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Abstract. Visual and infrared images represent two indispensable modal-
ities that complement each other, offering unique insights into human
pose estimation under different lighting conditions. However, existing
efforts have predominantly focused on single modality, leading to signifi-
cant challenges when transitioning to multimodal environments. The per-
formance degradation observed in state-of-the-art models on multimodal
images can be attributed to the substantial modality gap and the absence
of multimodal benchmarks. To address this critical gap, we introduce
novel visible-infrared multimodal human pose datasets where the two
modality images are well balanced and accurately labeled. Leveraging
these datasets, we establish the comprehensive benchmark to facilitate
rigorous analysis and enhancement of multimodal human pose estima-
tion techniques. Our findings underscore the limitations posed by modal-
ity variance on state-of-the-art methods. To overcome this challenge, we
propose a method-agnostic scheme called Modality-Adaptive Pose Es-
timation, designed to seamlessly integrate into existing approaches. By
employing Modality-Specific Batch Normalization and Modality Adap-
tive Loss, our approach enhances feature interactions between the two
modalities, yielding superior performance. Extensive experiments con-
ducted with popular baseline methods demonstrate the efficacy of our
proposed approach in achieving state-of-the-art results on both modali-
ties. We believe that our benchmarks offer a robust platform for investi-
gating robustness and will significantly contribute to advancing research
in this field.

Keywords: Human pose estimation · Multimodal · Visible · Infrared ·
Benckmark.
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1 Introduction

Human Pose Estimation (HPE), a fundamental task in computer vision, holds
significant importance across various domains, including human-computer inter-
action [44], motion capture [11], autonomous driving [69], and surveillance [9].
Current HPE approaches have primarily relied on leveraging single modality
data, typically visual imagery thanks to the various available large-scale bench-
marks [32, 2], with supreme performance achieved [4, 37, 31, 14, 54, 52, 21, 14].
However, the inherent limitations of single modal approaches become evident
when confronted with low lighting conditions and complex weather.

To alleviate this challenge, several infrared HPE methods have proposed re-
cently [34, 65, 70]. However, the number of infrared HPE methods is limited, and
publicly available infrared benchmarks are scarce. Indeed, visual and infrared
imaging modalities offer complementary information that can significantly en-
hance the robustness and accuracy of computer vision tasks. In recent years, we
have witnessed that the integration of visual and infrared imaging modalities
has emerged as a promising strategy in various applications such as human re-
identification [23], object detection [5], image segmentation [42], Large Language
Models (LLMs) [10], to name a few. However, in HPE, multimodal benchmarks
are scarce mainly due to the difficulty of accurate labeling for both modalities.
This hinders the application of HPE in real-world scenarios.

Addressing this critical gap necessitates the development of novel method-
ologies and comprehensive benchmark datasets that accurately represent the
complexities of multimodal environments. The visible datasets are already rich
and diverse [2, 32, 1, 33, 28], but collecting corresponding infrared images is a
massive and tedious task. To resolve this challenge, we propose a novel method
termed Instance Cross-modality Style Transfer Network(ICSTN) to intelligently
transform visible images into infrared-style images, making full use of existing
visible resources to construct diverse infrared datasets. Based on ICSTN, cen-
tral to our contribution are three meticulously curated multimodal human pose
datasets—COCO-MM and MPII-MM which are generated, and RAI-MM which
is from the real world—where visual and infrared modality images are thought-
fully balanced and accurately labeled. Leveraging these datasets, we establish
a comprehensive benchmark to facilitate rigorous analysis and enhancement of
multimodal human pose estimation techniques.

Furthermore, we propose a method-agnostic scheme called Modality-Adaptive
Pose Estimator(MAPE), designed to seamlessly integrate into existing method-
ologies. MAPE addresses the challenges posed by modality variance through
the incorporation of Modality-Specific Batch Normalization(MSBN) and a novel
Modality-Adaptive Loss(MAL), thereby enhancing feature interactions between
visual and infrared modalities. Extensive experimental evaluations conducted
with popular baseline methods demonstrate the efficacy of our proposed ap-
proach in achieving state-of-the-art results on multi-modalities.

In summary, our main contributions include:
– We propose an Instance Cross-modality Style Transfer Network(ICSTN),

which enables the conversion from visible light images to infrared images.
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This method optimizes instances with different heat levels in real infrared
images, thus obtaining infrared images that are closer to reality.

– We construct multi-modality benchmarks COCO-MM, MPII-MM and RAI-
MM, which include the original visible light data (COCO, MPII and RAI)
and their corresponding infrared data (COCO-IRS, MPII-IRS and RAI-IR).
Both parts of the data have supreme quality and precise annotations.

– We propose a novel Modality-Adaptive Pose Estimation(MAPE) method
which can be easily applied to existing human pose estimation methods
and exhibits strong performance simultaneously in both visible and infrared
modalities. To the best of our knowledge, we are the first to address this
challenging yet practical problem.

2 Related Works

Visual Image Human Pose Estimation. The field of human pose estima-
tion (HPE) has been dominated by visible images. Since the pioneering work of
DeepPose [56], numerous deep learning-based approaches have been proposed.
Early works [6, 38, 53, 39, 30, 41] that usually regress the coordinates of key points
directly for single-person pose estimation. However, the inherent difficulty of re-
gression poses limitations on the accuracy and robustness of these models [13].
On the other hand, heatmap-based 2D pose estimation methods [46, 62, 4, 37,
31, 14] estimate per-pixel likelihoods for each keypoint location, and currently
dominate in the field of 2D human pose estimation with more robust results
achieved.

In recent years, there has been a growing focus on multi-person HPE, which
presents a more realistic challenge. The methods can be broadly categorized into
top-down and bottom-up approaches. The former [62, 51, 68] first detect individ-
ual humans and subsequently estimate pose key points within their bounding
boxes, For example, SBL [62] employs a pedestrian detector and optical flow
to determine detection boxes, integrating a deconvolution module for improve-
ment. HRNet [51] distinguished by its parallel multi-resolution subnets, main-
tains high-resolution representations. On the contrary, bottom-up methods [26,
27, 24, 61, 47] independently detect key points for all individuals and then employ
association strategies to combine them into complete skeletons for each person.
Notably, HigherHRNet [8] advances bottom-up pose estimation by generating
multi-resolution heatmaps to handle scale variation. Further enhancements in
performance have been achieved through techniques such as embedding associ-
ation [45], optimizing the heatmaps [47], or regressions [17]. More recently, with
the introduction of new techniques such as Transformer [58] and Diffusion [20],
the performance of both bottom-up and top-down methods has been further
elevated to a new level [54, 52, 21, 14]. However, achieving these outstanding re-
sults often requires adequate lighting, which is not always available in real-world
scenarios.

Infrared Image Human Pose Estimation. Despite the significant progress
on visible image HPE, the performance degrades when lighting becomes dark.
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To tackle this issue, infrared image HPE also attracts much attention in recent
years. Currently, there is limited research in this field, and most studies [34, 65,
70] have drawn inspiration from visible image HPE. Liu et al. [34] proposed ellip-
tical distribution encoding learning for human pose regression and constructed
anisotropic Gaussian label for adjacent limbs connection under infrared imag-
ing. Zhu et al [70] proposed a novel model called FEPose which incorporates
the Transformer Encoder architecture and a specially designed FELayer layer
for infrared images to improve the accuracy of human pose estimation. Xu et
al. [65] proposed InfPose, an infrared multi-human pose estimation based on a
lightweight encoder-decoder CNN for edge devices with a wild infrared human
pose dataset established. While these approaches demonstrate promising per-
formance in infrared image HPE, the lack of a unified methodology effective for
both visible and infrared domains remains a significant research challenge, which
is the primary focus of this paper.

Human Pose Estimation Benckmarks There have been numerous well-
established benchmarks in the realm of visible image HPE. benchmarks like
LSP [25] and FLIC [49] were pivotal in the early stages of single-person HPE;
however, their performance is constrained by data scale limitations. The advent
of deep learning-based methodologies has ushered in a proliferation of bench-
marks [2, 32, 1, 33] comprising large-scale datasets. For instance, MPII [2] ag-
gregates human images from media videos, culminating in a vast and diverse
HPE dataset encompassing 40,522 annotated images of individuals, complete
with coordinates for 16 joints. Another popular HPE benchmark is COCO [32],
with 250,000 labeled individuals, caters to a broad spectrum of everyday life
scenarios, utilizing metrics such as AP, AR, and their variants for evaluation
purposes. Additionally, HiEve [33] introduces more challenging scenarios like
crowded scenes and earthquake evacuation, and pioneers the use of the weighted
AP (w-AP) metric to incentivize model performance in complex scenes. In con-
trast, benchmarks for infrared image HPE are limited and not readily available
to the public. The benchmark closest to addressing this gap is SLP [36], a multi-
modal large-scale lying pose dataset that includes RGB and infrared modalities.
This dataset, obtained through physical hyperparameter tuning, primarily serves
the application of in-bed human pose monitoring. To address this gap, we pro-
pose a novel large-scale multimodal HPE benchmark based on MPII and COCO
datasets that can be used for diverse real-world scenarios.

3 Methods

3.1 Instance Cross-modality Style Transfer Network

Our first objective is to establish a large-scale multimodal human pose bench-
mark. To fully utilize the existing visual image data source on HPE, we propose
to generate realistic infrared human pose images from the visual image datasets.

Compared to visible images, infrared images place greater emphasis on instance-
specific information[43]. In HPE, individuals display discrepancies in infrared in-
tensity compared to other elements, leading to fluctuating brightness levels across
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Fig. 1. (a) The framework of the ICSTN. (b) The structure of CSTM and AMG.

different instances in infrared images [57]. However, existing pseudo-infrared gen-
eration methods, such as those utilized for image registration tasks [12], predom-
inantly emphasize structural characteristics, overlooking instance-specific varia-
tions, and generating less realistic images.

Based on this observation, we propose an Instance Cross-modality Style
Transfer Network (ICSTN) comprising two stages to transform visible images
Ivis into infrared-style images Iirs in Figure 1(a). In the first stage, we use
a segmentation network M() [18] to isolate instances in the image based on
their different thermal energy in the real world. In our implementation, we have
defaulted to three categories: high thermal energy instances (e.g., humans, ani-
mals), medium thermal energy instances (e.g., cars, motorcycles), and low ther-
mal energy instances (e.g., plants, bicycles). Therefore, the segmentation results
Ii are related to the thermal energy levels. Then, a pre-trained Cross-modality
Style Transfer Module (CSTM) C() is used to directly convert the original visible
image Ivis and segmented visible image Ii into the corresponding infrared-style
image Cv and Ci. In the second stage, to obtain more realistic infrared images,
we propose Attention Map Generator (AMG) G() based on the UNet [48] ar-
chitecture to generate attention maps Av and Ai for Cv and Ci which are then
used as weights for fusion. Here, we use the style loss [16] as the training loss
Lgen forcing the AMG to generate attention maps to fuse more realistic infrared
images. Finally, the infrared-style images Iirs can be obtained via Equation 1:

Iirs = Av ⊗ Cv +

K∑
i=1

Ai ⊗M(Ci), (1)

where ⊗ is the Hadamard product and K indicates the number of thermal energy
instances which is 3 throughout this paper.

The architecture of CSTM is detailed in Figure 1(b). CSTM has 9 ResNet [19]
blocks, 3 convolution layers for downsampling, and 3 transposed convolution
layers for upsampling. We follow [12] and pre-train CSTM on the RoadScene
dataset [64]. During the training of ICSTN on MSRS[55], we freeze the param-
eters of CSTM and update the parameters of AMG. This ensures that while



6 J. Xia et al.

maintaining the style transfer capability of CSTM, AMG can generate attention
maps to produce infrared images that more close to real ones. The AMG shares
the same architecture as the CSTM but includes 6 ResNet blocks.

3.2 Multi-modality Pose Benchmark

Benchmark datasets Based on the proposed ICSTN, we are now able to
construct large-scale benchmark datasets, termed COCO-MM and MPII-MM,
respectively. Furthermore, we propose a novel RAI-MM, containing real-world
visible dataset RAI and infrared dataset RAI-IR. The datasets proposed provide
the previously data-scarce field with ample and sufficiently diverse datasets,
ensuring fairness and openness in research.

The COCO-MM is constructed on the train2017 set and val2017 set of the
COCO [32]. The entire dataset comprises the original dataset COCO and its cor-
responding infrared-style dataset COCO-IRS, which aligns well with the COCO
dataset and utilizes the same annotations. A partial display of COCO-MM is
shown in Figure 2.

The MPII-MM is built upon the MPII [2], comprising the original dataset
MPII and its corresponding infrared-style dataset MPII-IRS, which aligns well
with the MPII dataset and utilizes the same annotations. A partial display of
MPII-MM is shown in Figure 3.

The RAI-MM is proposed as a valid benchmark to assess multimodal HPE
in real-world scenarios. We select 600 pairs of images from MSRS [55] and
M3FD [35] and capture 2400 pairs of visible and infrared images using well-
matched visible-infrared cameras. The whole dataset consists of 3000 pairs of
visible-infrared images and 18420 human instances, which consists of the visible
dataset RAI(3000 visible images and 9150 human instances) and the infrared
dataset RAI-IR(3000 infrared images and 9270 human instances). The RAI-MM
is divided into the well-light part and the low-light part. Each part is organized
into indoor and outdoor scenarios, with the outdoor scenarios further divided
into road scenes and campus scenes. Figure 4(a) and (b) show the distribution of
the dataset. We follow the COCO [32] and annotate each modality employing 17
key points and ground truth bounding boxes, with details shown in Figure 4(c).
It is worth noting that the visible images in RAI-MM include both well-light
scenes and low-light scenes, which is beneficial for tests under various lighting
conditions. A partial display of RAI-MM is shown in Figure 5. Moreover, we
also use ICSTN to generate RAI-IRS based on RAI, which is used to test the
generation quality of ICSTN in Sec 4.1.

Evaluation Metrics For the COCO-MM dataset, the official COCO evaluation
metrics Average Precision(AP ) and Average Recall(AR) are used to assess the
model’s performance. Moreover, we introduced mmAP and mmAR to evaluate
the overall performance in multimodal scenarios.

mmAP =
1

Nm

Nm∑
m=1

APm , mmAR =
1

Nm

Nm∑
m=1

ARm, (2)
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Fig. 2. Examples from the COCO-MM dataset. The first four rows depict examples of
single-person poses, while the last four rows depict examples of multi-person poses.
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where APm and ARm represent the AP and AR in a specific modality. In this
work, Nm = 2 indicates the two modalities. APm ∈ {APv, APir}, ARm ∈
{ARv, ARir}, where APv and ARv denote the accuracy on the visible modality,
while APir and ARir denote the accuracy on the infrared modality.

For the MPII-MM dataset, the official MPII evaluation metric PCKh is used.
Similar to Equation 2 we define mmPCKh as follows (Equation 3) to integrate
the performance from different modalities.

mmPCKh =
1

Nm

Nm∑
m=1

PCKhm. (3)

For the RAI-MM dataset, the same evaluation metrics as COCO-MM are
used to assess the model’s performance. Similarly, we used mmAP and mmAR to
evaluate the model’s comprehensive performance on the multi-modality bench-
mark RAI-MM. APv and ARv denote the accuracy on the visible modality
benchmark RAI, APir and ARir denote the accuracy on the infrared modal-
ity benchmark RAI-IR.

3.3 Modality-Adaptive Pose Estimation
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Fig. 6. Illustration of the detailed MAPE architecture.

Current Human Pose Estimation (HPE) methods predominantly focus on
single modality data, limiting their applicability across diverse modalities. To ad-
dress this limitation and achieve precise HPE for both visual and infrared modali-
ties, we introduce the Modality-Adaptive Pose Estimation (MAPE) method. The
architectural overview of MAPE is depicted in Figure 6. The method is designed
to leverage distinct batch normalization techniques for each modality, while
sharing the remaining network parameters. Drawing inspiration from domain-
specific batch normalization [7], we propose Modality-Specific Batch Normaliza-
tion (MSBN) to capture modality-specific characteristics for both visible and in-
frared modalities. By integrating MSBN, we can mitigate modality-specific biases
during training, facilitating the network in capturing modality-invariant features
more effectively. Moreover, to enhance the network’s adaptability to modality
variations, we introduce a novel loss function termed Modality-Adaptive Loss
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(MAL) (see section 3.3). By integration of MSBN and MAL, MAPE can be eas-
ily applied to existing models and achieves robust HPE in multi-modal scenarios.

Modality-Specific Batch Normalization. In the evaluated benchmarks, in-
dividual poses are considered to embody modality-invariant information, whereas
distinct modality styles (e.g., visible and infrared) encapsulate modality-specific
characteristics. Hence, for training on multi-modal datasets, we advocate the
use of paired visible images and infrared-style images to facilitate the learning of
modality-specific information. During each training epoch, both visible images
and their corresponding infrared-style counterparts are jointly utilized as inputs.
Leveraging different batch normalizations within Modality-Specific Batch Nor-
malization (MSBN) based on their respective modalities enables effective elimi-
nation of modality-specific biases. This approach assists the network in fostering
modality-invariant learning, thereby enhancing its adaptability across diverse
modalities and ensuring robust performance in multi-modal scenarios.

Let xmod ∈ RN×H×W denote activation at each channel belonging to a
modalitiy label mod ∈ {vis, irs}, the MSBN can be expressed as:

MSBNmod(xmod; γmod, βmod) = γmod · x̂mod + βmod, (4)

where x̂mod = (xmod − µmod)/(
√

σ2
mod + ϵ). Here, µmod and σ2

mod denote the
mean and variance of the activation in xmod, respectively, γmod and βmod are
affine transform parameters in batch normalization for the specific modality, and
ϵ is a small constant used to prevent division by zero.

Referring to the stem layer of HRNet [51], we use four bottlenecks to con-
struct the MSBN layer, in which batch normalizations [22] are replaced by MSBN
blocks. MSBN layer can effectively reduce the impact of modality differences on
the model. Its premise lies in the accurate encoding of different modality im-
ages, which means that different modality features need to be distinguished in
the shallow layers of the network. We use t-SNE [40] to visualize the encoding of
different modalities in the shallow layers of HPE network. As shown in Figure 7,
it can be observed that using MSBN enables accurate differentiation between
different modalities, while without using MSBN, modality mixing may occur.

Modality-Adaptive Loss To enable effective information exchange between
the visible and infrared modalities, we introduce a novel loss function termed
Modality-Adaptive Loss(MAL). Unlike the conventional adaptation from source
domain to target domain [15, 59], visible and infrared are two complementary
modalities. Complementary information needs to be fully utilized. Therefore,
MAL is designed to perform feature interaction and alignment for the two modal-
ities. Operating concurrently on both visible and infrared branches, MAL facili-
tates alignment of modality-specific features generated by MSBN. By minimizing
feature discrepancies at the input of subsequent pose estimators, MAL encour-
ages the model to adapt to modality variations. Consequently, the model learns
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IR modality Visible modality
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Fig. 7. t-SNE visualization of the encoding of different modalities in the shallow layers
of the network.

representations that are invariant to modality enhancing its capability to gener-
alize across different modalities and ensuring robust performance in multi-modal
scenarios.

We utilize the Gram matrix [16] to compute the modality style according
to the modality-specific feature Fmod processed by MSBN. Let Gmod ∈ RC×C

represent the feature correlations between C channels’ feature maps of Fmod in
mod modality. It can be calculated by:

Gmod
ij =

∑
k

fmod
ik fmod

jk , (5)

where fmod
ik and fmod

jk are activations from the ith channel and jth channel of
Fmod at position k, respectively. In our paper, mod ∈ {vis, irs}. Then our MAL
can be computed as:

LMAL =
1

4C2M2

C∑
i,j=1

(Girs
ij −Gvis

ij )2, (6)

where C and M are the number of channels and the spatial size of the feature F ,
respectively. By minimizing the above loss function, the gap between modalities
is reduced, aiding the model in achieving modality adaptation.

4 Evaluation on Multi-modality Pose Benchmark

4.1 Cross-modality Style Transfer analysis

We compare different state-of-the-art cross-modality style transfer methods for
transforming visible images into infrared-style images. As illustrated in Figure 8,
the models used are all trained on RoadScene [64] and MSRS [55]. When using
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GPTN [3], the generated pseudo infrared image suffers great structural degra-
dation. When using CPSTN [12], the model retains structural information but
fails to perform modality conversion effectively, missing highlighting the bright-
ness differences that infrared images typically exhibit due to inconsistencies in
heat distribution. In contrast, our model achieves successful modality conversion
while retaining a certain degree of structural information.

Original VIS Image Original IR Image ICSTN(OURS)CPSTNGPTN

Fig. 8. Comparisons between existing cross-modality style transfer methods and our
proposed method on the RAI-MM dataset. It can be observed that our method gener-
ates infrared-style images that are closer to real infrared images.

Figure 9 further shows visual comparisons of features extracted at different
stages in the HPE model, which shows that the differences between IR and IRS
are minimal, providing further evidence that the generated infrared images are
trustworthy in HPE.

IR

IRS

Input Stage 3Stage 2Stage 1 Stage 4 Stage 5

Fig. 9. Comparisons between IR and IRS in different HPE stages.
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To quantitatively analyze the generated infrared images, we employ the struc-
tural similarity index (SSIM) metric and the peak signal-to-noise ratio (PSNR)
metric. By computing the SSIM and PSNR values between the infrared-style
images generated from visible images and their corresponding ground truth in-
frared images, we obtain the quantitative results shown in Table 1. It can be
observed that our method can generate images that are closer to real infrared
images. To better validate the quality of generated infrared images compared to
the real infrared images, we train models on COCO-IRS and test them on RAI-
IR and RAI-IRS(generated by ICSTN based on RAI) in Table 2, which shows
close performance for models between IR and IRS, demonstrating the reliable
quality of the generated dataset in real infrared scenarios validation.

Table 1. Comparisons between the existing method and our proposed method on the
RAI-MM dataset. Our method outperforms the existing method in SSIM and PSNR.

Method Backbone SSIM↑ PSNR↑
GPTN [3] CycleGAN 16.7 5.2

CPSTN [12] CycleGAN 18.9 6.8
ICSTN(Ours) CycleGAN 68.9 20.4

Table 2. Performance of HPE methods on RAI-IR and RAI-IRS. APir means perfor-
mance on RAI-IR, while APirs means performance on RAI-IRS.

Method Backbone Input size APir APirs

SBL [63] ResNet101 256× 192 66.5 66.8
HRNet [51] HRNet-W32 256× 192 68.9 69.2
HRNet [51] HRNet-W48 256× 192 69.7 69.9
HrHRNet [8] HrHRNet-W48 512× 512 58.1 58.3

ViTPose-B [66] ViT-B 256× 192 72.0 72.3
FEPose-B [70] FEPose-B 256× 192 71.9 72.1
InfPose [65] InfPose 512× 512 60.0 60.3

We further conduct an ablation study on the thermal instance K, and the
results are shown in Table 3. Specifically, 1 represents distinguishing only high-
thermal instances, 2 represents distinguishing high-thermal and medium-thermal
instances, and 3 represents distinguishing high-thermal, medium-thermal, and
low-thermal instances. The results indicate that using all three thermal instances
leads to better performance.

4.2 Experimental Setup

We assess the performance of state-of-the-art visible HPE methods [63, 51, 8,
67, 66] and infrared HPE methods [70, 65] on the proposed multi-modality pose
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Table 3. Ablation study on the number of thermal energy instances.

K SSIM↑ PSNR↑
1 66.5 17.8
2 67.8 19.1

3(Ours) 68.9 20.4

benchmark RAI-MM. To evaluate the capability of models trained on single
modality when facing multi-modality tasks, we follow the official settings of
each method and train them separately on COCO and COCO-IRS. Moreover,
to validate the effectiveness of the proposed multi-modality datasets, we then
train methods on COCO-MM. The results are presented in Table 4.

4.3 Benchmark Conclusions

The results shown in Table 4 indicate that models trained on the single modal-
ity significantly drop in performance when applied to multi-modality scenarios,
whereas models trained on multi-modality datasets exhibit consistent and sat-
isfactory performance. These findings underscore the critical role of the multi-
modality dataset proposed in this study. It is also worth noting that directly in-
troducing multimodal datasets to improve overall multimodal performance can
somewhat compromise the performance of individual modalities. This under-
scores the necessity of our proposed method.

Furthermore, we analyze the factors influencing the model’s performance in
multi-modality applications. As shown in Table 4, under the same HPE method,
the performance varies with changes in the backbone and input resolution. We
observe that when input resolution is consistent, using a backbone with larger
capacity (HRNet-W48) leads to higher accuracy and modality robustness com-
pared to using a backbone with lower capacity (HRNet-W32). Similarly, when
the backbone is consistent, using a larger input resolution (384×288) results
in higher accuracy and modality robustness compared to using a lower input
resolution (256×192). This suggests that stronger backbones and larger input
resolutions can enhance the model’s multi-modality performance.

5 Multi-modality Pose Estimation with MAPE

5.1 Implementation Details

We apply the proposed Modality-Adaptive Pose Estimation(MAPE) method to
baseline models to explore its effectiveness in the application of multi-modality
HPE. We follow the same training settings of the baseline methods. The ini-
tial learning rate is set to 0.001. We decay the learning rate by a factor of 10
at the 170th and 200th epochs. The training concludes at the 210th epoch.
We use Adam optimizer for baselines[63, 51, 8, 65] and AdamW for Transformer
baselines[67, 66, 70]. All experiments are conducted using PyTorch on NVIDIA
GeForce RTX 3090 GPUs.
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Table 4. Comparisons between baselines and our proposed method on RAI-MM. The
baseline models used are trained on COCO. Models marked with "+" are trained on
COCO-IRS. Models marked with "*" and MAPE are trained on COCO-MM.

Method Backbone Input size APv ARv APir ARir mmAP mmAR

SBL [63] ResNet101 256× 192 72.1 74.9 60.6 65.6 66.4 70.3
HRNet [51] HRNet-W32 256× 192 73.3 77.1 60.6 66.4 67.0 71.8
HRNet [51] HRNet-W48 256× 192 75.9 78.9 60.7 66.7 68.3 72.8
HRNet [51] HRNet-W48 384× 288 76.3 79.4 65.8 70.3 71.1 74.9
HrHRNet [8] HrHRNet-W32 512× 512 66.1 69.2 50.2 57.1 58.2 63.2

HRFormer-B [67] HRFormer-B 384× 288 77.0 80.2 66.2 70.8 71.6 75.5
ViTPose-B [66] ViT-B 256× 192 76.2 79.3 65.5 70.0 70.9 74.7
FEPose-B [70] FEPose-B 256× 192 75.8 79.1 66.1 69.7 71.0 74.4
InfPose [65] InfPose 512× 512 68.2 71.3 52.4 57.1 60.3 64.2

SBL+ ResNet101 256× 192 61.7 64.7 66.5 70.1 64.1 67.4
HRNet+ HRNet-W32 256× 192 64.0 67.4 68.9 72.3 66.5 69.9
HRNet+ HRNet-W48 256× 192 65.3 68.7 69.7 72.5 67.5 70.6
HRNet+ HRNet-W48 384× 288 66.9 70.1 71.9 75.3 69.4 72.7

HrHRNet+ HrHRNet-W32 512× 512 52.8 58.1 58.1 63.5 55.5 60.8
HRFormer-B+ HRFormer-B 256× 192 66.5 69.7 71.8 75.2 69.2 72.5
HRFormer-B+ HRFormer-B 384× 288 67.5 70.6 72.4 76.3 70.0 73.5
ViTPose-B+ ViT-B 256× 192 66.9 70.2 72.0 75.1 69.5 72.7
FEPose-B+ FEPose-B 256× 192 66.3 69.5 71.9 75.4 69.1 72.4
InfPose+ InfPose 512× 512 53.0 58.9 60.0 64.1 56.5 61.8

SBL* ResNet101 256× 192 68.5 71.9 64.8 68.8 66.7 70.4
HRNet* HRNet-W32 256× 192 69.8 73.9 65.2 70.1 67.5 72.0
HRNet* HRNet-W48 256× 192 71.5 74.9 65.8 71.1 68.7 73.0
HRNet* HRNet-W48 384× 288 72.3 75.8 70.3 74.1 71.3 75.0

HrHRNet* HrHRNet-W32 512× 512 64.5 65.3 55.7 61.3 60.1 63.3
HRFormer-B* HRFormer-B 256× 192 71.9 75.5 70.1 73.5 71.0 74.5
HRFormer-B* HRFormer-B 384× 288 73.0 76.5 71.0 74.8 72.0 75.7
ViTPose-B* ViT-B 256× 192 72.2 75.7 70.1 73.9 71.2 74.8
FEPose-B* FEPose-B 256× 192 71.8 75.6 70.2 73.9 71.0 74.8
InfPose* InfPose 512× 512 65.3 66.8 57.9 63.7 61.6 65.3
MAPE ResNet101 256× 192 75.4 77.3 68.4 71.2 71.9(↑5.5) 74.3
MAPE HRNet-W32 256× 192 76.7 79.4 69.1 72.4 72.9(↑5.9) 75.9
MAPE HRNet-W48 256× 192 77.1 79.8 69.3 72.5 73.2(↑4.9) 76.2
MAPE HRNet-W48 384× 288 77.4 79.9 71.6 74.9 74.5(↑3.4) 77.4
MAPE HrHRNet-W32 512× 512 66.7 71.9 58.7 63.8 62.7(↑4.5) 67.9
MAPE HRFormer-B 384× 288 77.9 81.0 72.1 75.5 75.0(↑3.4) 78.3
MAPE ViT-B 256× 192 77.3 80.0 71.3 74.6 74.3(↑3.4) 77.3
MAPE FEPose-B 256× 192 77.2 79.8 71.2 74.5 74.2(↑3.2) 77.2
MAPE InfPose 256× 192 68.3 72.5 61.2 65.3 64.8(↑4.5) 68.9
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5.2 Quantitative Results

To validate the effectiveness of the proposed method on real multi-modality
benchmarks, we conduct experiments on the RAI-MM benchmark. The mod-
els used are trained on the COCO-MM training set. As shown in Table 4, we
find that our method significantly improves the model’s performance in real
multi-modality scenarios, highlighting that proposed multimodal datasets have
sufficient quality to help the model achieve multimodal HPE capabilities and
demonstrating the effectiveness of the proposed method in the real world. It
is worth noting that the visible images in RAI-MM include both normal-light
scenes and low-light scenes. The results in Table 4 indicate the proposed method
can improve the model’s performance under varying lighting conditions to a cer-
tain extent.

To further investigate the role of infrared images under different light condi-
tions, we conduct experiments separately on the well-light portion and the low-
light portion of the RAI-MM in Table 5. It can be seen that the introduction
of infrared modality significantly improves performance in low-light conditions.
Moreover, the proposed MAPE effectively mitigates the impact of introducing
infrared modality on the performance in well-light scenarios.

To demonstrate the performance improvement on large validation sets, the
improvements on the multi-modality benchmarks COCO-MM and MPII-MM
are reported in Table 6 and Table 7, respectively. Under the same training
dataset, our proposed method significantly enhances the model’s performance
on both multi-modality and individual modality benchmarks, while maintain-
ing or improving performance on the individual modality benchmarks compared
with models trained on individual modality.

We make further tests on the public infrared dataset UCH [50]. Table 8, where
the train set and method used are indicated, shows consistent results with the
existing results, confirming the efficacy of our datasets and method in infrared
modality HPE.

We compare the proposed MAPE with domain adaption methods [15, 59] and
HPE domain adaption methods [60, 29]. We train them on COCO-MM and test
them on RAI-MM. For DANN [15] and AdvEnt [59], we assign visible images
to a source domain and infrared images to a target domain. AdvMix [60] pro-
poses adversarial training to enhance the robustness of the model and employ
knowledge distillation to maintain the performance on clean data. ExlPose [29]
proposes adopting learning using privileged information (LUPI) to provide privi-
leged information from visible images to low-light images, enhancing the model’s
performance in low-light scenarios. We apply the methods mentioned to the pro-
posed multi-modality benchmark. For AdvMix, we use adversarial training and
utilize knowledge distillation from visible images to infrared-style images. For
ExlPose, we use LUPI from visible images to infrared-style images. The results
are shown in Table 9, which indicate that using one-way information transfer
domain adaption is unsatisfactory because visible and infrared images are two
modalities that complement each other.
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Table 5. Comparisons between baselines and our proposed method on RAI-MM under
different light conditions. The baseline models used are trained on COCO. Models
marked with "+" are trained on COCO-IRS. Models marked with "*" and MAPE are
trained on COCO-MM. APvw and APvl represent the performance on visible images
in well-light scenes and low-light scenes, respectively.

Method Backbone Input size APvw APvl

SBL [63] ResNet101 256× 192 79.2 55.5
HRNet [51] HRNet-W32 256× 192 80.8 56.3
HrHRNet [8] HrHRNet-W32 512× 512 72.9 50.8

HRFormer-B [67] HRFormer-B 256× 192 83.6 58.1
ViTPose-B [66] ViT-B 256× 192 83.8 58.7
FEPose-B [70] FEPose-B 256× 192 82.8 57.7
InfPose [65] InfPose 512× 512 74.7 52.1

SBL+ ResNet101 256× 192 62.6 59.7
HRNet+ HRNet-W32 256× 192 65.3 61.8

HrHRNet+ HrHRNet-W32 512× 512 53.8 51.1
HRFormer-B+ HRFormer-B 256× 192 67.6 63.8
ViTPose-B+ ViT-B 256× 192 67.7 64.8
FEPose-B+ FEPose-B 256× 192 67.1 64.2
InfPose+ InfPose 512× 512 53.9 52.4

SBL* ResNet101 256× 192 70.5 63.9
HRNet* HRNet-W32 256× 192 72.2 65.0

HrHRNet* HrHRNet-W32 512× 512 66.6 60.1
HRFormer-B* HRFormer-B 256× 192 74.1 66.8
ViTPose-B* ViT-B 256× 192 74.2 67.5
FEPose-B* FEPose-B 256× 192 73.7 67.0
InfPose* InfPose 512× 512 66.9 60.6
MAPE ResNet101 256× 192 79.1 66.9
MAPE HRNet-W32 256× 192 80.9 67.8
MAPE HrHRNet-W32 512× 512 71.2 60.4
MAPE HRFormer-B 256× 192 83.2 67.9
MAPE ViT-B 256× 192 83.4 68.6
MAPE FEPose-B 384× 288 81.8 68.4
MAPE InfPose 256× 192 73.4 60.8
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Table 6. Comparisons between baselines and our proposed method on COCO-MM.
The baseline models used are trained on COCO. Models marked with "*" and MAPE
are trained on COCO-MM. For top-down approaches, results are obtained with de-
tected bounding boxes of [51]. Significant improvements are achieved in all metrics.

Method Backbone Input size APv ARv APir ARir mmAP mmAR

SBL [63] ResNet101 256× 192 71.4 77.1 38.8 43.7 55.1 60.4
HRNet [51] HRNet-W32 256× 192 74.4 79.8 44.7 51.9 59.6 65.9
HRNet [51] HRNet-W48 256× 192 75.1 80.4 45.1 52.0 60.1 66.2
HRNet [51] HRNet-W48 384× 288 76.3 81.2 47.2 53.7 61.8 67.5
HrHRNet [8] HrHRNet-W48 512× 512 67.1 72.3 34.2 38.9 50.7 61.5

ViTPose-B [66] ViT-B 256× 192 75.8 81.1 46.5 53.4 61.2 67.3
SBL* ResNet101 256× 192 70.2 75.3 59.4 61.2 64.8 68.3

HRNet* HRNet-W32 256× 192 73.2 76.1 60.5 63.9 66.9 70.0
HRNet* HRNet-W48 256× 192 74.0 76.3 62.9 65.6 68.5 71.0
HRNet* HRNet-W48 384× 288 75.4 77.9 65.8 68.9 70.6 73.4

HrHRNet* HrHRNet-W32 512× 512 65.1 66.9 47.5 56.6 56.3 61.8
ViTPose-B* ViT-B 256× 192 75.1 77.3 65.2 68.1 70.2 72.7

MAPE ResNet101 256× 192 71.3 77.0 61.3 67.4 66.3 72.2
MAPE HRNet-W32 256× 192 73.4 79.0 62.1 68.1 67.8 73.6
MAPE HRNet-W48 256× 192 76.1 78.8 65.0 68.3 70.6 73.6
MAPE HRNet-W48 384× 288 76.5 80.1 66.3 71.9 71.4 76.0
MAPE HrHRNet-W32 512× 512 66.4 69.8 50.9 57.6 58.7 63.7
MAPE ViT-B 256× 192 76.3 79.5 66.0 71.4 71.2 75.5

Table 7. Comparisons between baselines and our method on MPII-MM. The baseline
models used are trained on MPII. Models marked with "*" and MAPE are trained on
MPII-MM. Significant improvements are obtained in all metrics.

Method Backbone Input size PCKhv PCKhir mmPCKh

SBL [63] ResNet101 256× 256 89.1 60.1 74.6
HRNet [51] HRNet-W32 256× 256 89.3 67.9 78.6
HRNet [51] HRNet-W48 256× 256 89.6 68.5 79.1

ViTPose-B [66] ViT-B 256× 192 93.3 72.1 82.7
SBL* ResNet101 256× 256 87.0 77.5 82.3

HRNet* HRNet-W32 256× 256 89.4 83.1 86.3
HRNet* HRNet-W48 256× 256 90.0 83.6 86.7

ViTPose-B* ViT-B 384× 288 91.8 84.9 88.4
MAPE ResNet101 256× 256 87.8 81.5 84.7
MAPE HRNet-W32 256× 256 89.9 83.5 86.7
MAPE HRNet-W48 256× 256 90.6 84.3 87.5
MAPE ViT-B 256× 192 93.4 85.6 89.5

Table 8. Performance of HPE methods on UCH.

Metrics VIS IRS MAPE SBL-Res101 HRNet-W32 HRNet-W48 HrHRNet
APir

√
59.1 60.3 61.2 45.1

APir
√

68.5 69.1 70.4 61.2
APir

√ √
63.2 64.6 70.0 59.7

APir
√ √ √

71.3 72.7 77.0 62.9
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Table 9. Comparisons between MAPE and SOTA domain adaption methods on RAI-
MM using HRNet-W48 with an input size of 384×288 as the baseline. The models are
all trained on COCO-MM.

Method APv ARv APir ARir mmAP mmAR

Baseline 72.3 75.8 70.3 74.1 71.3 75.0
DANN [15] 75.2 77.8 70.4 74.1 72.8 76.0
AdvEnt [59] 75.7 77.9 70.5 74.2 73.1 76.1
AdvMix [60] 76.1 78.3 70.7 74.4 73.4 76.4
Exlpose [29] 77.0 79.2 71.1 74.5 74.1 76.9

MAPE 77.4 79.9 71.6 74.9 74.5 77.4

5.3 Ablation Studies

Ablation on the network architecture. To verify the effectiveness of different
modules of our method, we conduct experiments on the RAI-MM dataset, em-
ploying an HRNet-W48 backbone with a size of 384×288. The methods used are
all trained on COCO-MM training set. As shown in Table 10, MSBN and MAL
represent variants trained with Modality-Specific Batch Normalization (MSBN)
and Modality-Adaptive Loss (MAL), respectively. MAPE signifies the use of our
method. We use diAP = |APv −APir| and diAR = |ARv −ARir| to denote the
accuracy difference between visible and infrared modalities.

Table 10. Ablation on the network architecture.

Method APv ARv APir ARir mmAP mmAR diAP diAR

Baseline 72.3 75.8 70.3 74.1 71.3 75.0 2.0 1.7
+MAL 72.0 75.4 70.6 74.2 71.3 74.8 1.4 1.2
+MSBN 77.1 79.6 71.1 74.4 74.1 77.0 6.0 5.2
+MAPE 77.4 79.9 71.6 74.9 74.5 77.4 5.8 5.0

We observe that when using the proposed module individually, MAL reduces
the performance gap between individual modalities by 0.6 in diAP and 0.5 in
diAR, while MSBN shows significant improvement in the multi-modality by 2.8
in mmAP and 2.0 in mmAR. Furthermore, we find that utilizing MAL alone fails
to achieve satisfactory performance in the visible modality. However, when com-
bined with MSBN, there is a noticeable enhancement by 3.2 in mmAP and 2.4 in
mmAR. This underscores the importance of MSBN in addressing disparities be-
tween visible and infrared modalities. We posit that MSBN effectively prevents
modality confusion by learning modality-specific information through distinct
batch normalizations. Moreover, it gradually diminishes the modality-specific
information during training, effectively bridging the gap between visible and in-
frared modalities. MAL effectively handles the modality features outputted by
MSBN and facilitates the interaction of complementary features between visible
and infrared, which accomplishes cross-modality feature transfer and enhances
the model’s performance while reducing disparities in modality features.
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In short, MSBN effectively handles specific information from each modal-
ity, leading to performance improvements across modalities. Meanwhile, MAL
facilitates effective interaction between modalities, reducing the inter-modality
differences by MSBN processing. The combination of MSBN and MAL achieves
effective modality adaptation.

Ablation on the direction of modality interaction in MAL. The meth-
ods used are trained on COCO-MM and tested on RAI-MM. The results shown
in Table 11 suggest that one-way interaction between visible and infrared modal-
ities fails to produce satisfactory results. This indicates that the two modalities
can complement each other and proves the rationality of MAL, which operates
on both modalities.

Table 11. Ablation on direction of modality interaction in MAL.

Method APv ARv APir ARir mmAP mmAR

Baseline 72.3 75.8 70.3 74.1 71.3 75.0
vis → ir 74.8 77.3 67.6 70.4 71.2 73.9
ir → vis 71.2 74.4 71.3 74.5 71.3 74.5

vis ↔ ir(ours) 77.4 79.9 71.6 74.9 74.5 77.4

5.4 Qualitative Comparison

Here we provide qualitative comparisons between our proposed method and the
baseline approach on proposed benchmarks. Figure 10 shows comparisons on
COCO-MM, where we use HRNet-W48 with an input size of 384 × 288 as the
baseline. Figure 11 shows comparisons on MPII-MM, where we use HRNet-W32
with an input size of 256×256 as the baseline. Results show that while the base-
line method performs well in estimating poses within the visible modality, its
performance significantly deteriorates in the infrared modality. Although train-
ing the baseline on multimodal data moderately enhances its performance in
the infrared modality, it still falls short of achieving precise pose estimations.
In contrast, our proposed method consistently achieves superior pose estimation
results in both the visible and infrared modalities.

Figure 12 shows the comparisons on RAI-MM, where we use HRNet-W48
with an input size of 384 × 288 as the baseline. It is worth noting that the
models used are trained on COCO-MM and RAI-MM is only used for testing.
It can be observed that our proposed dataset and method consistently improve
the performance of HPE in real infrared images. Notably, the visible images in
RAI-MM include low-light scenes, and after incorporating infrared images and
proposed method, the performance in low-light conditions also improves. Such
improvement is crucial for practical applications of HPE under different light
conditions.
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Fig. 10. Qualitative comparisons on the COCO-MM dataset. The predicted poses
in the visible(VIS) and infrared-style(IRS) modalities are displayed on the corre-
sponding images. (a)Ground truth. (b)Predictions from baseline trained on COCO.
(c)Predictions from baseline trained on COCO-MM. (d)Predictions from proposed
MAPE trained on COCO-MM. Red boxes indicate the areas where keypoint detec-
tion errors occur.
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Fig. 11. Qualitative comparisons on the MPII-MM dataset. The predicted poses in
the visible(VIS) and infrared-style(IRS) modalities are displayed on the corresponding
images. (a)Ground truth. (b)Predictions from baseline trained on MPII. (c)Predictions
from baseline trained on MPII-MM. (d)Predictions from proposed MAPE trained on
MPII-MM. Red boxes indicate the areas where keypoint detection errors occur.
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Fig. 12. Qualitative comparisons on the RAI-MM dataset. The predicted poses in
the visible(VIS) and infrared(IR) modalities are displayed on the corresponding im-
ages. (a)Ground truth. (b)Predictions from baseline trained on COCO. (c)Predictions
from baseline trained on COCO-MM. (d)Predictions from proposed MAPE trained on
COCO-MM. Red boxes indicate the areas where keypoint detection errors occur.



Bridging the Modality Gap 25

6 Conclusion

In summary, this paper addresses the inherent limitations of single modality
human pose estimation (HPE) approaches by introducing innovative techniques
and benchmark datasets to advance multimodal HPE. Our proposed Instance
Cross-modality Style Transfer Network(ICSTN) facilitates the conversion of visi-
ble images to infrared style images, enhancing the realism of infrared HPE, based
on which we introduce a novel visible-infrared benchmark comprising two large-
scale generated datasets COCO-MM, MPII-MM, and one real-world dataset
RAI-MM for assessing multimodal HPE. By testing the existing methods on
multimodal setting, we find that performance degrades severely. We then pro-
pose Modality-Adaptive Pose Estimation (MAPE) demonstrating superior per-
formance across both visual and infrared modalities. By seamlessly integrating
into existing methodologies and addressing challenges posed by modality vari-
ance, MAPE sets a new baseline for multimodal HPE.
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Technology Innovation Major Project (No. 2022Z072, No.2023Z044).
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