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Abstract

Personalized or customized text-to-image (T2I) mod-
els not only produce lifelike and varied visuals but also
allow users to tailor the images to fit their personal
taste. These customization techniques can grasp the
essence of a concept through a collection of images, or
adjust a pre-trained text-to-image model with a specific
image input for subject-driven. Yet, accurately cap-
turing the distinct visual attributes of a single image
poses a challenge for these methods. To address this
issue, we introduce SingleDream, a novel parameter-
efficient fine-tuning method which only utilizes a sin-
gle reference image for attribute-driven T2I customiza-
tion. A novel hypernetwork-enhanced attribute-aware
fine-tuning approach is employed to achieve the pre-
cise learning of various attributes, including style, ap-
pearance and shape, from the reference image. Com-
paring to existing image customization methods, our
method shows significant superiority in attribute-driven
T2I customization generation.

Keywords: Attribute-driven generation, attribute disen-
tanglement, text-to-image customization, hypernetwork.

1. Introduction

Over the recent years, significant progress has been ob-
served in the area of customized T2I generation [7, 19, 13,
11, 8, 29, 20, 5, 23, 12, 2, 30, 9]. These advancements
in generative models have not only facilitated the genera-
tion of images that are both realistic and varied, but have
also empowered users to shape these images to align with
their personal visual preferences, i.e., image customization.
Recent customization methods have followed two main ap-
proaches: one focuses on extracting the essence of a unified
concept from image sets to generate new images via text
prompts [19, 13, 7, 23], while the other integrates specific
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subjects into pre-trained text-to-image diffusion models us-
ing image encoders, enabling one-shot subject-aware cus-
tomization [29, 9, 24]. Moreover, increasing attention has
been directed towards attribute-driven customization tech-
niques [7, 28, 24, 35], which enable fine-grained customiza-
tion of specific visual attributes, thereby enhancing user
control and flexibility in generated content.

Specifically, Gal et al. [7] observe that the shallow layers
of the denoising U-net structures within diffusion models
tend to generate colors and materials, while the deep lay-
ers provide semantic guidance. They use only 3-5 images
to learn a user-provided concept and represent it using new
“words” in the embedding space of a frozen text-to-image
model. P+ [28] extends a single text prompt into multiple
prompts and injects them into different cross-attention lay-
ers of U-net to decouple visual attributes like style, color
and structure. However, P+ [28] requires multiple reference
images of a specific subject, which can be hard to collect.
On the other hand, StyleDrop [24] allows one-shot style-
aware customization of text-to-image synthesis, by tuning a
specific subset of parameters of a diffusion model. ProSpect
[35] discovered that attribute generation is closely related
to different stages of the sampling process. By dividing the
sampling phase into 10 sub-stages, it was observed that the
early stages primarily focus on learning the layout, while
the later stages are dedicated to learning appearance, tex-
ture, and other finer details.

However, these attribute-driven approaches still face sev-
eral limitations. First, methods like P+ [28] require multi-
ple reference images, which can be challenging for users
to collect when targeting specific attributes. Second, meth-
ods like ProSpect [35] face challenges in disentangling at-
tributes, as the sampling stages for different attributes may
overlap, causing multiple attributes to become entangled.
These limitations significantly hinder the accurate capture
and learning of diverse visual attributes, resulting in subop-
timal attribute customization outcomes.

In this paper, our goal is to achieve efficient and well-
disentangled attribute-driven customization by fine-tuning
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Figure 1: Our method enables text-to-image customization driven by style (see a), appearance (see b), and shape (see c), all
using just a single reference image, as demonstrated within the dashed frame.

pre-trained text-to-image diffusion models with only a sin-
gle reference image. We focus on three important visual
attributes in an image: global-level style attributes (see Fig-
ure 1.a), object-level appearance attributes (see Figure 1.b),
and structure-related shape attributes (see Figure 1.c). To
this end, we propose SingleDream, a simple yet effective
hypernetwork-enhanced attribute-aware fine-tuning method
for attribute-driven T2I customization. Initially, we propose
an attribute-aware fine-tuning approach, which differs from
the conventional methods in [13, 19] by selectively fine-
tuning layers associated with specific attributes. To iden-
tify the layers relevant to each attribute in the U-Net, we
performed a detailed analysis of U-Net for attribute-aware
fine-tuning. Our findings show that the encoder primarily
captures structure-related information, such as shape, while
the decoder is more sensitive to appearance and style at-
tributes. However, applying the attribute-aware fine-tuning
method to a single reference image still results in severe
overfitting and the failure of attribute learning. To address
this, we propose a hypernetwork-enhanced attribute-aware
fine-tuning approach, which employs a lightweight hyper-
network to modulate and refine the U-Net’s weights. This
strategy not only ensures smoother parameter updates and
reduces the risk of overfitting, but also effectively identi-
fies and represents the desired attributes from the reference
image.

Our method enables T2I customization driven by three
distinct attributes: style, appearance, and shape, resulting
in diverse image outputs. Additionally, it supports flexible
control over attribute customization strength through simple
hyperparameter adjustments. Finally, our approach allows
for attribute mixing, such as style mixing, this further high-
lights the enhanced generative diversity and creative poten-

tial of our method.
We evaluate our method against existing approaches on

a dataset specifically curated for attribute-driven T2I cus-
tomization. Both quantitative and qualitative results demon-
strate the superiority of our approach.

In summary, the key contributions of our work are out-
lined as follows:

• We introduce SingleDream, a streamlined and highly
efficient approach that uses only a single reference im-
age for attribute-driven T2I customization.

• We propose an attribute-aware fine-tuning method and
analyze the distinct roles of the encoder and decoder
in the diffusion U-Net for attribute learning. Addi-
tionally, we incorporate a lightweight hypernetwork
to mitigate the risk of overfitting during single-image
fine-tuning while enabling precise attribute learning.

• Through comprehensive quantitative and qualitative
evaluation, we show that our method significantly out-
performs existing image customization methods on
attribute-driven T2I customization.

2. Related Works

Personalized T2I Generation. Recent studies [25, 16, 4,
26, 32, 31, 10] have pivoted towards using visual exemplars
as a cornerstone for image generation to navigate the in-
herent vagueness and unpredictability associated with text-
based prompts. This methodology emphasizes the use of
one or more reference images as a primary guide, moving
away from the exclusive dependence on textual descriptions
for synthesizing images. Nonetheless, these approaches
tend to concentrate on capturing the general essence of the



reference image, such as its objects or subjects, without the
capacity for attribute-driven T2I customization. Further-
more, several methodologies [32, 10] are characterized by
their substantial training demands, requiring extensive fine-
tuning across vast datasets to enable the use of visual images
as conditional inputs for Stable Diffusion. In contrast, our
proposed method seeks to overcome the limitations associ-
ated with extracting multiple visual attributes from a single
reference image.

Parameter Efficient Fine Tuning (PEFT). PEFT rep-
resents an innovative approach in the refinement of deep
learning models, emphasizing the adjustment of a subset
of parameters rather than the entire model. These param-
eters are identified as either specific subsets from the orig-
inally trained model or a minimal number of newly in-
troduced parameters during the fine-tuning phase. PEFT
has been applied in text-to-image diffusion models [22, 18]
through techniques such as LoRA [21] and adapter tuning
[15, 33, 29, 6, 14]. To facilitate the adaptation of pre-trained
T2I generators to visual inputs, ELITE [29] fine-tunes the
attention layer parameters, while UMM-Diffusion [14] in-
troduces a visual mapping layer, keeping the pre-trained
generator’s weights unchanged. SuTI [6] enables personal-
ized image generation without the need for test-time fine-
tuning by leveraging a vast dataset of images created by
subject-specific expert models. Unlike these approaches,
our method utilizes a lightweight hypernetwork to adjust
and refine an attribute-specific subset of pre-trained param-
eters within the Diffusion U-net.

Many-Shot T2I Customization. Many-shot techniques
[3, 27, 34] necessitate the training of either the diffusion
model itself or its conditioning branch to facilitate cus-
tomized T2I generation, relying on extensive datasets or
a handful of examples for training. DreamBooth [19]
introduces a methodology for embedding a new subject
into the existing model architecture without compromising
the model’s original capabilities, by training the diffusion
model with reference samples. In contrast, SuTI [6] begins
by assembling a substantial dataset of input images paired
with their recontextualized counterparts generated via the
standard DreamBooth procedure. InstantBooth [23] devises
a novel conditioning branch within the diffusion model, en-
abling customization with a limited set of images to produce
tailored outputs across various styles. FastComposer [30]
employs an image encoder to derive subject-specific em-
beddings, addressing the challenge of identity preservation
when generating images with multiple subjects. Diverging
from these many-shot strategies, our research concentrates
on achieving attribute-driven T2I customization with a one-
shot approach.

3. Method

Given a single reference image, our goal is to distin-
guish, separate and learn different visual attributes, includ-
ing style, appearance and shape, and to facilitate the gener-
ation of attribute-driven T2I customization. To achieve this
goal, we propose SingleDream, as illustrated in Figure 2.

In the following sections, we first introduce the prelim-
inaries of Stable Diffusion [18] in Section 3.1. In Section
3.2, we provide a detailed explanation of SingleDream. Fi-
nally, we present the implementation details in Section 3.3.

3.1. Preliminary

Stable Diffusion. Stable Diffusion [18], a state-of-the-art
T2I generation model, operates within a low-dimensional
latent space. It begins by encoding an input image x into
a latent representation z using a VAE encoder. Noise ϵ is
then introduced at time step t to create a noisy latent zt.
To guide the generation process with text conditions, Stable
Diffusion incorporates a CLIP text encoder τ to encode tex-
tual prompts c, which are integrated into the cross-attention
layers for interaction with the noisy latents. Finally, a con-
ditional U-Net backbone ϵθ is trained to predict the noise ϵ.
The training objectives is as follows:

LSD(θ) := Et,x0,ϵ

[
∥ϵ− ϵθ(zt, t, τ(c))∥2

]
. (1)

3.2. SingleDream Framework

As shown in Figure 2, our method architecture is stream-
lined and highly efficient. We propose an attribute-aware
fine-tuning approach to identify and fine-tune attribute-
related network layers. To further mitigate the overfitting
issue during single-image fine-tuning, we incorporate a hy-
pernetwork to refine and modulate parameter updates for
enhancing attribute-aware fine-tuning. For more details,
please refer to the following sections.
Attribute-Aware Fine-Tuning Traditional fine-tuning
methods [19, 13] primarily focus on learning object con-
cepts. Directly adapting these methods to attribute-driven
customization tasks often results in the entanglement of var-
ious visual attributes. To address this issue, we propose an
attribute-aware fine-tuning approach, where the key idea is
to fine-tune only the network layers associated with specific
attributes, rather than applying global fine-tuning. In order
to perform attribute-aware fine-tuning, we first need to iden-
tify the network layers relevant to specific attributes. We
consider that the representation spaces of different visual at-
tributes emphasize different aspects of information and fea-
tures. Style attributes capture the overall stylistic character-
istics of an image, appearance attributes focus on intricate
details such as texture, color, and material, while shape at-
tributes primarily represent low-level visual features. As a
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Figure 2: SingleDream pipeline. Our method requires only one reference image as input, and we introduce a hypernetwork-
enhanced attribute-aware fine-tuning approach to adjust the parameters of the U-net encoder or decoder for efficient attribute-
driven T2I customization.
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Figure 3: An illustration showing the distinct roles of the
encoder and decoder in the diffusion U-Net for learning dif-
ferent attributes.

result, these attributes require specialized learning within
distinct network modules.

Based on the above considerations, we conducted a sim-
ple experiment using the Stable Diffusion model [18]. As
shown in Figure 3, we selected a reference image and the
corresponding text prompt to fine-tune different modules of
the U-net, specifically the encoder or decoder. We then used

the fine-tuned model to generate images.

We observe that when fine-tuning the decoder leads to
images with similar style (see Figure 3, 1st row) or appear-
ance (see Figure 3, 2rd row), whereas fine-tuning the en-
coder (see Figure 3, 3nd row), the generated images exhibit
similar shape to reference dog. This experiment further val-
idates our idea that different visual attributes are learned by
distinct network modules.

However, we found that attribute-aware fine-tuning tends
to suffer from severe overfitting when fine-tuning on a sin-
gle image. To address this issue, we propose an efficient
hypernetwork-enhanced attribute-aware fine-tuning method
that achieves smoother parameter updates, effectively miti-
gating the risk of overfitting.

Hypernetwork-Enhanced Attribute-Aware Fine-
Tuning. To address the above limitations, we employ a
efficient hypernetwork to enhance attribute-aware fine-
tuning mechanism, where the core idea is to utilize a
lightweight hypernetwork to modulate and guide the
parameter updates of U-net’s encoder or decoder, rather
than performing direct fine-tuning. Essentially, the hyper-
network is trained to guide the updates of the main network
parameters in a low-rank, smooth manner. The structure of
the hypernetwork is highly lightweight, consisting of only
four linear layers, as shown in Figure 4. We follow the
architecture of E4T [9] weight offsets prediction module
for the construction of our hypernetwork. The module
takes as input a learnable constant cons (default-initialized
to 1) and the dimension information [dimr, dimc] of the
target weight parameters. It is then trained to predict
weight offsets in the same dimensions as the target weight
parameters. Here, dimr represents the number of rows
of the target weight parameters, and dimc represents the
number of columns. In detail, the learnable constant



Le
ar

ne
d 

Co
ns

ta
nt

s

Li
ne

ar
 L

ay
er

Li
ne

ar
 L

ay
er

M
at

rix
 m

ul
tip

lic
at

io
n

Co
lu

m
-w

is
e 

Li
ne

ar
 L

ay
er

Ro
w

-w
is

e 
Li

ne
ar

 L
ay

er

[1
,1
]

[1
,1
]

[1
,𝑑
𝑖𝑚

௥
௢
௪
]

[1
,𝑑
𝑖𝑚

௖
௢
௟]

[𝑑
𝑖𝑚

௥
௢
௪
,𝑑
𝑖𝑚

௖
௢
௟]

[𝑑
𝑖𝑚

௥
௢
௪
,𝑑
𝑖𝑚

௖
௢
௟]

[𝑑
𝑖𝑚

௥
௢
௪
,𝑑
𝑖𝑚

௖
௢
௟] Δ𝑤

Learned 
Constants

Linear Layer

Linear Layer

Colum-wise 
Linear Layer

Row-wise 
Linear Layer

[𝑑𝑖𝑚௥ , 𝑑𝑖𝑚௖]

Figure 4: The architecture of hypernetwork.

passes through two linear layers, yielding outputs that are
multiplied to derive the initial weight offset matrix. Row
and column transformations are then applied to this matrix
to obtain the final weight offset matrix ∆w. As discussed in
the literatures [9, 13, 29], the weights of self-attention and
cross-attention play a crucial role in the process of image
customization. Therefore, we utilize the hypernetwork as
a weight offsets prediction module to modulate and guide
the updates of attention-related weights within the encoder
or decoder. The high-level parameter update process is
defined as follows:

∆w = hypernetwork(cons, dimr, dimc), (2)
w∗

attn = wattn + λ ∗∆w, (3)

the wattn denotes the general term for the attention-related
parameters, which includes the query matrix, key matrix
and value matrix for self-attention and cross-attention lay-
ers. λ is a weight coefficient that is used to regulate the
updating strength of parameters. During training, we set λ
to 1.0. Once training is complete, during inference genera-
tion, we can adjust the value of λ to control the strength of
attribute customization.

This efficient fine-tuning approach greatly reduces the
risk of overfitting when fine-tuning on a single reference im-
age, while also achieving high-quality, attribute-driven T2I
customization generation.
Loss Function. To guide the customization and learning
of attributes, we employ the original noise prediction loss
function, which is expressed as:

LOSTAF (θ) := Et,x0,ϵ

[
∥ϵ− ϵθ(xt, t, τ(c))∥2

]
. (4)

Note that θ denotes the parameters of the encoder or de-
coder and the corresponding hypernetwork, ϵ denotes the
noise, zt represents the latent of input image at time t, t de-
notes the current time step, τ(c) represents the encoding of
the input text prompt c using the text encoder τ of the CLIP
model.

3.3. Implementation Details

We employ Stable Diffusion 1.4 [18] as our base model.
During the training process, the visual encoder and text
encoder are kept frozen. We only require a single refer-
ence image without the need for any annotation informa-
tion. The input text prompt is in the form of ”a class name
in the style/appearance/shape of *s/*a/*m”. For style and
appearance-driven T2I customization, the decoder compo-
nent will be fine-tuned. To enhance the model’s robust-
ness, random cropping and horizontal flipping augmenta-
tions are applied. For shape attribute customization, the en-
coder module will be fine-tuned, and only resize augmen-
tation will be applied. Our model is trained on a single
NVIDIA A40 GPU with a batch size of 1 and a learning
rate set to 1e-6. The fine-tuning steps and time for each
reference image may vary slightly. On average, about 1000
iterations are required for attribute-focused customized gen-
eration. This process typically takes around 10 minutes to
complete, compared to more than 20 minutes for Prospect
[35] and P+ [28].

4. Experiments

4.1. Attribute Benchmark

Attribute Benchmark. There exists a shortage of ded-
icated datasets for the evaluation of attribute-driven T2I
customization generation. Therefore, we collect and intro-
duce a novel benchmark known as the ”Attribute Bench-
mark”. This benchmark consists of three sub-datasets: a
style dataset with 13 images, a shape dataset with 13 im-
ages, and an appearance dataset with 12 images.
Evaluation Metrics. We employ CLIP-T score and user
study ratings for evaluating style-driven T2I customization,
while for appearance-driven T2I customization, we utilize
CLIP-T score, Gram matrix distances, and DINO similarity
score. For shape-driven T2I customization, we use CLIP-T
and IoU scores. The IoU score quantifies the shape consis-
tency between binary masks extracted from generated im-
ages and reference images. The CLIP-T score measures
the similarity between the generated images and textual
prompts. The Gram matrix distance can assess appearance
similarity, as explained in [1], while the DINO similarity
score evaluates the consistency of appearance attributes be-
tween generated and reference images using DINO CLS
features [10].
Comparison Methods. For style-driven T2I customization
generation, we compare our method against several state-
of-the-art approaches, including ProSpect [35], StyleDrop
[24], and DEADiff [17]. For appearance and shape-driven
T2I customization, we evaluate our method in comparison
to Dreambooth [19], Custom Diffusion [13], ProSpect [35],
and P+ [28].



Style Reference A photo of a windmill in an open field, A photo of a clock on a wooden desk

A photo of a snowy mountain range, A photo of a horse grazing in a field

A photo of a book open on a chair, A photo of a cottage in the countryside

A photo of a river flowing through a valley, A photo of a bridge over a river

A photo of a snowy mountain range, A photo of a cat lying on a windowsill

Ours DEADiff StyleDrop ProSpect

Figure 5: Qualitative comparison between our method and other approaches in terms of style-driven T2I customization.

4.2. Quantitative Experiments

Comparison on Style Customization. For each style ref-
erence image, we generated 20 text prompts covering cate-
gories such as animals, plants, objects, and scenes. Style-
driven T2I customization generation was then performed
based on these prompts. Each method utilized 13 style ref-
erence images, generating 20 images per style, resulting in
a total of 260 images. To evaluate the text alignment be-
tween the generated images and the prompts, we computed
the CLIP image-text similarity score (CLIP-T). Our method
achieved the highest CLIP-T score (0.2800), demonstrat-
ing superior text consistency. Additionally, to assess style
alignment, we conducted a user study, with detailed results
provided in the ”User Study” section.

Comparison on Shape and Appearance Customiza-
tion. We individually trained DreamBooth[19], Custom
Diffusion[13], Prospect[35], P+[28] and our method on
the Attribute Benchmark dataset. For Dreambooth[19]
and Custom Diffusion[13], we have adapted the text
prompts required during training to ”a class name in
the shape/appearance of *.” for attribute learning. For
Prospect[35] and P+[28], we have adopted the same train-
ing and testing techniques as outlined in the original pa-

Table 1: Quantitative comparison with respect to the SOTA
methods on style-driven T2I customization task.

Metric Style-Driven T2I Customization
Method CLIP-T ↑ User Study ↑

ProSpect [35] 0.2259 0.1452
StyleDrop [24] 0.2668 0.0419
DEADiff [17] 0.2679 0.2968

Ours 0.2800 0.5161

per. For each reference image, we utilized approximately
three distinct textual prompts, resulting in three generated
images per text prompt. In total, each method underwent
testing and produced 216 images, with 93 images dedi-
cated to shape attribute and 123 images for appearance at-
tribute. As shown in Table 2, Dreambooth [19] and Custom
Diffusion [13] fall short in achieving excellent attribute-
driven T2I customization. Furthermore, the reliance on
multiple reference images for DreamBooth[19] and Custom
Diffusion[13] poses a catastrophic overfitting when fine-
tuning on a single reference image. In comparison with
Prospect[35] and P+ [28], our method achieves more signif-



Table 2: Quantitative comparison with respect to other methods for shape and appearance-driven T2I customization.

Metric Appearance-Driven T2I Customization Shape-Driven T2I Customization
Method CLIP-T ↑ DINO Similarity ↑ Gram Matrics ↓ User Study ↑ CLIP-T ↑ IoU Score ↑ User Study ↑

DreamBooth [19] 0.2681 0.2671 0.0864 0.0305 0.2791 0.3524 0.0307
Custom Diffusion [13] 0.2710 0.2977 0.0817 0.0111 0.2844 0.3691 0.0307

Prospect [35] 0.2800 0.3849 0.0842 0.1224 0.2795 0.4656 0.2665
P+ [28] 0.2791 0.3654 0.0841 0.2194 0.2831 0.4566 0.2850

Ours 0.2822 0.4149 0.0791 0.6166 0.2798 0.4938 0.3871

Phone case, Suitcase

Vase, Phone case

Chicken, Eagle

Man, Girl

Ours P+ Dreambooth Custom Diffusion Prospect

Marble, Cherry cake
Shape 

Reference

Ours P+ Dreambooth Custom Diffusion Prospect

Cushion, Dress

Appearance
Reference

Figure 6: Qualitative comparisons with respect to existing methods for appearance and shape-driven T2I customization.
Above dashed line: appearance customization. Below dashed line: shape customization.

icant improvements in DINO similarity (0.4149), Gram ma-
trix distance (0.0791), and IoU score (0.4938), highlighting
the superior attribute-driven T2I customization capabilities
of our method.

User Study. We conducted 30 user studies for each task:
style-driven, appearance-driven, and shape-driven T2I cus-
tomization. Participants were shown a series of reference

images alongside generated images from various methods,
each accompanied by the corresponding text descriptions.
For style customization, we randomly selected 10 style ref-
erence images and generated one image for each using a
randomly chosen text prompt. Users were instructed to
select the image that best matched the visual style of the
reference while remaining consistent with the text. In ap-
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Phone case Ice-creamIce-cream Cushion

Wolf Husky

A man riding a snowboard A panda eating bamboo A castle A horse

Style
Appearance

Shape

Figure 7: The diverse generation results of our method. Top: style-driven T2I customization. Middle: appearance-driven T2I
customization. Bottom: shape-driven T2I customization.

𝜆 = 0

Appearance

Shape A cushion in the appearance of *a

A husky in the shape of *m

Style

𝜆 = 1

A dog in the style of *s

Figure 8: The generation results of our method under dif-
ferent λ settings.

pearance customization, participants evaluated all reference
images and identified the image that best matched the ref-
erence in appearance, ensuring consistency with the ac-
companying text. For shape customization, we again used
all reference images. Users selected the image that most
closely aligned with the reference in terms of shape, while
also matching the textual description and displaying re-
alistic content. As shown in Table 1 and Table 2, our
method achieved the highest user study scores in style, ap-
pearance, and shape-driven T2I customization compared to
other methods. This demonstrates that our approach out-
performs others in terms of human preference for attribute-

A dog A tree

A rabbit A cat

Figure 9: Our method supports style mixing of two different
styles for customized T2I generation.

driven T2I customization.

4.3. Qualitative Experiments

Comparison on Style Customization. We present quali-
tative results of style-driven T2I customization in Figure 5.
ProSpect struggles with insufficient decoupling of style at-
tributes due to multiple attributes sharing a sampling stage,
leading to incomplete separation of style features (see the
results in the fourth row of Figure 5). DEADiff generates
results with overly smooth styles, limited to color transfer,
while failing to capture other important stylistic elements
such as brushstrokes and lines. This suggests that extract-
ing style features via Q-Former is insufficient, resulting in
suboptimal style transfer outcomes. Although StyleDrop
demonstrates a solid understanding of text semantics, it per-
forms poorly in preserving style. In contrast, our method
not only effectively aligns with the semantic content of the
text prompts but also retains key stylistic information, high-
lighting its advantages in style-driven T2I customization
generation.
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Figure 10: The ablation results of hypernetwork-driven fine-tuning strategy.

Comparison on Shape and Appearance Customization.
As shown in Figure 6, we find that Dreambooth[19] and
Custom Diffusion[13] exhibit less precise attribute recog-
nition. P+ [28] struggles to recognize and learn shape and
appearance attributes, only capable of generating content
aligned with textual descriptions. Prospect[35] achieves
some degree of attribute-aware customization, but is lim-
ited to generating categories similar to the reference im-
age, such as woman-to-man or bird-to-chicken. In contrast,
our method can accurately identify target attributes while
also generating high-quality, cross-domain, text-controlled
attribute-driven customization results.
Diversity. We present a range of diverse generation results
to validate the diversity generation capability of our method.
As shown in Figure 7, our method achieves various results
for attribute-driven T2I customization, demonstrating its ex-
ceptional diversity generation capability.
Adjustable Attribute Customization Intensity. Our
method provides flexible control over attribute customiza-
tion intensity via the weight coefficient λ. In Figure 8, we
illustrate the impact of different λ values on customization
outcomes. Increasing λ results in closer alignment of the at-
tributes between the generated and the target images. This
capability enables users to finely adjust customization levels
by selecting suitable weights, a feature not found in alterna-
tive approaches.
Style Mixing As shown in the Figure 9, our method sup-
ports attribute mixing, such as creating a new style by
blending two existing styles. This capability not only fos-
ters more creative applications but also demonstrates the
broad adaptability and potential of our method in practical
use.

4.4. Ablation Study

We performed ablation studies to validate the effective-
ness of the hypernetwork-enhanced attribute-aware fine-
tuning method, as illustrated in Figure 10. Without this
method, the network struggled to capture the targeted im-
age attributes, often generating content that was irrelevant
to the intended attributes. However, with the hypernetwork
enabled, the network successfully learned and reproduced
the target attributes, producing images such as a castle in the

style of rain princess, a backpack that resembles a dress,
and a seated man. These outcomes demonstrate the efficacy
of the hypernetwork-driven attribute-aware fine-tuning ap-
proach.

5. Conclusions, Limitations and Future Work

We introduce SingleDream as a novel approach for
attribute-driven T2I customization based on a single ref-
erence image. Unlike existing subject-driven customiza-
tion methods, we propose an attribute-aware fine-tuning ap-
proach that focuses on adjusting the parameters of network
layers related to attributes. Furthermore, we introduce a
hypernetwork to predict and modulate model parameters
rather than directly fine-tuning them, which not only fur-
ther enhances the attribute-aware fine-tuning method but
also significantly reduces the risk of overfitting when fine-
tuning on a single image. Through comprehensive eval-
uation, our method outperforms existing solutions in the
domain of attribute-driven T2I customization. While our
method achieves efficiency by requiring only a single ref-
erence image for fine-tuning, the tuning time still exceeds
10 minutes, indicating room for improvement. Future work
will aim to accelerate the fine-tuning process and extend our
technique to video content, enabling more dynamic and de-
tailed attribute customization.
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