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Abstract

Deepfake detection remains a challenging task due to
the diversity of forgery techniques and the distributional
shifts between training and testing data. Existing meth-
ods, often framed as binary classification tasks, struggle
with generalization, particularly in real-world scenarios
involving unknown forgery types. To address this chal-
lenge, we propose DFMoE, a novel deepfake detection
framework based on a Heterogeneous Mixture of Experts
(HMoE) model. Our approach incorporates dynamic gat-
ing networks that adaptively select expert networks of
varying capacities and scales according to the input char-
acteristics, enabling precise identification of different
types of forgeries. Leveraging a pre-trained face recog-
nition model for multi-scale feature extraction, DFMoE
combines expert specialization with adaptive data aug-
mentation to enhance the detection of both known and
unknown deepfake types. Experimental results show
that our method significantly improves detection accu-
racy and robustness, offering a highly effective solution
for deepfake detection across diverse scenarios.

Keywords: Deepfakes, Forgery Detection, Mixture of
Experts, Gating Network, Robustness, Data Augmentation

1. Introduction

With the rapid advancement of deepfake technology,
AI-generated highly realistic visual content has garnered
widespread attention. Although Generative Adversarial Net-
works (GANs) have brought significant economic and enter-
tainment value to the field of computer vision, their misuse
poses serious concerns, such as violations of personal pri-
vacy, manipulation of public opinion, and threats to public
safety. To address these challenges, developing deepfake
detection methods with broad applicability has become a
pressing need.

*Corresponding author.
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Initially, most detection methods treated deepfake de-
tection as a simple binary classification task. While these
methods perform well in detecting specific types of forgeries,
their generalization ability in real-world scenarios is limited.
In real-life applications, the training and test data often come
from different distributions, and the feature distributions of
various types of forgeries differ, causing these methods to ex-
hibit significant performance drops in practical use, limiting
their wide applicability.

In recent years, some methods have attempted to enhance
generalization capabilities through pre-trained models, data
augmentation, and more efficient model designs. Although
these methods have made some progress in cross-domain
detection, they often overfit certain forgery types. Moreover,
many methods rely on a single encoder to parse different
types of forgery data, but in real-world scenarios, numer-
ous complex and unknown forgery types exist. The limita-
tions of a single model make it difficult to effectively handle
these complexities. Although some studies have designed
multiple networks to handle different forgery types using
strategies like knowledge distillation, these methods fail to
dynamically select the most suitable network based on the
differences in forgery types.

Another line of research has used data augmentation to
generate more diverse and representative forgery samples,
training more generalizable detectors. For example, some
studies have generated new fake faces through pixel-level
mixing, increasing the diversity of training samples and en-
hancing the robustness of detection models. Other studies
have proposed semantic-based data augmentation strategies,
manipulating semantic content such as lighting, facial expres-
sions, and angles to generate forgery samples. Compared to
simple pixel operations, semantic-level augmentation meth-
ods better simulate complex forgery scenarios.

While data augmentation methods show good potential
for improving model generalization, their limitations are be-
coming apparent. Since current data augmentation methods
mainly rely on combinations and transformations of existing
forgery types, they cannot fully cover all possible unknown

1



forgery types.
To address the aforementioned issues, this paper proposes

a deepfake detection method based on a Heterogeneous Mix-
ture of Experts (HMoE)[36] model–DFMoE. Our design
allows the system to adaptively select the most appropriate
expert network based on the scale of different forgery fea-
tures, thus improving detection accuracy and generalization
capability.

Inspired by prior work, we also introduced a gating net-
work based on a pre-trained face recognition model to cap-
ture rich facial features in real-world scenarios. Through the
gating network, our method can adaptively select different
expert networks for processing based on the characteristics
of the forgery types.

In addition, we made innovations in data augmentation
strategies. Existing forgery data features typically exhibit a
discrete distribution in latent space, which fails to effectively
cover the features of unknown forgery types. This short-
coming severely affects the model’s ability to generalize in
real-world applications. To overcome this problem, we en-
hance the features extracted by expert networks through data
augmentation, enabling these enhanced features to better
cover the feature domain of unknown forgery types. Specifi-
cally, we introduced latent space-based feature interpolation
and expansion methods, generating more diverse feature
representations by mixing and perturbing the features of
known forgery types. These feature augmentation strategies
significantly improve the classifier’s generalization ability,
enabling it to accurately handle previously unseen forgery
types.

In summary, our method addresses the limitations of tra-
ditional deepfake detection approaches in terms of general-
ization by introducing the HMoE model and advanced data
augmentation techniques. By adaptively selecting expert
networks of different scales to handle forgery types, our
method can not only cope with known forgery types but also
possesses strong capabilities in handling unknown forgery
types, achieving better performance with fewer activated
parameters. Our research provides a novel approach and
technical pathway for the field of deepfake detection, with
broad application prospects. The contributions of our work
are as follows:

1. We propose a deep false detection method based on the
Heterogeneous Mixture of Experts model, named DFMoE,
which incorporates a dynamic gating network that adaptively
selects an appropriately sized expert network based on the
characteristics of the input false samples.

2. Our method adaptively selects expert networks of
different scales based on the differences in forgery char-
acteristics, breaking the limitations of relying on a single
network structure and enhancing the model’s flexibility and
adaptability.

3. We introduce adaptive data augmentation operations,

where expert networks adaptively select appropriate augmen-
tation methods, significantly improving detection accuracy
and generalization capability.

4.Through extensive experimental validation, our method
outperforms existing methods on multiple datasets, demon-
strating significant improvements.

2. Related Work

In this section, we briefly review deepfake detection meth-
ods, which are predominantly categorized into two areas:
image spatial domain-based detection methods and image
frequency domain-based detection methods.

2.1. Image Spatial Domain-Based Detection Methods

Some early studies have achieved relatively good results
in the field of binary classification, and some backbones have
been proposed with good results, such as Xception [7] and
EfficientNet [33]. However, these backbones are not specifi-
cally designed for forgery detection tasks. When the model
detects false images synthesized by unknown forgery meth-
ods, the accuracy of the detection decreases rapidly, and the
robustness is insufficient when facing common perturbation
methods such as image compression. Zhao [41] believed
that the difference between real and fake faces mainly exists
in subtle local areas, so he proposed a new multi-attention
Deepfake detection Network, which enhances the texture
information extracted by the model in the shallow network
and fully excavates the subtle texture artifacts. However,
the above methods often overfit and produce artifacts of
specific forgery methods. In order to avoid overfitting spe-
cific forgery methods, Li [20] proposed the Face X-ray
model to make judgments by detecting the edge splicing
area between the forged face and the background. Rely-
ing on the detection of artifact traces of specific forgery
methods, it has good generalization ability across data sets.
Unlike Face X-Ray, which needs to rely on other faces with
similar key points to generate fake faces, Shiohara [32]
learned feature-representations with stronger generalization
capabilities, and propose self-blended images (SBI) as syn-
thetic fake images. It only transforms the key points of the
face image itself, and at the same time cooperates with the
data augmentation method to generate realistic Fake face
images. These methods do not depend on using fake faces
from a specific forgery technique to train the network. As a
result, they exhibit strong generalization abilities when con-
fronted with synthetic images generated by unknown forgery
methods. However, due to their reliance on the self-forgery
process, these approaches prove ineffective in dealing with
fake images synthesized through unknown forgery methods.
It performs poorly on fake images synthesized by whole face
synthesis methods. In addition, Cao [5] proposed a RECCE
framework for face forgery detection, which uses reconstruc-
tion classification to mine common features of real faces,



and proposed a reconstruction-guided attention module that
uses the difference between the reconstructed image and
the original image as an attention map for Guide the model
toward areas more likely to be tampered with. There is also
some work on the interpretability of detection models. For
example, Dong [11] assumed that the detection model deter-
mines the authenticity of an image by detecting information
unrelated to the person’s identity in the image. Therefore,
the face identity is used as an auxiliary label to design a
source feature encoder and The target encoder performs the
identity recognition task, and the FST-Matching deep fake
detection model is proposed to decouple the feature repre-
sentations in the image that are relevant and irrelevant to
the person identity recognition task, and improve the fake
detection performance of compressed videos.

2.2. Image Frequency Domain-Based Detection Methods

Detection methods based on the image frequency domain
mainly focus on mining high-frequency signals, phase spec-
trum, etc. in the image frequency signal, and use frequency
domain features or fusion features of the frequency domain
and spatial domain to detect deep facial forgery videos. For
example, Qian [27] found that the artifact details caused by
forgery methods can be well mined in the frequency domain;
in order to obtain comprehensive frequency domain informa-
tion, a frequency domain perceptual decomposition module
was designed to adaptively capture the artifacts in the image.
Forgery clues, since detection relies on frequency domain
information, this method still maintains excellent detection
performance in the face of highly compressed forgery im-
ages. Liu [23] found that cumulative upsampling will lead
to significant changes in the frequency domain, especially
the phase spectrum, so they proposed a new spatial-phase
shallow learning (SPSL) method, which combines spatial im-
ages and phase spectrum to capture the upsampling artifacts
of face forgery to improve transferability for face forgery
detection. In order to more comprehensively capture arti-
facts in the frequency domain, Li [23] proposed an adaptive
frequency feature generation module to extract differential
features from different frequency bands in a learnable man-
ner. At the same time, considering the different feature
distributions of different forgery methods, single center loss
(SCL) is proposed to improve the intra-class compactness
of real faces and increase the inter-class difference between
real faces and fake faces.

The above methods mainly use image frequency domain
features for deep fake video detection, but ignore the pixel
features of the original spatial domain features. Therefore,
combining frequency domain and spatial domain features
can effectively make up for the shortcomings of both. There-
fore, Gu [14] proposed a progressive reinforcement learning
framework to utilize RGB and fine-grained frequency cues
to perform fine-grained decomposition of RGB images to

completely decouple real and false trajectories in frequency
space. Wang [38] proposed a multi-modal approach that
combines frequency domain and spatial domain to mine
robust forgery traces in images that do not change due to
different forgery techniques. Chen [6] divided the original
image/video frame into several areas. Taking into account
the small difference between real areas and the large gap
between real areas and fake areas, based on dividing the orig-
inal image into several areas, The difference between two
areas is calculated from both frequency domain features and
spatial domain features to determine the authenticity of the
video. Recently, Yan [39] proposed a simple yet effective
detector to expand the forgery space by constructing and
modeling the variations within and between forged features
in the latent space, thus achieving a generalizable deepfake
detector.

2.3. Mixture of Experts (MoE)

The core concept of the MoE[16] method lies in the intro-
duction of multiple expert networks, enhancing the flexibility
and adaptability of the model. Each expert network is specif-
ically trained for a particular forgery type and possesses
unique feature extraction capabilities. Through a gating
mechanism, the model dynamically selects the most suit-
able expert network based on the characteristics of the input
samples, significantly improving detection accuracy and gen-
eralization ability. The concept of MoE was first introduced
in natural language processing [30] [18][4]and computer
vision[28][24][25][31]. Jacobs[16] initially proposed this
supervised learning process, in which a system contains mul-
tiple independent networks, each processing a subset of all
training samples. Shazeer[30] later discovered that not all
expert networks are used—only a few experts participate in
inference—thus greatly increasing model scalability with
minimal computational overhead. Lepikhin[18] extended
MoE to Transformers, and Fedus[13] simplified MoE routing
algorithms, designing a more intuitive model improvement
scheme that reduces communication and computation costs.
Recently, Wang[36]proposed the Heterogeneous Mixture
of Experts (HMoE) model, where experts are of different
scales. This heterogeneity allows more specialized experts
to effectively handle complex features. In our work, we
draw inspiration from the concept of HMoE, incorporating
a gating network to intelligently and adaptively select ex-
pert networks of different scales based on the differences in
forgery features, thus achieving efficient deepfake detection.

3. Method

We propose a novel architecture, DFMoE, based on Het-
erogeneous Mixture of Experts, which significantly differs
from traditional training architectures. DFMoE consists of
several key components: a fusion gating network, expert
networks, and a data augmentation module. We design a



multi-scale feature extraction and dynamic expert selection
mechanism based on the MoE model, combined with both
within-domain and cross-domain data augmentation strate-
gies, to enhance the detection performance of both known
and unknown types of forgeries.

3.1. Overall Architecture

Figure 1 illustrates the overall architecture of the proposed
DFMoE model. The input images are processed through a
pre-trained Xception network to extract features, serving as
a shared feature extractor responsible for generating high-
dimensional facial representations. These features are then
embedded into an N-dimensional expert space via a multi-
layer perceptron (MLP). Following this, the gating network
dynamically selects the most suitable combination of expert
networks (EfficientNet sub-networks), each learning forgery-
specific features at different scales. Finally, after passing
through a fusion module and a data augmentation module,
the features are fed into a fully connected (FC) layer for
binary classification of real vs. fake.

3.2. Gating Network

The gating network is the core mechanism of DFMoE,
responsible for dynamically assigning expert networks based
on the input sample’s features. The gating network consists
of two main parts: multi-scale feature selection and dynamic
expert assignment. These components ensure that the system
efficiently captures different types of deepfake features.

3.2.1 Multi-Scale Feature Selection

To capture multi-scale features from forgery samples, we use
the pre-trained Xception network to extract features from
various scales. These features are processed by the MLP
to generate a weight matrix W , which guides the gating
network in weighting and selecting features from different
scales.

Given an input image i, we define the feature extractor
fXception (I), which produces feature maps at Nscales differ-
ent scales:

Fi = fXception(I)i, i = 1, . . . , Nscales (1)

These feature maps represent the input image’s represen-
tations across different scales. Next, the MLP generates a
corresponding weight vector W for each feature map:

wi = MLP (Fi), i = 1, . . . , Nscales (2)

These weights measure the importance of each scale’s fea-
tures, determining which features are routed to the expert
networks.

3.2.2 Dynamic Expert Assignment

We adopt a top-K routing strategy to select the most relevant
expert networks, where K is a hyperparameter controlling
the number of experts selected by the gating network at each
time. Through experimentation, we found that setting K=2
provided the best performance, leading us to use a top-2
routing strategy.

For each input sample, the gating network selects the top
K most important features based on the weight matrix w
and assigns the sample to the corresponding expert networks.
Specifically, the gating network sorts the weights and selects
the top-K features with the highest weights, then routes the
corresponding features to the appropriate expert networks
for processing.

Assuming that the gating network outputs a feature
weight matrix w =

[
w1, w2, . . . , wNexperts

]
, we select the

top K experts with the highest weights.

Top−K experts = argmaxK(w) (3)

In this study, the value of K is set to 2 based on experimen-
tal results, meaning each sample is assigned to two expert
networks, which constitutes our top-2 routing strategy.

3.3. Expert Networks

Expert networks are the core modules in our DFMoE
model, designed to handle different types and scales of
forgery features. Based on the characteristics of the input
sample, these expert networks are dynamically assigned, al-
lowing them to process various types of counterfeit, thus
improving detection accuracy and generalization ability.

3.3.1 Heterogeneous Expert Network Architecture

In the DFMoE model, we use the EfficientNet series (EN-B1
to EN-B5) as the heterogeneous expert network architecture.
Each expert network processes the selected features from the
gating network and extracts deep-level forgery-related fea-
tures. These expert networks are specifically optimized for
different forgery types and feature scales, forming a hetero-
geneous expert system. Specifically, given the input features
Fselected, chosen by the gating network, each expert net-
work Ei extracts its corresponding high-dimensional feature
representation:

zi = Ei(Fselected), i = 1, . . . , Nexperts (4)

where zi represents the output feature vector of the i-th
expert network.

3.3.2 Fusion of Expert Networks

To effectively integrate the outputs from multiple expert net-
works, we introduce a feature fusion module. By performing
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Figure 1. The overall pipeline of our proposed method (two fake types are considered as an example). (1) Multi-scale feature extraction
is performed using a pre-trained Xception network, with the early layers of the network frozen. (2) Expert networks of different scales
are adaptively selected for training. (3) For the learning of the forgery feature, we apply the within-domain(WD) and cross-domain (CD)
augmentation.

weighted summation or concatenation of the output features
from the experts, we obtain a more representative global
feature representation, thereby improving the overall perfor-
mance of forgery detection. We adopt a weighted feature
fusion strategy, combining the output feature vectors from
the selected experts. Suppose the outputs from the top-K
experts selected by the gating network are z1, z2, . . . , zK,
then the fused feature is defined as:

Ffused =

K∑
i=1

αizi (5)

where αi is the weight assigned to each expert network,
calculated from the feature weight matrix W output by the
gating network. This fusion approach leverages the expertise
of each expert, combining the diversity of forgery features to
effectively enhance the robustness and accuracy of forgery
detection.

3.4. Adaptive Augmentation Module

In this study, we propose an adaptive augmentation mod-
ule that dynamically determines the applicability of augmen-
tation strategies based on the feature entropy of the expert
network outputs and the network selection mechanism. For
within-domain (WD) and cross-domain (CD) augmentation,
we define three main augmentation strategies:

Feature Stretching Augmentation (FSA) :This strategy
expands the distances between features to generate more
challenging samples. Specifically, the operation is as fol-
lows:

zaug = z + ωj · α · (z − µi) (6)

where α is a random coefficient, µi represents the center of
the i-th forgery domain, and ωj is the adaptive weight.

Feature Perturbation Augmentation (FPA): This strat-
egy adds noise perturbations in feature space to improve
robustness. It can be achieved by adding Gaussian noise:

zaug = z + ωi · β · N (0, σ2) (7)

where β is a scaling factor, and N is Gaussian noise.
Cross-expert Feature Fusion (CFF): This strategy gen-

erates cross-expert augmented samples by performing linear
interpolation between features from different experts. Let
fi(x) and fj(x) represent the feature outputs of two different
experts, the linear interpolation is computed as:

zaug = λfi(x) + (1− λ)fj(x) (8)

where λ is a randomly selected weight between 0 and 1.
During the augmentation process, for each input sample, we
first compute its feature output through the expert network fi,
and based on the gating network’s selection and the feature
entropy, we compute the adaptive weight w.The selection
of the augmentation strategy no longer solely depends on
feature entropy but is complemented by the output of the
gating network, ensuring that the augmentation strategy and
expert network selection mechanism work in tandem. The
final augmented sample can be represented as:

zaug = AdaptiveAug(fi(x), ωi) (9)

where AdaptiveAug represents a combination of the afore-
mentioned three augmentation strategies, dynamically cho-
sen and applied based on the adaptive weight ωi.



3.5. Loss Function

To optimize the overall performance of the deepfake de-
tection model, we designed a comprehensive loss function.
This loss function consists of three components: binary clas-
sification loss LBCE , feature entropy-based expert assign-
ment constraint loss Lentropy , and augmentation consistency
loss Lconsistency .

3.5.1 Parameter Penalty Loss

To prevent the model from excessively relying on large-scale
experts during the expert selection process, which could lead
to under-utilization of smaller-scale experts, we introduce
a parameter penalty loss. This loss is applied based on the
hidden state size of the experts, ensuring that smaller-scale
experts are activated for appropriate tasks, thereby avoiding
resource waste. The specific loss is defined as follows:

LP−Penalty =
1

T

N∑
i=1

Mi · P̂i (10)

where Mi represents the average hidden state dimension of
expert i , and i is the activation probability of that expert. By
penalizing the use of experts with larger hidden dimensions,
the model is encouraged to more efficiently utilize smaller-
scale experts.

3.5.2 Expert Assignment Constraint Loss

To optimize the expert network selection and reduce redun-
dancy among expert networks, we introduce an expert as-
signment constraint loss based on feature entropy. Feature
entropy measures the uncertainty or complexity of the fea-
tures, where high entropy indicates more challenging clas-
sification, and low entropy suggests simpler classification.
By minimizing feature entropy, the model is encouraged to
assign experts appropriately based on the complexity of the
input sample. This loss increases the entropy of the expert
selection process to prevent the model from over-relying on
a particular set of experts. The entropy loss is defined as:

Lentropy = − 1

N

N∑
i=1

Pi · log(Pi) (11)

wherePi is the selection probability of expert. By mini-
mizing low entropy cases in the expert selection process,
the model can more evenly distribute tasks among multiple
experts, thereby improving generalization capability.

3.5.3 Augmentation Consistency Loss

To ensure consistency in the feature space between the origi-
nal and augmented samples generated by expert networks,

we propose an augmentation consistency loss Lconsistency.
This loss is designed to constrain the augmented samples
to retain the characteristics of the original features. Specif-
ically, the consistency loss is calculated by comparing the
Euclidean distance between the original sample features and
the augmented sample features:

Lconsistency =
1

N

N∑
i=1

∥ f(xi)− f(zaug) ∥22 (12)

where f (xi) denotes the feature representation of the origi-
nal sample, and f (zaug) represents the feature representa-
tion of the augmented sample. By minimizing this loss, we
ensure that the augmented samples do not deviate from the
original feature distribution, thereby enhancing the effective-
ness of the augmentation strategies in the model.

3.5.4 Total Loss

Finally, the total loss function of the model is composed of
the weighted sum of the above loss terms:

Ltotal = LBCE+λ1LP−Penalty+λ2Lentropy+λ3Lconsistency

(13)
where λ1, λ2 and λ3 are hyperparameters that control the
weights of each loss term. By adjusting these weights, the
contributions of each loss to the total loss can be balanced,
allowing for flexible control over expert assignment, diver-
sity, and augmentation consistency during the optimization
process.

4. Experiments

4.1. Settings

Dataset. To evaluate the generalization ability of our
proposed framework, we conducted experiments on several
commonly used deepfake datasets, including: Faceforen-
sics++ (FF++)[29], Celeb-DF-v1 (CDFv1) [22], Celeb-DF-
v2 (CDFv2)[22], Faceshifter (Fsh) [19], DeepfakeDetec-
tion (DFD)[12], Deepfake Detection Challenge (DFDC)[9]
and its preview version (DFDCP)[10], and UADFV[21].
The FF++ dataset comprises 4,000 fake videos and 1,000
real videos, with the fake images generated using four fa-
cial forgery algorithms: DeepFakes (DF)[1], Face2Face
(F2F)[35], FaceSwap (FS)[2], and NeuralTexture (NT)[34].
FF++ provides three versions with different compression
rates: raw, high quality (c23), and low quality (c40). We
selected the high-quality version (c23) for training and test-
ing to ensure that the data’s visual quality closely aligns
with real-world application scenarios. The CDFv1 dataset
contains 795 fake videos and 408 real videos generated
from celebrity interview footage using DeepFake technol-
ogy. CDFv2 is an upgraded version that adds 590 original
videos and 5,639 corresponding fake videos sourced from



YouTube, covering diverse ages, races, and genders. CDFv2
is currently one of the most challenging datasets for deepfake
detection, with its fake videos being visually more difficult
to distinguish. The Fsh dataset consists of 1,000 fake videos
generated from real videos in FF++. The DFD dataset in-
cludes 363 real videos and 3,068 fake videos, employing
various generation techniques that exhibit high data qual-
ity and diverse scenes. The DFDC dataset contains over
100,000 fake videos and 20,000 real videos, encompassing
a wide range of forgery techniques and different contexts,
significantly increasing the generalization requirements for
models in real-world applications. DFDCP is an early ver-
sion of the DFDC challenge, which, although smaller in
size, still contains videos generated by multiple forgery tech-
niques. The UADFV dataset consists of 49 real videos and
49 fake videos, sourced from YouTube, and is one of the
earlier research datasets in the field of deepfake detection.

Evaluation Metrics. By default, we adopted the area
under the ROC curve (AUC) and equal error rate (EER)
as evaluation metrics. AUC measures the area under the
Receiver Operating Characteristic (ROC) curve, while EER
represents the false positive rate (FPR), equal to the true
positive rate (TPR).

Implementation Details. We employed a pre-trained
Xception model as the feature extraction network for the
gating mechanism, while using an Efficient system network
as the expert network. During the data preprocessing stage,
Dlib[17] was utilized for face detection, cropping, and align-
ment. All face images were resized to 256x256. For both
training and testing phases, we used the Adam optimizer
with a learning rate of 0.0002. The batch size was set to
32, and each video was sampled with 32 frames for training
and testing purposes. We set β in Eq. 7 as 0.2. In the loss
function formulation, the hyperparameters λ1,λ2, and λ3

were set to 0.1, 0.1, and 0.05 in Eq. 13, respectively. All
models were implemented using the PyTorch framework and
were trained on NVIDIA Tesla A100 GPUs.

4.2. Performance Evaluation

4.2.1 Within-Domain Evaluations

To further assess the performance of our proposed DFMoE
model within the same dataset, we conducted within-domain
evaluation experiments. The model was trained and tested
on different forgery types within the FF++(c23) dataset, cov-
ering four forgery methods: FF-DF, FF-F2F, FF-FS, and
FF-NT. The experimental results are presented in Table 1,
with AUC as the evaluation metric.

In Table 1, our method demonstrates outstanding perfor-
mance across various subtasks of the FF++(c23) dataset.
Specifically, DFMoE achieved AUC values of 99.56%,
99.23%, 99.51%, and 97.62% for FF-DF, FF-F2F, FF-FS,
and FF-NT, respectively, surpassing all baseline models. In
contrast, traditional models like Meso4 and Capsule per-

formed poorly, with AUC values below 70% in all tasks.
More mature models such as Resnet34 and Xception per-
formed well but still showed some gap compared to our
DFMoE model. This indicates that DFMoE, through its dy-
namic expert selection and adaptive enhancement strategies,
can more accurately detect different types of forgery videos,
demonstrating higher generalization ability and robustness.
Overall, our method exhibits a clear advantage in handling
complex forgery types, especially in the FF-DF and FF-FS
tasks, where AUC exceeded 99.5%, validating the superior
performance of DFMoE in deepfake detection tasks.

4.2.2 Cross-Domain Evaluations

To verify the model’s generalization capability across
datasets, we conducted cross-domain evaluation experiments.
All models were trained on the FF++(c23) dataset and tested
on multiple public deepfake detection datasets, including
CDFv1, CDFv2, Fsh, DFD, DFDC, DFDCP, and UADFV.
The evaluation metric was AUC, which measures the model’s
classification performance across different datasets. The re-
sults are shown in Table 2.

Table 2 presents the cross-domain evaluation results of
different methods across various datasets. It is evident that
performance varies significantly across datasets for different
methods. Early models such as MesoNet and Capsule per-
formed poorly in cross-domain tests, with AUC values gen-
erally below 70%, indicating that these models struggle to
adapt to different types of deepfake data. Resnet34 and Xcep-
tion, as stronger baseline models, performed reasonably well
on several datasets, particularly on DFD and DFDC, with
AUC of 72.65% and 81.77%, respectively. EfficientB4 per-
formed notably well on datasets outside of FF++, achieving
an AUC of 95.27% on the UADFV dataset, indicating good
generalization capability for handling deepfakes from differ-
ent domains. Among all tested methods, our model demon-
strated strong generalization ability across most datasets,
especially on CDFv1, CDFv2, DFD, and UADFV, where our
method achieved AUC values of 83.25%, 79.32%, 81.92%,
and 95.18%, respectively, significantly outperforming other
comparison methods. Compared to other models, our DF-
MoE method is better at handling various types of deepfake
data, mainly due to the proposed dynamic expert selection
mechanism and adaptive enhancement strategies.

4.2.3 Robustness Experiments

In the robustness experiments, the aim was to evaluate the
model’s performance under different image perturbation con-
ditions, especially when the input images are subjected to
various common attacks or transformations (e.g., Gaussian
blur, block perturbation, contrast change, saturation change,
and JPEG compression). The results demonstrate how the
model’s performance changes across these scenarios. As



Table 1. Comparison of within-domain experimental results with state-of-the-art methods regarding the AUC (%) metric. Bold and underlined
values correspond to the best and the second-best values.

Method Backbone FF++(c23) FF-DF FF-F2F FF-FS FF-NT

Meso4[3] MesoNet 62.69 75.06 62.10 58.64 57.91
Capsule[26] Capsule 68.14 74.82 69.99 65.67 68.81
Resnet34[15] Resnet 97.80 99.02 98.87 99.16 96.19
Xception[7] Xception 98.23 99.15 99.14 99.33 96.77
EfficientB4[33] Efficient 97.62 98.68 98.67 99.24 96.08
Face X-ray[20] HRNet 95.26 97.98 99.04 99.15 95.59
FFD[8] Xception 98.24 99.01 98.94 99.29 96.79
Recce[5] Xception 97.98 99.08 99.05 99.34 96.13
RFM[37] Xception 97.57 98.89 98.44 99.18 96.03
UCF[40] Xception 98.50 99.29 99.18 99.40 96.67
LSDA[39] Efficient 99.05 99.37 99.17 99.47 97.41
Ours Efficient 99.15 99.56 99.23 99.51 97.62

Table 2. Comparison of cross-domain experimental results with state-of-the-art methods regarding the AUC (%) metric. Bold and underlined
values correspond to the best and the second-best values.

Method Backbone CDFv1 CDFv2 Fsh DFD DFDC DFDCP UADFV

Meso4[3] MesoNet 65.67 64.33 58.62 54.59 56.51 57.98 71.50
Capsule[26] Capsule 65.59 67.48 63.06 65.65 63.89 64.89 91.60
Resnet34[15] Resnet 78.59 76.17 61.47 72.65 71.53 72.97 90.05
Xception[7] Xception 74.36 74.93 66.73 81.77 70.46 75.32 95.30
EfficientB4[33] Efficient 81.03 77.60 67.56 69.54 63.51 71.01 95.37
Face X-ray[20] HRNet 71.62 68.32 67.98 76.65 61.87 69.81 90.11
FFD[8] Xception 78.49 77.70 65.88 80.12 69.45 76.55 94.32
Recce[5] Xception 79.78 75.25 66.36 80.15 71.18 73.53 93.65
RFM[37] Xception 78.79 75.17 61.62 78.55 68.16 72.71 93.70
UCF[40] Xception 74.51 76.42 71.11 80.22 73.16 77.86 95.22
LSDA[39] Efficient 82.13 78.04 72.17 81.75 73.74 78.17 95.17
Ours Efficient 83.25 79.32 73.10 81.92 73.95 78.51 95.58

shown in the figure, our proposed method demonstrates re-
markable robustness compared to baseline models such as
EfficientB4, Xception, Face X-ray, and RECCE.

Gaussian Blur: Even under severe blur levels (Level 3
and Level 4), our model maintains high AUC values, outper-
forming all baselines.

Block-Wise Perturbations: Our method experiences
minimal performance degradation compared to others.

Contrast and Saturation Changes: The model remains
consistently resilient across all levels of these perturbations,
maintaining stable AUC values.

JPEG Compression: While most baseline methods show
significant performance drops at Level 4, our model achieves
the highest robustness, effectively addressing real-world
compression artifacts.

thanks to our multi-scale feature selection mechanism and
data augmentation strategies, our model exhibits superior
robustness under all types and intensities of perturbations,
particularly under high-level perturbations. This demon-

strates the strong adaptability of our model in real-world
scenarios where image quality may degrade.

4.3. Ablation Studies

In this section, we discuss various techniques and meth-
ods to evaluate the performance and effectiveness of the
proposed detection model. Through both quantitative and
qualitative assessments, we delve into the underlying mecha-
nisms of the model, focusing on the impact of different loss
functions and network architectures on model performance.

4.3.1 Effect of Different Loss Functions

Our proposed method incorporates several key loss func-
tions: parameter penalty loss, expert assignment constraint
loss, and data augmentation consistency loss. To verify the
impact of each loss, we first construct a baseline model
A, which only utilizes the extracted features for detection
through a classification head, without any additional loss



Figure 2. Robustness against unseen perturbations: We report the video-level AUC (%) across five specific types of perturbations at five
different degradation levels, comparing our results with four prior methods to demonstrate our robustness.

terms. Then, we develop several variant models to explore
the impact of different combinations of loss functions on
model performance: (1) Model B: includes only the parame-
ter penalty loss; (2) Model C: includes both the parameter
penalty loss and the expert assignment constraint loss; (3)
Model D: includes the parameter penalty loss, expert assign-
ment constraint loss, and data augmentation consistency loss.
All models are trained on the FF++ (c23) dataset and tested
on the FF++ (c23), CDFv1, and CDFv2 datasets. We use
AUC(%) as the evaluation metric, and the results are shown
in Table 3.

As shown in Table 3, the baseline model A achieves an
AUC of 98.66% on the FF++ dataset, but its performance in
cross-domain testing (DFDCP and CDFv2) is relatively poor.
After incorporating the parameter penalty loss in model B,
the performance on FF++ improves slightly, with a signifi-
cant improvement in cross-domain performance. Model C,
which further incorporates the expert assignment constraint
loss, shows additional improvements in cross-domain gen-
eralization. Finally, Model D, which combines all losses,
achieves the best performance across all datasets, especially
in cross-domain tasks. The results indicate that introduc-
ing the parameter penalty loss, expert assignment constraint
loss, and data augmentation consistency loss is crucial for
enhancing the model’s cross-domain robustness, particularly
on the CDFv2 and DFDCP datasets. The combination of
these three losses significantly improves the model’s gener-
alization ability.

Table 3. We trained various baseline models on the FF++ (c23)
dataset and tested them on the FF++, DFDCP, and CDFv2 datasets,
with the AUC(%) metric.
Model LP−Penalty Lentropy Lconsistency FF++ DFDCP CDFv2

A 98.66 76.58 72.49
B ✓ 98.95 77.25 75.62
C ✓ ✓ 99.06 77.61 78.46
D ✓ ✓ ✓ 99.15 78.51 79.32

4.3.2 Exploring Different Backbones in Gate Network

To further enhance the feature extraction capabilities of our
model, we explore the impact of different backbones on
model performance. We selected ResNet34, EfficientNet-B4
(EN-b4), and Xception models, trained them on the FF++
(c23) dataset, and evaluated them on both in-domain and
cross-domain datasets. The evaluation metrics are AUC (%)
and EER (%), and the results are shown in Table 4. The

Table 4. Exploring different backbones in Gate Network. All mod-
els are evaluated on the in-domain FF++(c23) dataset and cross-
domain CDFv2, DFDCP, and DFD datasets regarding AUC(%) and
EER(%).
Backbone FF++ CDFv2 DFDCP DFD

AUC(%) EER(%) AUC(%) EER(%) AUC(%) EER(%) AUC(%) EER(%)

ResNet34 98.32 3.45 74.54 34.81 74.29 32.62 77.54 28.49
EN-b4 99.02 3.28 76.62 31.95 77.15 28.22 80.49 24.63
Xception 99.15 2.56 79.32 26.56 78.51 26.46 81.92 23.55

experimental results demonstrate that Xception achieves the
best performance in both in-domain and cross-domain tests,
particularly excelling in cross-domain generalization. This
indicates that using more complex feature extraction net-
works, such as Xception, can better capture subtle features
in deepfake data, thereby enhancing cross-domain detection
robustness.

4.3.3 The Impact of the K Hyperparameter

To verify the role of the K value in expert network selection,
we designed a series of experiments to assess the impact of
different K values on model performance. We trained mod-
els on the FF++ (c23) dataset and tested them on the CDFv2
dataset, using AUC, AP, and EER as evaluation metrics. All
experiments were conducted within the same DFMoE frame-
work, keeping the model architecture and training parameters
consistent. The results are shown in Table 5. As shown in
Table 5, the model’s performance varies with changes in the
K value. When K = 2, the model achieves the best AUC,
AP, and EER across both in-domain and cross-domain tasks,
indicating that expert network selection is most effective



Table 5. Performance Metrics for Different K Values
K Value FF++(c23) CDFv2

AUC(%) AP(%) EER(%) AUC(%) AP(%) EER(%)

1 98.45 99.23 2.67 77.59 86.62 27.62
2 99.15 99.52 2.56 79.32 88.41 26.56
3 99.04 99.46 2.95 78.62 88.16 27.49
4 98.89 99.30 3.15 78.15 87.26 28.10
5 98.40 98.85 3.16 77.34 86.14 28.12

with K = 2, allowing the model to better handle diverse fea-
ture distributions. When K becomes too large (e.g., K = 4
or K = 5), model performance declines slightly, likely due
to an increase in model complexity, leading to overfitting.
Moreover, in in-domain evaluations, performance fluctua-
tions across different K values are minor, suggesting that
the K value has less impact on relatively simple in-domain
tasks. However, in cross-domain tasks, the influence of K
is more significant, highlighting the importance of selecting
the appropriate number of expert networks in cross-domain
tasks. Considering both model performance and computa-
tional cost, we ultimately select K = 2 as the hyperparameter
for expert network selection.

4.3.4 Impact of the total number of experts on perfor-
mance and computational cost.

We further systematically analyze the impact of the total
number of experts on performance and computational cost.
We train on the FF++ dataset and test on the CDFv1 dataset.
The evaluation indicators are AUC, ACC, inference time
(ms), and FLOPs (GFLOPs) when increasing or decreasing
the total number of experts.

As can be seen from Table 6, AUC and accuracy improve
with the increase in the number of experts, indicating that
more experts can better capture complex forgery features,
and the corresponding inference time and computational
cost are also increasing. However, it is worth noting that
when the number of experts exceeds 5, the performance im-
provement gradually slows down, so when we set the total
number of experts to 5, it may be the best compromise be-
tween performance and computational efficiency, especially
in resource-constrained environments.

In addition, in order to analyze the feasibility of deploy-
ing the model in a resource-constrained environment, we
conducted a comparative experiment. Compared with the
baseline, our method increased FLOPs by 14 GFLOPs, and
the inference time increased by 20(%) accordingly. Despite
the increase in computational overhead, the experimental
results show that our proposed method can still maintain
good performance in a resource-constrained environment,
especially under reasonable optimization. In addition, we
also discussed possible optimization directions, such as us-
ing lightweight expert networks or model pruning techniques

to reduce computational costs. We expect that further opti-
mization of these parts can effectively reduce computational
overhead while ensuring performance and adapt to more
resource-constrained scenarios.

4.3.5 Impact of different expert network fusion strate-
gies on performance.

In order to further analyze the impact of different expert net-
work fusion strategies on the experimental results, we used
three fusion methods for comparison, including weighted
feature fusion, maximum fusion and average fusion. We
chose to train and test on the FF++ dataset.

The results are shown in Table 7. The weighted feature
fusion method achieved the best performance, the maximum
fusion method had a slight decrease in performance, and the
AUC reached 99.02(%), while the average fusion method had
the worst effect, only achieving 98.57(%) AUC. To further
explore the reasons for the performance differences, we ana-
lyzed the feature distribution and model decision mechanism
under different fusion strategies. Weighted feature fusion
can dynamically adjust the weights according to the output
contributions of different expert models, so as to more effec-
tively aggregate information of different scales and different
feature spaces, so it performs best in a variety of forgery
detection tasks. Although the maximum fusion strategy can
capture some significant features, it is easy to ignore some
critical information with small contributions, resulting in a
slight decrease in performance. The average fusion strategy
gives the same weight to all expert model outputs, which
cannot fully reflect the heterogeneity advantages of different
expert networks, so it performs the worst.

4.3.6 The impact of different modules within the frame-
work on performance.

To further verify the contribution of the enhancement mod-
ule and the expert network to the model performance, we
designed three sets of comparative experiments, including
three configurations: "enhancement module + expert net-
work", "enhancement module only" and "expert network
only", and trained and tested them on the FF++ dataset.

The results are shown in Table 8. As can be seen from
the results, the combination of the enhancement module and
the expert network can achieve the best detection perfor-
mance, with an AUC of 99.15(%) and an ACC of 96.87(%).
This configuration fully utilizes the adaptive optimization
capability of the enhancement module for the feature space
and the accurate capture capability of the expert network
for different scales and feature patterns. The configuration
using only the enhancement module can improve the feature
expression capability of the model, but due to the lack of
diversity support of the heterogeneous expert network, the
performance is reduced, with the AUC and ACC reduced



Table 6. Analyze the impact of the total number of experts on performance and computational cost. Evaluation metric are AUC(%), ACC(%),
inference time(ms) and FLOPs(GFLOPs).

Number of Experts AUC (%) ACC (%) Inference Time(ms) FLOPs(GFLOPs)

2 79.85 77.51 15.06 35.10
3 81.64 78.28 17.15 60.21
4 82.15 78.72 20.41 91.02
5 83.25 80.02 25.06 129.57
6 83.51 80.49 31.84 172.02

Table 7. Three fusion methods were used for comparison, including weighted feature fusion, maximum fusion and average fusion, and
trained and tested on the FF++ dataset. Evaluation metric are AUC(%), ACC(%)

Fusion method AUC (%) ACC (%)

Weighted feature fusion 99.15 96.87
Maximum Fusion 99.02 96.24
Average Fusion 98.57 95.75

to 96.21(%) and 92.65(%) respectively. The configuration
using only the expert network performs slightly better than
the case of only the enhancement module, with an AUC of
97.54(%) and an ACC of 94.56(%). This shows that the
heterogeneity and multi-scale feature extraction capabilities
of the expert network play an important role in improving
the performance of the model.

4.3.7 Visualizations of the captured artifacts.

We further use GradCAM to locate which regions are ac-
tivated when detecting forgeries. The visualization results
shown in Figure 3 show that when using different expert
networks to locate forged regions for the same forged image,
experts 3 and 4 can accurately locate the forged regions,
while other experts capture limited forged regions. There-
fore, the gating network can help select experts 3 and 4 well,
thereby capturing accurate forged regions to distinguish be-
tween true and false. This visualization further shows that
our gating network estimates that the expert network cap-
tures more general forgery features.

5. Conclusion

In this paper, we introduced DFMoE, a framework for
deepfake detection that integrates a Heterogeneous Mixture
of Experts model and adaptive feature enhancement strate-
gies to boost generalizability and robustness. DFMoE dy-
namically selects experts based on input features, enabling
effective handling of diverse deepfake attacks. Compared
to existing methods, our approach excels in detecting both
known and unknown forgery types. The model leverages
multi-scale feature extraction and applies in-domain and
cross-domain augmentations to improve robustness. Our
optimization strategy balances expert selection through pa-
rameter penalty and entropy loss, preventing over-reliance

on large experts. Experimental results show DFMoE’s su-
perior performance across multiple datasets, particularly in
detecting unknown forgery samples. Future work will fo-
cus on scaling the model, optimizing expert networks, and
developing new augmentation techniques to keep pace with
evolving forgery methods.
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