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Abstract

Occlusions hinder point cloud frame alignment in Li-
DAR data, a challenge inadequately addressed by scene
flow models tested mainly on occlusion-free datasets.

Attempts to integrate occlusion handling within net-
works often suffer accuracy issues due to two main
limitations: a) the inadequate use of occlusion infor-
mation, often merging it with flow estimation with-
out an effective integration strategy, and b) reliance on
distance-weighted upsampling that falls short in cor-
recting occlusion-related errors. To address these chal-
lenges, we introduce the Correlation Matrix Upsam-
pling Flownet (CMU-Flownet), incorporating an occlu-
sion estimation module within its cost volume layer,
alongside an Occlusion-aware Cost Volume (OCYV)
mechanism. Specifically, we propose an enhanced up-
sampling approach that expands the sensory field of the
sampling process which integrates a Correlation Matrix
designed to evaluate point-level similarity. Meanwhile,
our model robustly integrates occlusion data within the
context of scene flow, deploying this information strate-
gically during the refinement phase of the flow estima-
tion. The efficacy of this approach is demonstrated
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through subsequent experimental validation. Empirical
assessments reveal that CMU-Flownet establishes state-
of-the-art performance within the realms of occluded
Flyingthings3D and KITTY datasets, surpassing previ-
ous methodologies across a majority of evaluated met-
rics.

Keywords: Point Cloud, Scene Flow Estimaiton, Oc-
cluded Scenario

1. Introduction

The advent of deep neural networks promotes scene flow
estimation methodologies. A big breakthrough was realized
with the inception of FlowNet3D [8], a paradigm that har-
nessed the foundational principles of PointNet++ [17] for
the assimilation of local features into the fabric of scene
flow estimation. This development marked the application
of neural network architectures within this specialized do-
main. Subsequently, the development of HPLFlowNet [3]
introduced an innovative mechanism for the computation
of multi-scale correlations through the execution of upsam-
pling operations embedded within bilateral convolutional
layers. Building upon this, the work by [6] unveiled a pi-
oneering technique aimed at learning a singular iteration of
an unrolled iterative alignment procedure, thus enhancing
the precision of scene flow estimations. The introduction
of 3DFlow [24] heralded a new epoch in the domain, es-
tablishing new benchmarks in terms of 3D End Point Error
(EPE3D) and overall accuracy metrics.

Despite the substantial advancements achieved by these
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Figure 1. We illustrate the comparative methodology between conventional flow up-sampling techniques(left) and our proposed Matching
Up-sampling framework(right), termed as CMU. Red points indicate positions at time ¢, green points represent positions at time ¢ + 1, and
blue points signify areas that are occlued at time ¢. In contrast to previous methods that suffer from point mismatches due to their limited
sampling scope, our CMU modules broaden the sampling range, and employs a correlation matrix to evaluate similarity at the point level

to minimize errors.

neural network architectures, the challenge of occlusion re-
mains a significant impediment. In the context of point-to-
point matching tasks, occlusions introduce a critical issue:
points visible at a given moment ¢ may be obscured in the
subsequent frame ¢ 4 1 which may result in larger errors. In
response to this pervasive challenge, Recent academic en-
deavors have concentrated on the integration of occlusion-
aware mechanisms within the framework of neural network
models, aiming to refine their understanding and processing
of complex visual information by recognizing and account-
ing for occlusions. Zhao et al. [31] introduced an inno-
vative asymmetric occlusion-aware feature matching mod-
ule that is adept at learning a rudimentary occlusion mask.
Such a mask is capable of filtering out regions rendered
non-informative due to occlusion, immediately following
feature warping processes. Further contributing to the dis-
course on occlusion mitigation, Saxena et al. [18] unveiled
a pioneering self-supervised strategy aimed at the predic-
tion of occlusions directly from image data. This methodol-
ogy represents a paradigm shift towards leveraging inherent
image characteristics to infer occlusion patterns, thus facil-
itating a more nuanced and accurate scene interpretation.
The integration of occlusion estimation with scene flow
estimation in point clouds represents a significant stride to-
wards addressing the occlusion challenges in dynamic 3D
scenes. Ouyang et al. [14] pioneered this approach by advo-
cating for the exclusion of computed Cost Volume for points
identified as occluded, thereby mitigating the detrimental
effects of occlusions on scene flow accuracy. This method-
ology marked the inception of occlusion-aware scene flow
estimation, illustrating the feasibility and importance of oc-
clusion consideration within this domain. Building upon

this foundation, Wang et al. [26] further advanced the field
by proposing a network architecture that features novel spa-
tial and temporal abstraction layers, both augmented with
an attention mechanism. This architecture also integrates
an occlusion prediction module, enhancing the network’s
ability to discern and appropriately account for occluded
regions within the point cloud. This addition not only im-
proves the robustness of scene flow estimation against oc-
clusions but also paves the way for more sophisticated han-
dling of temporal and spatial dynamics. In a further evo-
lution of this domain, Zhai et al. [30] introduced a cross-
transformer model designed to capture more reliable depen-
dencies between point pairs across frames. Integral to this
model is the inclusion of occlusion predictions within both
the network architecture and the loss function.

The integration of occlusion estimation with flow pre-
diction methodologies has indeed marked a forward leap
in tackling the complexities of dynamic 3D scene analy-
sis. However, a discernible performance dichotomy per-
sists between occluded and non-occluded dataset evalua-
tions. Upon a meticulous examination of contemporary al-
gorithms, several critical limitations have been identified,
contributing to performance inefficacy within occluded en-
vironments. Firstly, there exists an overarching deficiency
in the comprehensive exploitation of occlusion information.
This is primarily manifested in the prevalent approach of
coupling occlusion estimation with flow prediction tasks,
which often lacks a nuanced strategy for their integration.
Predominantly, recent models, Wang et al. [26] and Zhai
et al. [30], employ a multitasking framework that concur-
rently executes occlusion and flow prediction, yet may not
fully leverage the potential synergies between these tasks.



As noted in the studies by Cheng et al. [2] and Wang et al.
[24], opt to overlook the information of occlusion, adopt-
ing a uniform treatment across all points within the scene.
Moreover, while Ouyang et al. [14] innovatively apply oc-
clusion data toward the refinement of Cost Volume feature
extraction, the outcomes have yet to meet the anticipated
benchmarks of efficacy.

Otherwise, the acquisition of multi-scale point cloud
features is a cornerstone in the development of advanced
scene flow estimation models, with a prevalent reliance on
a coarse-to-fine paradigm for both downsampling and up-
sampling processes, as demonstrated in seminal works by
Wu et al. [29], Ouyang et al. [14], and Zhao et al. [31].
This approach, while effective in a broad range of scenarios,
predominantly utilizes a method of weighted upsampling
based on Euclidean distances. Specifically, it involves the
acquisition and weighted averaging of flow vectors from K
neighboring points, a technique predicated on spatial prox-
imities. However, this prevailing strategy exhibits draw-
backs in the context of occluded datasets, where the sim-
plistic nature of the upsampling mechanism can inadver-
tently amalgamate the flow of occluded points with those
of unoccluded points. This scenario underscores a critical
limitation in the current methodology, whereby the simplis-
tic Euclidean-based upsampling fails to discern between oc-
cluded and non-occluded points, leading to an elevation in
error rates within occluded scenarios.

Based on the shortcomings of previous models, as Fig-
ure.l shown, we introduce the Correlation Matrix Upsam-
pling Flownet (CMU-Flownet), a novel architecture which
follows the coarse-to-fine paradigm. Our model incorpo-
rates an occlusion estimation module within its cost volume
layer, alongside an Occlusion-aware Cost Volume (OCV)
mechanism. Additionally, we propose an enhanced upsam-
pling approach that expands the sensory field of the sam-
pling process which integrate an Correlation Matrix de-
signed to evaluate point-level similarity. Empirical evalu-
ations demonstrate that CMU-Flownet sets a new bench-
mark for state-of-the-art performance in occluded Flyingth-
ings3D and Kitti dataset. The key contributions of our study
are outlined as follows:

* We introduce a new Occlusion-aware Cost Volume
(OCV) methodology to detect the occluded points and
perform feature extraction, passing the cost volume
containing the occlusion information to the flow pre-
diction module.

* We propose Correlation Matrix Upsampling (CMU)
module based on geometric structures and point fea-
tures. This is a plug-and-play module that can be in-
tegrated into any flow prediction task. Experiments
show that our up-sampling structure is more accurate
than the traditional approach.

* Our method outperforms previous pyramidal struc-
tures on the occluded Flyingthings3d and Kitti
datasets, further improving the performance of the
neural network in occluded scenarios.

2. Related Work

Scene Flow Estimation. The concept of scene flow was
first articulated by Vedula et al. in [22]. Scene flow, distinct
from the 2D optical flow that delineates the movement tra-
jectories of image pixels, is conceptualized as a vector char-
acterizing the motion of three-dimensional objects. Early
research in this field [5, 11, 7, 23, 1] predominantly utilized
RGB data. Notably, Huguet and Devernay [5] introduced a
variational approach to estimate scene flow from stereo se-
quences, while Vogel et al. [23] presented a piece-wise rigid
scene model for 3D flow estimation. Menze and Geiger [1 1]
advanced the field by proposing an object-level scene flow
estimation method, alongside introducing a dataset specif-
ically for 3D scene flow. The advent of deep learning her-
alded transformative approaches in scene flow estimation.
PointNet [16], as a pioneering work, utilized convolutional
operations for point cloud feature learning, which was fur-
ther refined by PointNet++ [17] through feature extraction
from local domains. Subsequent studies [8, 15, 29, 24]
have achieved impressive results in scene flow estimation.
FlowNet3D [8], for instance, leverages PointNet++ [17] for
feature extraction and introduces a flow embedding layer
to capture and propagate correlations between point clouds
for flow estimation. Puy et al. [15] employed optimal trans-
port for constructing point matches between sequences. Wu
et al. [29] proposed a cost volume module for processing
large motions in 3D point clouds, while Wang et al. [24]
innovated an all-to-all flow embedding layer with backward
reliability validation to address consistency issues in initial
scene flow estimation.

Cost Volume. The advent of Cost Volume as a trans-
formative tool in the optical flow domain has catalyzed in-
novative developments in scene flow estimation. Wu et
al. [29] were at the forefront of this evolution, pioneer-
ing the integration of a Cost Volume module that predicts
scene flow by constructing cost volumes at each level of
the feature pyramid. To effectively accommodate large mo-
tions, the PointPWC-Net introduced a coarse-to-fine strat-
egy, which involves concatenating features at level L with
the upsampled features from level L + 1, thereby enhancing
motion capture capabilities across different scales. Build-
ing upon this foundational pyramid structure, subsequent
research endeavors have sought to refine and extend the util-
ity of the cost volume concept. Wei et al. [28] proposed a
groundbreaking approach that utilizes correlation volumes
as a means to circumvent the limitations inherent in previ-
ous cost-volume based methodologies, specifically target-
ing the mitigation of error accumulation issues. Further,



Cheng et al. [2] drew inspiration from the upsampling and
warping layers of PointPWC-Net [29], applying these tech-
niques to enhance the fidelity of scene flow predictions.In a
significant leap forward, Wang et al. [24] introduced an in-
novative all-to-all flow embedding layer, accompanied by a
backward reliability validation mechanism. This approach
is designed to tackle consistency challenges encountered in
initial scene flow estimations, thereby setting new bench-
marks for performance within the field at the time of its
introduction.

Occlusion in Flow Estimation. The domain of opti-
cal flow estimation has witnessed significant advancements
through the adept handling of occlusions. Drawing inspi-
ration from these successes, Ouyang et al. [14] embarked
on an innovative endeavor to harness occlusion data for
enhancing Cost Volume feature extraction methodologies.
Despite these efforts, the achieved outcomes have yet to ful-
fill the anticipated efficacy benchmarks. This has led to the
incorporation of occlusion prediction modules within net-
work architectures emerging as a pivotal strategy for aug-
menting accuracy in flow estimation tasks.Subsequent de-
velopments have seen scholars like Wang et al. [26] and
Zhai et al. [30] integrating this methodology into their mod-
els, thereby embedding occlusion prediction as a compo-
nent of the loss function. Empirical evaluations of this ap-
proach have validated its effectiveness. This dual-faceted
impact, wherein occlusion information for each point within
the point cloud is ascertainable, coupled with the synergistic
benefits of a multi-task fusion network architecture, fosters
a conducive environment for the point convolutional layers.
[27] adopts a subnet to predict the occlusion mask and ex-
plicitly masks those occluded points, which ensures flow
predictor to focus on estimating the motion flows of non-
occluded points. [9] propose a module based on the trans-
former, which utilizes local and global semantic similarity
to infer the motion information of occluded points.

3. Problem Formulation

Given two sequential point clouds of the identical scene,
represented as P = {(z;,p;) € R3i = 1,2,...,n} and
Q = {(yj,q;) € R*j = 1,2,...,n}, where x; and y;
are the coordinates of points in P and () respectively, and
p; and g; represent the feature attributes (such as color, nor-
mal vectors) at two different time frames. The objective is to
compute a 3D motion field F' = {f; € R3|i = 1,2,...,n},
which specifies the transformation vectors needed to align
P onto . This involves determining an optimal permuta-
tion matrix M from the set {0, 1}™*™ to satisfy the equation
P+ F = M@, aiming to closely approximate the motion
field F' to the ground truth F;; with high accuracy.

Concurrently, the analysis endeavors to ascertain the oc-
clusion status O(z;) for each point z; originating from the
first frame point cloud. Here, O(x;) = 1 indicates that the

point z; is unoccluded, while O(x;) = 0 indicates occlu-
sion. Distinguishing between occluded and non-occluded
states is crucial for improving the accuracy of the 3D mo-
tion field prediction, which allows for the adaptation to dy-
namic occlusion scenarios that are common in sequential
point cloud data.
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Figure 2. We take the traditional pyramid-type structure as the
overall framework of our model. Each frame of point cloud data
is processed through a hierarchical point feature abstraction mod-
ule consisting of four layers. Then a Correlation Matrix Upsam-
pling (CMU) module is employed for upsampling purposes, and
Occlusion-aware Cost Volume (OCV) is used for further refining
the flow. After iterating through these processes for a specified
number of loops, the model outputs the final predicted 3D motion
field.

4. Method

We take the traditional pyramid-type structure as the
overall framework of our model which is proven to be ef-
ficient in flow estimation task [29, 14, 24]. We take () and
P as inputs. Each frame of the point cloud data is processed
through a hierarchical point feature abstraction module that
consists of four layers. The abstraction process at each layer
employs Farthest Point Sampling (FPS) for downsampling
and uses PointConv [17]. The spatial coordinates of the
points at layer [ are denoted by z! and 3'. Feature inher-
itance is performed from the previous layer [ — 1, resulting
in the derived features p' and ¢'. This derivation involves
operations such as grouping, pooling, and the application
of weight-shared Multilayer Perceptrons (MLP). The sam-
pling ratio at each layer is set to be 1/4 of the preceding
layer, effectively reducing the number of points processed
and refined at each subsequent stage. The overall architec-
ture of CMU-Flownet is shown in 2.

After extracting features from successive Pointconv lay-
ers, we adopt a coarse-to-fine paradigm to obtain scene flow
at different scales progressively from one layer to the next.
Motivated by [24], we first apply the All-to-All Cost Vol-
ume at the bottom level of our network to build a correlation
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Figure 3. The picture shows the Correlation Matrix Upsampling (CMU) on the left and Flow Predictor on the right. Occlusion-aware Cost
Volume (OCV) is the feature extractor in Flow Predictor. We use CMU for upsample flow and refine the flow by Flow Predictor.

between two frames and learn the flow embedding. We then
used the Correlation Matrix Upsampling (CMU) module for
upsampling. We then add our proposed Occlusion-aware
Cost Volume (OCV) to further refine the flow. Compared to
the previous Cost Volume module, we add a masking pre-
diction component and incorporate the masking information
into the attention mechanism to obtain a more efficient cost
volume. After a few loops output the final result, the pre-
dicted scene flow F and the Binary mask O(x;).

In this section, we mainly discuss the proposed CMU
and OCV modules. Detailed implementation information
and schematic diagrams for all components discussed are
provided in the supplementary materials.

4.1. Correlation Matrix Upsampling

Most point cloud processing methods follow a coarse-
to-fine paradigm. Various upsampling strategies have been
used to construct scene flow fields from sparse levels to
dense levels with proper weights. some work like [8, 29, 14]
et. al. predict flow based on trilinear interpolation upsam-
pling, it is simple and efficient, but can lead to error ac-
cumulation, especially in occluded datasets. [4, 25] pro-
posed an intra-frame patch features based method which
uses interpolation functions to represent the distances be-
tween each point and its neighboring points. The proposal
of this method has improved some accuracy, but it is still
unable to adapt to complex occlusion Scenario and larger
sensory field. Inspired by [19] which use features to up-
date superpoints, we productively propose an enhanced up-
sampling approach that expands the sensory field of the
sampling process which integrate an Correlation Matrix de-
signed to evaluate point-level similarity.

Our method attempts to generate an upsampling flow
that satisfies the following requirements: (1) Neighbouring
points are with similar flow patterns; (2) Points with sim-
ilar characteristics share similar flow. Thus, we introduce
graph-structure based coding on the point cloud to extract
point cloud features. First, we construct the graph structure
at the point level, where the edges of the graph aggregate

information such as the position of the points, colour and
normal vector. Then we use setconv layer as encoder to
learn neighbourhood information, Combine the previously
obtained features p' and ¢'. Subsequently, we use MLP to
learn the similarity of different point features.

4.1.1 Flow-Graph Encoder

Graph Neural Networks (GNNSs) are a category of neural
networks designed specifically for processing data struc-
tured as graphs. Graphs are mathematical structures used
to model pairwise relations between objects, characterized
by vertices (nodes) and edges (links). Work in [20] demon-
strates the effectiveness of GNN in point cloud processing
tasks.

We take the upsampling process from ! + 1 to [ layer as
an example to illustrate the Correlation Matrix calculation.
Next, we define the graph structure as follows:

E' = {(af — M Ipip) | llaf — 25l <7} ()
Equation 1 represents the establishment of the graph struc-
ture. In Equation 1, E denotes the edge set in the graph
structure. We select the neighboring points around each
point and use their distance and feature differences as the
criteria for edge formation. pé“ and pé- denote the feature
in two different layers. || is the contact operator. Following
the methodology suggested by Kittenplon et al. [6], we en-
code edge features using three consecutive setconv layers
as our convolution mechanism.

In contrast to previous GNN methods, we introduce the
concept of spatial memory in the feature extractor. Spatial
memory has been effectively applied in the field of semantic
segmentation, where studies such as [21, 13] demonstrate
that sequential input outperforms single-frame input by en-
abling the neural network to incorporate temporal informa-
tion. While methods by [29, 14] utilize wrapped points to
gather neighborhood information across different frames,
our model diverges by leveraging this temporal and spatial
information specifically for flow upsampling. In the context



of scene flow estimation, which inherently carries temporal
data, our model attaches the coarse flow to point P at time
t — 1 and retains memory up to point () at time ¢, thus fa-
cilitating the learning of geometric information across time
intervals.
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At the beginning, we take the traditional approach to get

the initial coarse flow fl 1 And Ty,i denotes the it h point
in P wrapped by coarse flow, ! indicates the features of

w
point p,, ; with the memory module, and we keep points
to the next frame to learn the features of the surrounding
points. We use setconv layers to encode the features. g and
gw,: denotes the finished encoded feature. As previously
articulated in the formula, gfv’i denotes the feature which is

obtained from wrapped points.

g! = setconv(él), e; € E
3)
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4.1.2 Correlation Matrix

Flow consistency algorithms based on distance only can
lead to prediction errors because the motion patterns of ob-
ject boundary points are very different from those of sur-
rounding points. So we model based on Euclidean distances
and feature distances, the purpose of which is to reduce er-
rors. Let I denotes the total number of points in layer [,
and N denotes the N nearest neighbouring points around z!
(We set N = 32). Correlation Matrix is a module for learn-
ing point cloud similarity based on a feature encoder, where
we combine the temporal and spatial features learned in the
previous section to generate an I X N matrix that measures
the similarity between point levels.

Win = ( 1wa z) - ( l+1||xl+1)

Vin = (gz”gw,z) ( le1||gl+1) (4)
l l l l

Wi = (0il1P.0) — 0L 1P )

@i = MLP(u; )+ MLP(v; )+ MLP(w; )

Where a; ,, denotes the degree of similarity between the i*"
layer [ point and the n** layer [ + 1 point. Next, we as-
sign each point p; a similarity vector, We map the similarity
parameter to the interval [0, 1] as a weight for flow upsam-

pling.
a; n = softmax([a;1,ai2...

7ai,N])n (5)

We update the scene flow vector with the Correlation
Matrix that maps the ground truth labels to each point, ff“

means the i*" upsampling flow.

N
=3 ain* fiT (6)
n=1

The inclusion of correlation and weighted summation en-
sures that the upsampling process is both context-aware and
spatially precise, thereby improving the fidelity of scene
flow estimations in applications like 3D scene reconstruc-
tion and motion analysis.

4.2. Occlusion-aware Cost Volume
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Figure 4. Overview of Occlusion-aware Cost Volume (OCV) mod-
ule.

Mll&sm

() —> Embedding -}

Cost Volume, in Figure. 4, is a measure of correlation
between two frames of the point cloud. Previous work has
confirmed its validity. We introduce an attention mech-
anism that includes occlusion information based on past
models. Taking the computation of cost volume in layer [ as
an example, we proceed to describe its computation steps.

The inputs are the coordinates and features of point cloud
P and @ in layer [. Otherwise, we added the occlusion
O(z;) as input to capture information in different dimen-
sions. We first calculate the occlusion formula.

cost(ay, ;) = MLP(x; — y;lIpilla;)
O'(x:) = Sigmoid( MAX {cost(z},y})}) 7
o} =yl <r
Next, we learn the point cloud matching information for
two frames. Inspired by [25], we compute the two-frame
point cloud cost volume and then perform weighted average

pooling for this data in P!, which is to reduce the error due
to long distance matching.

Cvi(zl) = Z Weight, (t, yé) * MLP(cost(xLyé—))

[z} =yl <r

Z Weights(xt, a: ,0h) « MLP(C’Vl(;Ué-))
[} —ab || <r

(®)

Where Weight, and Weight, denote the weights func-

tion of each of the N proximity points about point xi. As



before, || denotes matrix contact operation. For simplicity,
O! represents O(z;).

4.3. Flow Refinement

We compute the obtained cost volume value, which is
used to refine the previously obtained upsampled flow ffm.
In addition to the cost volume, we add the upsampled flow
. » the occlusions O(z;), and the feature information p!.
Unlike [25, 24], we discard using flow encoding as the in-
formation and add the occlusion information, and experi-
ments show that our module reduces the computational cost

while improving the accuracy.
Afj =MLP(CV (z)|lpi|f..:||O(x:))
fil = 1le +Afl

4.4. Loss Fuction

)

At each layer, we can obtain the estimated occlusion
O(zl) and flow f!. We adopt a cyclic strategy to com-
pute the loss function for each layer and attach appropri-
ate weights. We divide the loss into two components, the
occlusion loss as well as the flow loss which is similar to

[14].

3
Lossy =) B' % [|O(x}) = Oge(a)|l
1=0

3 (10)
Lossy =3 B+ IIfi = fyr.ill2

1=0
Loss = a* Lossy + (1 — ) = Loss,

Where Loss, and Lossy represent the occlusion loss
and flow loss respectively.

5. Experiment
5.1. Experimental Setups

Dataset We conduct our experiments on FT3D,[10] and
KITTI,[11, 12] respectively. FlyingThings3D [10] is a syn-
thetic dataset for optical flow, disparity and scene flow esti-
mation. It consists of everyday objects flying along random-
ized 3D trajectories. In the field of point cloud scene flow
estimation, there are two commonly used data processing
methods. The first version is prepared by HPLFlowNet [4],
we denote these datasets without occluded points as FT3D;.
The second version is prepared by Flownet3D [8], we de-
note this occluded dataset as FT3D,. KITTI is a real-world
scene flow dataset with 200 pairs for which 142 are used
for testing without any fine-tuning. The KITTTI can also be
divided into occluded and non-occluded versions, named
KITTI; and KITTI,, respectively. To verify the effective-
ness of our model in occluded scenes, we take the process-
ing in Flownet3D [&] to generate the occluded datasets.

Details Our model is trained based on pytorch, using
NVIDIA GeForce RTX 3090 as the hardware device. we
train our model on synthetic FT3D, training data and eval-
uate it on both FT3D, test set and KITTI, without finetune.
Referring to most practices in the domain, we randomly
take 8192 points per batch in training. In terms of model
parameters, we set the upsampling range N = 32 and the
hyperparameters Bl as [0.02, 0.04, 0.08, 0.16], « as 0.8 for
training. We set the learning rate to 0.001 and the decay fac-
tor to 0.5, and decay in every 80 training epochs. We take
Adam as the optimizer with default values for all parame-
ters. In total, we train about 400 epochs.

Evaluation Metrics We test our model with four eval-
uation metrics, including End Point Error (EPE), Accuracy
Strict (AS), Accuracy Relax (AR), and Outliers (Out). We
denote the estimated scene flow and ground truth scene flow
as F' and Fy, respectively. EPE(m): [|[F — Fy||2 aver-
aged over all points. AS: the percentage of points whose
EPE <0.05m or relative error<5%. AR: the percentage of
points whose EPE <0.1m or relative error <10%. Out: the
percentage of points whose EPE > 0.3m or relative error >
10%.

Table 1. Comparison of our model with previous methods on the
occluded datasets FT3D,. In these models, DELFlow uses a mul-
timodal training approach where they use point clouds and images
as input.

Method sup. | EPE] | AST AR7T Out]
FlowNet3D full | 0.169 | 0.254 0.579 0.789
FLOT full | 0.156 | 0.343 0.643 0.700
PointPWC-Net | full | 0.155 | 0.416 0.699 0.639
OGSFNet full | 0.122 | 0.552 0.777 0.518
FESTA full | 0.111 | 0.431 0.744

FlowFormer full | 0.077 | 0.720 0.866 0.316
CamLiRAFT full | 0.076 | 0.794 0.904 0.279
3DFlowNet full | 0.063 | 0.791 0.909 0.279

Ours full | 0.052 | 0.843 0.927 0.212

Table 2. Comparison of our proposed method with previous meth-
ods on the occluded datasets KITTL,. As previous method do, we
train on FT3D, and test on KITTI, without any finetune.

Method sup. | EPE] | AST AR?T  Out]
FlowNet3D full | 0.173 | 0.276 0.609 0.649
FLOT full | 0.110 | 0.419 0.721 0.486
PointPWC-Net | full | 0.118 | 0.403 0.757 0.497
OGSFNet full | 0.075 | 0.706 0.869 0.328
FESTA full | 0.094 | 0.449 0.834 -

FlowFormer full | 0.074 | 0.784 0.883 0.262
3DFlowNet full | 0.073 | 0.819 0.890 0.261
Ours full | 0.065 | 0.856 0.911 0.221




(a) FlowNet3D (b) OGSFNet

(c) 3DFlowNet (d) Ours

Figure 5. Visualization on KITTI,, red points represent the position at time ¢t wrapped by predicted flow, green represent the position at
time ¢ + 1, and blue points indicate inaccurate predictions (measured by Acc3D Strict).

5.2. Performance On Occluded Dataset

We train our model in FT3D,, at the same time we
tested on the FT3D, test set and KITTI,, the results are
shown in Table 1. We compare our performance with
mainstream models in recent years, and our approach out-
performs all other methods (Note that we compare under
the occluded dataset). Our network improve performance
by about 57.4% compared to OGSFNet[14], a previous
model for occluded environments. Otherwise, we surpass
3DFlownet[24] by about 21.2%, which is the optimal al-
gorithm in recent years. Moreover, in a comparison with
the multimodal method DELFlow , we were able to ex-
ceed its performance when using only the point cloud as
input. Also, the experimental results on KITTI prove that
our model has generalisation ability. On EPE3D, we out-
perform 3DFlownet[24] 0.008. And there is a considerable
improvement in AS and AR, compared to the previous ad-
vanced method, we improve performance by about 4.5%
and 2.4%. On Outliers , we reduce the error rate by about
3% compared with the previous one, and such results show
that our model achieves a leading level in error control.

For the occlusion estimation, our model achieves a
93.6% accuracy on the FT3D,, it shows that our model can
effectively perceive the occlusion and avoid the error gen-
erated by the occlusion, which is one of the reasons for the
efficient performance of our model.

(@) 30-OGFow (b) FlowFormer (©) Ours

Figure 6. Visualization on KITTI,, red points represent the posi-
tion at time ¢ wrapped by predicted flow, green represent the posi-
tion at time ¢ + 1, and blue points indicate inaccurate predictions
(measured by Acc3D Strict).

5.3. Performance in Non-occluded Dataset

We train our model in quarter of FT3Dj, the results are
shown in Table 3 and 4. We compare our performance
with mainstream models in recent years, and our approach
yielded good results.

We keep the original model unchanged and remove the
part of the loss function about the occlusion information.
The results of our model are shown in 3 and 4. We can see
that we can still achieve good results in the non-occluded
dataset.

5.4. Ablation Study

To validate the effectiveness of our key components, we
perform ablation experiments on two proposed modules.



Table 3. Comparison of our model with previous methods on the
non-occluded datasets FT3D;.

Method | sup. [ EPE| | AST  ART  Out]
FlyingThings3D
FlowNet3D full | 0.177 | 0.374 0.668 0.527
FLOT full | 0.056 | 0.755 0.908 0.242
PointPWC-Net | full | 0.069 | 0.728 0.888 0.265
FlowStep3D full | 0.055 | 0.805 0.925 0.149
HALFlow full | 0.062 | 0.765 0.903 0.249
OGSFNet full | 0.036 | 0.879 - 0.197
Ours full | 0.031 | 0.913 0.977 0.158

Table 4. Comparison of our model with previous methods on the
non-occluded datasets FT3D;.

Method | sup. | EPE] | AST AR{  Out]
Kitti

FlowNet3D full | 0.114 | 0413 0.771 0.602
FLOT full | 0.052 | 0.732 0.927 0.357
PointPWC-Net | full | 0.059 | 0.738 0.928 0.342
FlowStep3D full | 0.046 | 0.816 0.961 0.217
HALFlow full | 0.051 | 0.781 0.944 0.309
OGSFNet full | 0.038 | 0.882 - 0.175
Ours full | 0.034 | 0.893 0.944 0.165

First we replace the CMU(Correlation Matrix Upsampling)
based upsampling algorithm with the most common trilin-
ear upsampling. Secondly, we use the Cost Volume mod-
ule, which also integrates occlusion prediction, to compare
with our OCV(Occlusion-aware Cost Volume). We replace
OCYV in the model with Cost Volume in [14] and test it.
We sequentially demonstrate the effectiveness of CMU and
OCV by arranging and combining the modules of the ex-
isting model with the traditional approach of the past. We
train the replaced model and the results are shown in table
5.

Table 5. The ablation experiment focuses on the two proposed
modules. We replace the CMU module with trilinear interpola-
tion upsampling and the OCV using the Cost Volume calculation

method in [14]. The experimental results show the effectiveness
of our modules.
Data. CMU OCV | EPE|] AST ARtT  Out]
0.065 0.777 0905 0.301
Fly. v 0.061 0.790 0.914 0.290
v 0.057 0.816 0.920 0.240
v v 0.052 0.843 0.927 0.212
0.807 0.810 0.881 0.263
KI v 0.077 0.818 0.883 0.252
’ v 0.072 0.849 0904 0.226
v v 0.065 0.856 0911 0.221

As shown in Table 5, when we discarded two modules,
the metrics declined to varying degrees. First, when we do
not use CMU and OCYV, EPE3D rises to 0.065, and the ac-

curacy of each is reduced by 2-4%. When we introduced
OCYV, EPE3D was elevated by about 6%, and accuracy AS
and AR also improved somewhat. When we added CMU,
the model performance was improved compared to the past,
with EPE3D, AS,AR, improved by 12.3%, 5%, and 1.5%,
respectively. The best performance can be obtained when
we add two modules at the same time. The same result can
be seen on KITTI dataset. Although the degree of decrease
in epe3d is not significant, we have a substantial improve-
ment in both AS and AR due to the effect of the finer up-
sampling, which shows that our module is still valid in the
real-world dataset, as well.

FT3D

EPE3D

Figure 7. The EPE values of the predicted flow vectors for each
layer are shown in Fig. The two lines represent the epe values of
the flows obtained by CMU(Correlation Matrix Upsampling) and
trilinear interpolation upsampling, respectively. From the figure, it
can be seen that the up-sampled flow obtained through CMU has
higher accuracy.

To further illustrate the role of the CMU in upsampling,
we measure the error of the flow computed by each layer.
Again we use a traditional linear method and CMU to com-
pare the accuracy of both methods before and after flow re-
finement. The graphs illustrate that our module improves
the accuracy of the streams at all layers and can be inte-
grated into any model from coarse to fine.

5.5. Sampling Range Setting

Table 6. The graphs illustrate the accuracy of the model at different
sampling ranges in FT3D dataset.

N | EPE] AST AR} Out]
8 10059 0813 0918 0249
16 | 0.056 0.819 0.920 0.236
32 (0052 0843 0927 0212
64 | 0.059 0.794 0912 0.266

In this subsection we explore the effect of the value of
the number of samples N in cmu on the final results. If we
use a smaller range, it may lead to errors due to occlusion,
and if the range is larger it will lead to a decrease in compu-
tational power and accuracy. We train on flying to explore
the change in EPE3D for each layer and the final results
when only the sampling range is changed.



Table 8. Evaluation of model size and run time.
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Figure 8. The line graph illustrates the EPE3D values for each
layer of the network structure when N = 8,16, 32, 64.

From the graphs and tables, the effect on the accuracy of
the model at different N settings can be obtained. We con-
ducted experiments in FT3D and KITTI respectively. On
the FT3D dataset, the best accuracy is possessed when set to
N = 32, and a large drop in accuracy occurs when N = 8
and 64 due to too small and too large sensory fields. On the
KITTI dataset, N = 64 has the best accuracy, this is be-
cause in real scene datasets the points have a large distance
to move and when we expand the receptive field it gives
better results. Combining the performance of the above two
datasets, we take N = 32, partly because we can get better
model accuracy and partly because the time loss is smaller.

5.6. Weights in Correlation Matrix

We analysed the weights of the Correlation Matrix to il-
lustrate the degree of preference for different points in our
CMU module.

Table 7. Evaluation in average weights of non-occluded points and
occluded points.
Metrics | Non-occluded Points
Weight 0.003245

Occluded Points
0.000661

We separately explore the weights of occluded and non-
occluded points in the up-sampling process, and these
weights illustrate the extent to which each point influences
the flow of the scene in high resolution. As can be seen
from the table 7, the weights of the non-occluded points are
higher than the weights of the occluded points, which re-
duces the error due to occlusion.

5.7. Assessment of Model Efficiency

The efficiency of a model has been seen as an important
part of evaluating model performance in recent years. Due
to the limitation of equipment performance, how to make
the model lightweight has also received much attention. We
compare the model size and run time with the current main-
stream models to show that the efficiency of our model is
within a reasonable range. All models were experimented
on the same hardware.

Metrics FlowNet3D HPLFlowNet FESTA 3DFlownet ours

Size (MB) 14.9 2318 16.1 19 22

Time (ms) 34.9 93.1 67.8 60.1 64.5
We select [8, 4, 26, 24] as a comparison to our model.

From table 8 we can see that the efficiency of our model
is better than HPLFlowNet [4] and slightly lower than the
remaining ones. However, our accuracy is large higher than
these methods, and the appropriate sacrifice of efficiency is
acceptable.

6. Conclusion

In this study, we address the challenge of robustly match-
ing successive frames in point cloud sequences. Despite the
recognized potential of neural network-based scene flow es-
timation, its application in occlusion-rich environments re-
mains partially explored. To advance this area, we introduce
the Correlation Matrix based Upsampling Flownet (CMU-
Flownet), that seamlessly integrates an occlusion estimation
module within its cost volume layer via an Occlusion-aware
Cost Volume (OCV) mechanism. Additionally, our model
incorporates a novel upsampling strategy utilizing a Corre-
lation Matrix to evaluate point-level similarity. Through rig-
orous empirical evaluations on datasets known for their oc-
cluded scenarios, such as Flyingthings3D and Kitti, CMU-
Flownet demonstrates superior performance over existing
methods across various metrics.
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