and incorporating previ-
ously overlooked information, strives to encompass factors
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Figure 6. T-SNE visualization on proposed method and MDAN with Emoset dataset.

that influence the arousal of emotions as much as possible.
Moreover, ablation study and visualization show that our
method has effectiveness on emotions prediction. In fail-
ure cases analysis, we find that the emotions conveyed by
emotional images may not be singular but could be multi-
ple. This insight suggests that using a multi-label approach

might be suitable for studying VEA. Besides, we are still
limited by the scale of the dataset, and we may explore ways

to combine VEA and image generation in the future.
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