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Abstract

Medical image segmentation is critical in under-
standing pathological changes and computer-aided di-
agnosis. Most of the existing medical segmentation mod-
els focus on the overall segmentation effect of the model
and lack of thinking about the problems of boundary
blurring and model generalization ability. Given this,
a bipartite segmentation model YNet based on bound-
ary enhancement is proposed, which is based on the
encoder-decoder architecture and consists of two core
components: boundary enhancement module (BEM)
and feature fusion module (FFM). The BEM utilizes
the wavelet transform to separate the frequency do-
main information from the original image, allowing
the model to dynamically adjust the boundary details
in the original image dynamically, thus enhancing the
model’s ability to perceive the boundary information
and mitigating the effect of noise on the model. An
attention mechanism is introduced in the FFM to en-
hance the model’s generalization ability by dynamically
adjusting the channel and spatial information weights
to emphasize critical features and suppress redundant
information. Experimental results comparing other
methods on CVC-ClinicDB, Kvasir-SEG, DSB2018, and
ISIC2018 datasets show that the model has more ex-
plicit boundaries and better segmentation generaliza-
tion. The source code of our YNet will be mdae available
at https://github.com/DeadlyCodeGod/YNet.

Keywords: Double-branch networks, Wavelet trans-
form, Feature fusion, Attention mechanism, Boundary en-
hancement.

1. Introduction

Medical image segmentation plays a vital role in medical
image processing, where the main goal is to classify each
pixel in an image and generate a masked image to iden-
tify lesion areas in medical images [24] accurately. This
technique is crucial in assisting physicians to more accu-
rately diagnose diseases, develop treatment plans, and track
the health status of patients. Researchers have been de-
veloping convolutional neural network (CNN) based med-
ical image segmentation methods to achieve this purpose
and have made significant progress [9, 28, 17]. The most
representative method is UNet [24], which improves the
segmentation of edge details by combining the encoder’s
shallow features with the decoder’s high-resolution features
through hopping connections. Okatay [21] et al. proposed
an attentional mechanism for the UNet-based segmentation
model, which can better focus on the relevant regions of
the pancreas. Zhou [35] et al. proposed a variant of UNet
called UNet++, in which the decoder sub-network solves
the sizeable semantic gap between the encoder and decoder
in UNet through dense hopping connections. On this ba-
sis, Srivastava et al. [27] proposed a multi-scale feature
extraction and fusion mechanism for the feature extraction
and fusion problem in medical image segmentation, effec-
tively utilising different levels of features to capture richer
contextual information. ColonSegNet [10] employs multi-
scale feature extraction to capture different scales of con-
textual information. At the same time, an attention mech-
anism is introduced to enhance the attention to critical re-
gions. Although these research results have achieved sig-
nificant improvements in segmentation performance, there
are still two key issues that need to be addressed in medi-
cal image segmentation tasks: (1) Insufficient utilization of
original image information: most models tend to focus on
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optimizing the design of the framework while ignoring the
rich available information in the original image, such as tex-
ture and structure information. (2) Challenges of segmen-
tation boundaries: Due to the varying sizes of lesions, their
boundaries with surrounding tissues often need to be more
explicit, resulting in segmentation models that are prone to
under-segmentation or over-segmentation, which affects the
reliability of the models in clinical applications.

Aiming at the above problems, this paper proposes a
wavelet transform-based boundary information enhance-
ment module, which can be enough to separate the high and
low-frequency information of the original image without
additional training data and which helps to help the model
filter noise. In the frequency domain, low-frequency (LF)
information expresses the abstract semantics of the image,
while high-frequency (HF) information is rich in detailed
features of the image boundary [32, 29]. This enables YNet
to learn tiny structures, abstract semantic content, and over-
lapping or low-light parts of an image, and these details and
semantic features are crucial for medical image analysis and
diagnosis [3, 4, 23]. However, single-branch convolutional
neural networks have limitations in dealing with these de-
tails and need help thoroughly learning the information they
contain [25, 15, 36]. So, inspired by the above studies and
limitations, this paper proposes a double-branch segmenta-
tion model YNet driven by LF and HF information for med-
ical image segmentation tasks. The dual-branch encoder in
the model learns the image features enhanced by LF and HF,
respectively, so that the YNet model can capture the correla-
tion of potential inter-split features and enhance the ability
of the network to link semantic and detailed features. In or-
der to overcome the problem that the fusion of the frequency
domain information of the dual-branch taps may lead to the
weakening of the model’s generalization ability, this paper
fuses the LF and HF information with the original infor-
mation separately in an adaptive manner and designs the
attention feature fusion module.

The contributions of this article are described below:
(1) This paper uses the wavelet transform theory to de-

sign the BEM. This module separates the LF and HF infor-
mation of an image and weighted fusion of the separated in-
formation with the original image in a self-learning manner.
This form of adaptive feature fusion enhances the model’s
generalisation ability and reduces the need for model pa-
rameter tuning.

(2) The double-branch model named YNet is proposed.
It learns the original image information enhanced by global
information on the LF encoder branch and learns to capture
fine edge details from the original image on the HF encoder
branch. This complementary learning approach enhances
the model’s ability to perceive boundary information.

(3) In order to better fuse the complementary informa-
tion of the double-branch taps, this paper designs the FFM,

which suppresses or enhances the feature maps in an atten-
tional manner on the channel as well as spatially, to improve
the module’s ability to perceive and select important feature
information.

2. Related work

In recent years, thanks to the advancement of deep learn-
ing technology, the field of medical images has been devel-
oping rapidly, and numerous models with excellent perfor-
mance have emerged [28, 21, 11]. However, when dealing
with complex scenes, single-branch networks usually can
only process features on one path and are prone to encounter
bottlenecks in feature fusion at different scales and model
generalization ability. In contrast, dual-branch networks
perform well in this scenario [11]. The double-branch
model architecture improves multi-scale feature learning. It
enhances model generalization capability by designing in-
dependent branching paths that can process different kinds
of features or learn different aspects of features separately
[34]. In addition, this architecture allows the model to dy-
namically adapt to different feature requirements and effec-
tively integrate multi-scale information when facing com-
plex segmentation tasks, thus demonstrating enhanced per-
formance capabilities when dealing with complex scenes.
However, learning the complementary information between
bipartition splits recognizes a vital issue in the design of
bipartition-based models, which should be considered for
the original feature processing in addition to considering the
model coding layer.

An essential advantage of the wavelet transform is its
ability to separate the high and low information and retain
the frequency range and spatial location information effec-
tively at the same time, which makes the wavelet transform
uniquely valuable in image processing, especially in tasks
that need to distinguish between image details and global
structure [28, 26]. Therefore, the combination of wavelet
transform and deep learning models can help the models to
improve segmentation accuracy when processing complex
images, especially in tasks that require precise boundary
detection [8, 19]. Azimi et al. [1] proposed a symmetric
CNN algorithm augmented by wavelet transform to effec-
tively solve the problem of improving segmentation accu-
racy in semantic segmentation tasks. The algorithm better
preserves boundary details and complex structures by in-
troducing wavelet transform. However, the method needs
more flexibility when dealing with different tasks. Its per-
formance needs to be more robust for tasks with high com-
plexity or significant differences in feature distribution, and
its generalization ability needs to be improved. Duan et al.
[6] used the wavelet transform constrained pooling layer to
replace the traditional maximum pooling or average pooling
operation to solve the problem of better retaining detailed
information. However, it is more sensitive to HF noise,



and the wavelet transform pooling operation is more sig-
nificant in computational volume, which increases the net-
work’s computational complexity and training time. Li et
al. [18] enhance the network’s ability to capture and re-
construct detailed information by using the wavelet trans-
form to extract the details in the downsampling stage and
the wavelet inverse transforms to recover the details in the
upsampling stage. However, this method imposes strong
constraints on the network structure while enhancing im-
age details, resulting in a less scalable model across tasks
and datasets, exhibits instability, and is challenging to adapt
to diverse application scenarios. In contrast, YNet has a
more flexible operation by focusing on LF and HF informa-
tion through a double-branch architecture without imposing
constraints on the network.

3. Method

3.1. Overview

The YNet network proposed in this paper adopts the tra-
ditional encoder-decoder architecture, and the specific net-
work architecture is illustrated in Fig. 1, which consists
of five parts: (1) the HF and LF information separation
module BEM, which helps the model to better learn the es-
sential features in the subsequent processing steps; (2) two
fully convolutional double-branch network encoders, which
are able to extract different kinds of features at the same
time, thus improving the multi-scale feature learning capa-
bility; (3) a feature fusion module FFM, which enhances the
model’s understanding of both detailed and global informa-
tion and improves the accuracy of the segmentation results;
(4) a profoundly supervised feature transformation module
TM, which ensures that the model’s learning is effectively
guided at different levels, and improves the model’s stabil-
ity during the training process [16]; (5) a decoder for gen-
erating segmentation predictions, which partially ensures
the meticulousness of the segmentation results by gradually
restoring the spatial resolution of the image.

Overall, the original image is first processed by BEM to
extract the LF and HF feature information. Then, this fea-
ture information is adaptively fused with the original im-
age to enhance the edge and semantic features of the orig-
inal image, respectively, to form the feature maps LF and
HF. The enhanced feature maps LF and HF are sent to the
dual-branch encoder for encoding operations, as illustrated
in Fig. 1, where the LF information is learned in the LF
encoder (LE). In contrast, the HF information is learned in
the HF encoder (HE). The LE branch extracts features with
larger sensory fields through the hollow convolution oper-
ation to extract features with larger receptive fields to bet-
ter understand the overall layout of the image.HE, on the
other hand, enhances the learning of details through small
convolution kernels to more accurately capture the image’s

boundaries and small lesion regions. The FFM collects LE
and HE feature maps containing rich semantic and bound-
ary information. Then, through the attention mechanism in
the FFM, the module dynamically adjusts these features to
highlight those that are more important for the segmentation
task, enhancing the decoder’s focus on task-critical regions,
which effectively suppresses redundant and irrelevant in-
formation and ensures that the model pays more attention
to critical features when making decisions. During the de-
coding process, the fused features of each layer form jump
connections with the corresponding decoder layer, which
generate the final segmentation prediction. To further en-
hance the network’s ability to understand deep information,
this paper performs depth supervision at two random lay-
ers of the decoder, realizes feature conversion and dimen-
sion matching through 1×1 convolution operation to sim-
plify the model complexity, and offsets the model decod-
ing heavy burden to deeper layers to ensure that the coher-
ence of information transfer is maintained in the multilevel
feature maps, and enhances the model’s performance in the
segmentation task. In order to ensure that the decoding pro-
cess has stronger feature representation ability at different
scales, this paper designs a combined loss function, denoted
as Ltotal, which combines the losses from three different fea-
ture layers, namely: the network output loss Lnet, the loss
at the fourth decoder layer L1 and the loss at the second de-
coder layer L2, and combines them to generate the final loss
Ltotal. Its mathematical expressions are as in Eqs. (1) and
(2):

Ltotal = Lnet + λ(L1 + L2) (1)

Lnet = L1 = L2 = − 1

N

N∑
i=1

[yi log(pi) + (1− yi) log(1− pi)]

(2)
where λ is the balance parameter between the network out-
put loss and the middle layer loss. The cross-entropy loss
is used for Lnet, L1 and L2. N is the number of samples, yi
is the actual label (0 or 1) of the ith sample, and pi is the
probability that the model predicts a positive class for the
ith sample.

3.2. Boundary Enhancement Module

Fig.2 demonstrates the basic framework of the BEM pro-
posed in this paper. The wavelet transform usually decom-
poses the image into the following four parts: the LF com-
ponent LL retains the LF information of the original image;
the vertical HF component LH retains the HF information of
the image in the vertical direction; the horizontal HF com-
ponent HL retains the HF information of the image in the
horizontal direction; and the diagonal HF component HH
retains the HF information of the image in the diagonal. In
this paper, these three HF components are combined as the
sum of all HF components. This treatment can simplify the
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Figure 1. The model framework diagram of YNet shows that BEM is a boundary enhancement module that separates images’ LF and HF
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Figure 2. Module framework diagram of BEM. BEM uses differ-
ent convolution operations to extract HF and LF information selec-
tively. In order to ensure effective fusion with the original features,
the upSample operation is used to recover the feature dimension
size. α and β represent the gating factors that fuse the HF and LF
features with the original images.
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Figure 3. The FFM’s structural diagram shows the fusion process
of HF and LF features.

model while still retaining enough HF detail information.
This paper uses L to denote the LF component and H to
denote the sum of the three HF components in different di-
rections. Moreover, the upSample operation is utilized to
recover the problem of space size reduction brought about
by the wavelet transform. The specific L and H definitions
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Figure 4. Experimental predicted Kvasir, ISIC2018, DSB2018,
and CVC maps against the actual values. Where original denotes
the Original image, Ground Truth denotes the actual value, and
Predicted denotes the prediction of YNet.

are shown in Eqs. (3), (4) and (5):

FLL,FLH,FHL,FHH = BEM(Finput) (3)

L = upSample(FLL) (4)

H = upSample(FLH + FHL + FHH) (5)

where upSample denotes the upSampling operation that
recovers the reduced spatial dimensions brought about by
the wavelet transform.

From Fig. 2, it can be seen that L focuses on retaining
the semantic information of the image, while H emphasizes
the boundary detail information in the image. This paper
applies the first-order wavelet transform and Haar wavelet
basis to implement the discrete wavelet transform (DWT)



Table 1. Comparison of the four datasets
Dataset Number of images Image data format Image size
CVC 612 .tif 512*512
Kvasir 1000 .jpg 528*622
DSB2018 670 .png Variable resolution
ISIC2018 2595 .jpg 512*512

algorithm. The first-order wavelet transform can adaptively
adjust the decomposition according to the signal’s local
changes, making it more flexible than the traditional Fourier
transform in processing images. The Haar wavelet, on the
other hand, is characterized as a uniform square wave with
rapidly changing jumps. It is particularly suitable for de-
tecting edge and detail features in an image as it can be pin-
pointed in regions where the signal is changing rapidly [16].
The DWT algorithm preliminarily separates the high- and
low-frequency information into LF and HF and then learns
the LF features using a null convolution block, which makes
the BEM module able to capture a more extensive range of
contextual information; HF is learned using a small kernel
convolution, which improves the module’s ability in detail
processing. In order to further improve the fusion ability
of the model in the frequency and spatial domains, this pa-
per introduces an adaptive mechanism, which is used to ad-
just the contribution of the frequency dynamic features to
the original features so that the model can flexibly process
the key details and semantic information in the image un-
der different scenarios, thus improving the analysis ability
and adaptability to complex medical images. The adaptive
mechanism controls the regulation through two parameters,
α and β., as shown in Eqs. (6) and (7):

H = αH′ + I (6)

L = βL′ + I (7)

where I denotes the original image, and α and β both be-
long to the interval [0, 1], which are used to control the
contribution of L

′
and H

′
to I:

3.3. Feature Fusion Module

In order to effectively fuse the features of the double-
branch tap, this paper designs the FFM module, whose ar-
chitecture is illustrated in Fig. 3. The design concept of
FFM is to enhance the model’s ability to extract and utilize
critical information through multi-level feature processing.
Specifically, the features F

′

L and F
′

H of the double-branch
taps are first aggregated using the global average pooling
(GAP) operation, respectively, and their spatial channel in-
formation is captured. The captured information is used to
generate the two-channel attention weights using the Sig-
moid function ML ∈ RC×1×1 and MH ∈ RC×1×1, which
dynamically adjust the feature maps of F

′

L and F
′

H through
these two weights, highlighting the critical channel infor-
mation and blocking out the irrelevant information to obtain

more accurate FL and FH features, preparing them for fu-
sion. The specific steps are shown in Eqs. (8), (9), (10), and
(11):

ML = Sigmoid(GAP(F
′

L)) (8)

MH = Sigmoid(GAP(F
′

H)) (9)

FL = ML ∗ F
′

L (10)

FH = MH ∗ F
′

H (11)

c In this paper, we utilize the 3×3 atrous double convolution
operation to learn further the global features of FL focus on
learning the detailed boundary features of FH with the 3×3
standard double convolution operation, further filter the fea-
tures of the double-branching tunnels to be merged, and ap-
ply a 1×1 convolution operation to the merged feature map.
Operation: this operation not only helps to improve the ex-
pression ability of the features but also can not generate the
final attention weight to reduce the amount of computation.
The Sigmoid function is applied to generate the final atten-
tion weights W ∈ RH×W, as in Eqs. (12) and (13). to
enhance the network’s perception of essential features and
to improve the network’s representation. Finally, as in Eqs.
(14), this fused feature map is further processed using 1×1
convolution to adjust the channel dimensions of the features
and integrate the information to generate the final fused fea-
ture map FM:

T = Concat(DConv3×3(FL),Conv3×3(FH)) (12)

W = Sigmoid(Conv1×1(T)) (13)

FM = Conv1×1 (W ∗ FL +W ∗ FH) (14)

4. Experiments

4.1. Datasets

The performance evaluation of the YNet model is based
on four different open medical image datasets, includ-
ing CVC-ClinicDB [2], Kvasir-SEG [12], DSB2018 [31],
and ISIC2018 [20]. CVC-ClinicDB (CVC) is an endo-
scopic image focused on diagnosing and analysing gas-
trointestinal diseases. Kvasir-SEG (Kvasir) is a dataset of
endoscopic images containing various gastrointestinal dis-
eases.DSB2018 is a chest X-ray image for lung cancer
screening.ISIC2018 is a dataset focusing on dermatology
image analysis. Specifically, as shown in Table 1, these
datasets have essential applications in the fields of medical
image processing, deep learning research, and data science,
where they provide researchers and developers with a large
amount of image and labelling data that can be used to train
and test a variety of deep learning models to improve med-
ical diagnosis and disease screening.



Table 2. Comparison of YNet in Kvasir-SEG and CVC-ClinicDB metrics
Dataset Kvasir CVC
Metric mDice mIoU mPrecision mReccall mDice mIoU mPrecision mReccall
U-Net [24] 0.782 0.714 0.724 0.745 0.846 0.773 0.849 0.879
U-Net++ [35] 0.747 0.631 0.758 0.670 0.845 0.755 0.832 0.791
ResUNet [5] 0.512 0.379 0.593 0.597 0.522 0.416 0.563 0.589
ResUNet++ [13] 0.807 0.723 0.799 0.787 0.521 0.413 0.583 0.569
ColonSegNet [10] 0.841 0.754 0.849 0.854 0.879 0.804 0.884 0.860
MSRF-Net [27] 0.858 0.791 0.869 0.867 0.912 0.872 0.902 0.901
SAM [14] 0.862 0.805 0.872 0.870 0.915 0.875 0.908 0.895
YNet(Ours) 0.875 0.822 0.888 0.900 0.925 0.885 0.910 0.932

4.2. Implementation details

In this paper, a series of steps are taken to ensure the
data’s consistency, quality and reliability when training
YNet. In this paper, the original medical images are re-
sized to a uniform H×W, where both H and W are 352, to
maintain consistency [7, 33, 30]. To minimize the blending
problems that may be introduced by image resizing, anti-
aliasing techniques are introduced to improve the quality
and reliability of image processing [22]. The original im-
age and the segmentation maps are normalized to values in
the range [0, 1] to facilitate loss computation and model
training. According to [7, 30, 22], the dataset is divided
into training, validation and test sets in the ratio of 8:1:1.
A series of stochastic data enhancement operations includ-
ing horizontal and vertical flips, affine transformations in-
cluding angular rotations, horizontal and vertical transla-
tions, and angular shears were performed on the training
set. The YNet model was trained on each dataset using a
batch size of 8 and an Adam optimizer with weight decay.
The learning rate is adaptively updated using an annealing
algorithm, which is initially set to 1e-4 when the perfor-
mance of the validation set improves by no more than 10%
over ten cycles and decreases by a factor of 2 before reach-
ing a minimum of 1e-6. These steps ensure that the data
processing and model training of the YNet model during
the training period are highly quality and reliable and pro-
vide consistency and comparability. The proposed model
is implemented using PyTorch and trained on an NVIDIA
GeForce RTX4090 GPU with 24 GB of memory.

4.3. Evaluation Metrics

In order to obtain a more comprehensive YNet perfor-
mance evaluation for each dataset, this paper adopts several
metrics commonly used in the field of image segmentation:
mDice, mIoU, mPrecision, and mRecall, where m denotes
the average value taken over the entire test set. By calcu-
lating the average value of each metric overall test sample,
the comprehensive performance of the model over the en-
tire test set can be evaluated, which helps to eliminate the

chance brought by a single sample and provides a more sta-
ble and comprehensive performance evaluation. The spe-
cific defining Eqs. are shown in (15), (16), (17) and (18).

mDice =

n∑
i=1

2|Xi∩Yi|
|Xi|+|Yi|

p
(15)

mIoU =

n∑
i=1

|Xi∩Yi|
|Xi∪Yi|

p
(16)

mPrecision =

n∑
i=1

TPi

TPi+FPi

p
(17)

mRecall =

n∑
i=1

TPi

TPi+FNi

p
(18)

where TPi, FPi, FNi represent true examples, false pos-
itive examples, and false negative examples, respectively,
which are the basic elements in the confusion matrix used
to evaluate the classification or segmentation performance
of the model. Xi, Yi represents the prediction results and
true labels. m represents the average value of the test set,
and p is the number of images in the test set.

4.4. Performance Comparisons

To evaluate the performance of the YNet model, this pa-
per compares it to several previous models using the same
experimental setup to ensure a fair comparison. Four dif-
ferent datasets are used for the experiments, and a series
of quantitative metrics and prediction examples are used to
compare the performance of YNet with other models. As
illustrated in Fig. 4, some prediction examples of YNet on
these datasets are shown in this paper. It can be seen from
the figure that YNet’s segmentation results in the edge part
of the performance of the protection of stronger finesse and
coherence to alleviate the common phenomenon of edge
blurring and breakage, and this effect is due to the feature
fusion module and the attention mechanism of the model to



Table 3. Comparison of YNet’s metrics in DSB2018 and ISIC2018
Dataset DSB2018 ISIC2018
Metric mDice mIoU mPrecision mRecall mDice mIoU mPrecision mRecall
U-Net [24] 0.887 0.808 0.872 0.920 0.868 0.782 0.879 0.849
U-Net++ [35] 0.886 0.814 0.874 0.918 0.809 0.720 0.881 0.786
ResUNet [5] 0.906 0.817 0.880 0.915 0.856 0.756 0.875 0.833
ResUNet++ [13] 0.894 0.822 0.900 0.903 0.857 0.813 0.864 0.881
ColonSegNet [10] 0.920 0.855 0.910 0.919 0.850 0.778 0.883 0.865
MSRF-Net [27] 0.924 0.853 0.902 0.930 0.882 0.837 0.915 0.889
SAM [14] 0.927 0.858 0.912 0.933 0.890 0.845 0.918 0.892
YNet(Ours) 0.930 0.865 0.918 0.940 0.900 0.860 0.925 0.905

Table 4. Ablation experiments. Includes ablation experiments for
the BEM module, the FFM module, and the double-branch model.

BEM × × ✓ ✓
FFM × ✓ × ✓

Dataset Metric
CVC mDice 0.890 0.892 0.861 0.925

mIoU 0.794 0.792 0.802 0.885
mPrecision 0.883 0.872 0.856 0.910

mRecall 0.892 0.843 0.905 0.932
Kvasir mDice 0.853 0.861 0.870 0.875

mIoU 0.809 0.815 0.810 0.822
mPrecision 0.869 0.871 0.873 0.888

mRecall 0.889 0.876 0.895 0.900
DSB2018 mDice 0.910 0.915 0.917 0.930

mIoU 0.845 0.844 0.847 0.865
mPrecision 0.900 0.908 0.913 0.918

mRecall 0.919 0.916 0.920 0.940
ISIC2018 mDice 0.867 0.870 0.866 0.900

mIoU 0.806 0.800 0.802 0.860
mPrecision 0.913 0.916 0.914 0.925

mRecall 0.866 0.869 0.872 0.905

extract and enhance the edge information sufficiently, which
makes the segmentation results of the contour lines more
sharp. The result is sharper contour lines.

This paper evaluates the performance of YNet on mul-
tiple datasets using mDice, mIoU, mPrecision and mRecall
metrics. The experiments compare multiple existing seg-
mentation models, including:

(1) U-Net [24] proposed by Ronneberger et al. U-Net
is a classical medical image segmentation network with an
encoder-decoder structure that utilizes jump connections to
preserve high-resolution features for enhanced recovery of
detailed information.

(2) U-Net++ [35], proposed by Zhou et al. introduces
nested jump paths on top of U-Net, enhancing the fea-
ture reuse capability and improving the segmentation per-
formance, especially in segmentation tasks with complex
structures.

(3) ResUNet [5], proposed by Zhang et al., combines

the advantages of U-Net and residual learning. Referencing
residual blocks enhances the network’s expressive ability
and reduces training difficulty.

(4) ResUNet++ [13], proposed by Zhang et al., is an
improved version of ResUNet. It adopts a more complex
jump-connection structure to improve the flexibility of fea-
ture fusion and thus enhance the segmentation effect.

(5) ColonSegNet [10], proposed by Jha et al., is de-
signed for segmenting colon endoscopic images. It uses
a deep convolutional neural network structure combined
with a multiscale feature extraction technique to improve
the recognition of colon adenomas.

(6) MSRF-Net [27], proposed by Huang et al., utilizes
a multiscale residual learning architecture designed to im-
prove the robustness and accuracy of image segmentation,
especially excelling in processing medical images.

(7) Segment Anything Model (SAM)[14], proposed by
Kirillov et al., is a general-purpose image segmentation
model based on Vision Transformer (ViT). It performs ex-
cellently across various image scenarios, including medical
image segmentation.

The experimental results on Kvasir and CVC datasets
are shown in Table 2, from which it can be seen that the
YNet model almost outperforms the existing models in
four metrics and reaches the SOTA level. As illustrated in
Fig. 4, YNet performs particularly well in the segmenta-
tion of complex structures and tiny lesions and can main-
tain stable performance in medical images with high noise
and background complexity, showing good robustness and
more explicit segmentation boundaries, thanks to the de-
sign of the BEM and the double-branch tap. Although mis-
segmentation may still occur in some overlapping regions,
overall, the effectiveness and robustness of YNet in dealing
with complex medical image segmentation tasks are fully
verified.

To further demonstrate the excellent generalization abil-
ity of the YNet model, this paper also conducts compara-
tive experiments on the DSB2018 and ISIC2018 datasets,
the results of which are shown in Table 3. The YNet
model also outperforms the existing models on these two
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Figure 5. It shows the comparison of the results of seven models on four datasets, and from the figure, the segmentation prediction results
of the YNet model are superior.

datasets, reaching the SOTA level. These excellent re-
sults are attributed to FFM, a module that effectively im-
proves the model’s performance during feature extraction
and fusion.FFM adaptively adjusts the importance of dif-
ferent feature maps so that the model can better retain crit-
ical information and effectively suppress the influence of
noise when processing complex images. This feature en-
ables YNet to maintain a high-performance level on vari-
ous datasets, showing good generalization ability and ro-
bustness. Therefore, the FFM module plays a vital role in
improving the model’s performance, further consolidating
the competitiveness of YNet in medical image segmenta-
tion.

As can be illustrated in Fig. 5, YNet demonstrates ex-
cellent segmentation performance on datasets with different
distributional characteristics. In most evaluation metrics,
YNet achieves better scores than existing models, proving
its strong generalization ability and adaptability. Especially
when dealing with different types of medical images, YNet
can effectively capture critical features and maintain high
accuracy in the segmentation task. Fig. 6 shows some sam-

Figure 6. Visualization of YNet model ablation experiments.

ple prediction results of YNet on the four datasets with other
models. The comparison shows that YNet exhibits excel-
lent segmentation accuracy in images of various morphol-
ogy and complexity, especially in processing fine structure
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Figure 7. Comparison of segmentation performance of different
models on CVC, Kvasir, DSB2018, and ISIC2018 datasets.

and boundary information.

4.5. Ablation studies

In order to verify the effectiveness of the designed BEM
and FFM, ablation studies are conducted in this paper. The
experimental results are shown in Table 4. In the absence
of FFM, although BEM enhances the segmentation ability
of boundary details, the global feature fusion and process-
ing need to be improved. This quickly leads to the lack of
global context information, thus affecting the overall seg-
mentation performance. Moreover, when there is no BEM,
although FFM can optimize the features globally, it does not
process the details of the boundary sufficiently, leading to
the problem of blurred boundaries and unclear transitions.
From Fig. 7, YNet can improve segmentation performance
only when BEM and FFM are included.BEM needs FFM
to fuse the information of different scales to avoid focus-
ing only on local details. In contrast, FFM needs BEM to
make up for its insufficiency in the boundary region to en-
sure the accurate capture of details. They are indispensable
and must work together to achieve the best results.

5. Conclusions

This paper proposes a new medical image segmentation
modelling framework, YNet, to achieve clear segmentation
boundaries. YNet consists of two core modules, i.e., BEM
and FFM.BEM combines the advantages of wavelet trans-
form and convolution to generate enhanced information on
boundaries, which in turn provides YNet with more learn-
able and detailed features. On the other hand, FFM pro-
vides a compelling fusion of the features of the bipartite
encoder through adaptive feature fusion fused effectively.
The experimental analysis shows that the YNet network ar-

chitecture we constructed can effectively improve medical
image segmentation performance, which provides essential
technical support for doctors’ decision-making in clinical
diagnosis.
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