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Abstract

Fractured object reassembly is a challenging prob-
lem in computer vision with broad applications in in-
dustrial manufacturing, archaeology, etc. Traditional
procedural methods rely on local shape descriptors or ge-
ometric registration, which are not always robust given
the small fraction of fracture faces among fragments.
While recent deep learning based methods have shown
promising results by incorporating semantic information,
they often assume that input fragments are aligned in a
canonical pose. In this paper, we propose an approach
that eliminates this implicit assumption by predicting
shape reassembly results under arbitrary poses. Instead
of directly regressing the canonical fragment poses, our
neural network predicts the complementary shape of
one input fragment given the other fragment to expand
potential overlapping areas for later registration.

Keywords: Shape reassembly, Geometry Processing,
Deep learning.

1. Introduction

Reassembling fractured objects from ancient fragments
or broken pieces is a crucial task to restore their original
shapes and functionalities. Conventional assembly relies on
extensive labor work with specialized tools, which can be
time-consuming, expensive, and error-prone. With the devel-
opment of 3D digitization techniques, there has been a grow-
ing interest in developing automated assembly methods that
can improve efficiency and accuracy while reducing costs.
The core problem of automated fractured shape reassembly
is how to effectively assemble two fragments through pair-
wise shape matching and alignment, as multiple fragments
can be treated as concatenating a series of pairwise fragment
assemblies.

However, it is still highly challenging even for assem-
bling two fragments. First, unlike aligning two temporally-
coherent scans (e.g., captured from a hand-held depth cam-
era), the two fragments are usually captured and recon-
structed separately and thus are in irrelevant poses. Hence
local registration methods based on ICP [3] can easily fall
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into local minimums. Second, there is often limited overlap
between two fragments, thus the redundant and exclusive
information can largely affect the performance of global reg-
istration methods such as RANSAC [10]. To address the
above challenges, several methods were proposed to specifi-
cally handle fractured object reassembly [33, 32, 17, 6]. The
key is how to identify and align the overlapping area of the
two fragments, which heavily depends on the hand-crafted
features used for shape segmentation and matching, and thus
may not generalize well to unseen objects or fragments. Re-
cent deep learning-based registration methods can perform
local [44] and global [5] registration with learned features
that are more generalizable. But they still suffer from the
same problem due to the above fragment characteristics. A
very recent work [9] proposed to directly regress the poses of
fragments to assemble two fragments. However, it assumed
the canonical pose of the entire object, thus cannot handle
arbitrary relative poses between two fragments. Also, the
accuracy of the assembly can easily be affected as it fully
depends on the regressed poses while the overlap between
two fragments is not taken into account.

In this paper, we propose a novel method that takes advan-
tage of both learning-based and geometry-based approaches,
aiming at robust and accurate assembly results. Given a
pair of arbitrarily posed fragments to be assembled, in the
first stage, our method utilizes an effective neural network
module, which employs a carefully designed attention mech-
anism for feature correlation between two fragments to pre-
dict their complements and the fracture face points under
their respective poses. In this way, we can ‘directly’ corre-
late the two fragments with arbitrary poses, which is much
more flexible than predicting the canonical poses of the two
fragments as in [9]. Note that predicting the complementary
shapes can expand potential overlapping areas, which are
beneficial for the global alignment of the two fragments if
the fracture faces in between are few or even incompatible
due to unexpected erosion or damage. In the second stage,
benefiting from large potential overlapping provided by the
predicted complements and fracture surface points, we lever-
age a geometric alignment module to precisely assemble the
two fragments in an effective coarse-to-fine manner. We first
apply RANSAC to coarsely align the two fragments (along
with their complements), followed by locally aligning them
based on ICP acting on points sampled from their fracture
faces to refine the pose.

We have extensively evaluated the proposed method on
the public Breaking-Bad dataset [39]. The experimental
results and ablation studies demonstrate the effectiveness of
our method for accurately assembling fractured objects and
its superiority over competing methods.

The major contributions of our work can be summarized
as the following:

• a hybrid method for high-precision fragment assembly

which can handle arbitrary relative poses between two
fragments instead of predicting their canonical poses,
yielding better generalization across different shapes.

• a shape prediction network that simultaneously predicts
the complement and fractured points of a fragment,
providing more potential overlapping regions for better
fragment registration.

• a geometric alignment module that precisely aligns
fragments in a coarse-to-fine manner, achieving state-
of-the-art performances.

2. Related Work

Procedure-based fractured shape reassembly. How to au-
tomatically reassemble a fractured object from its fragments
has been actively studied in the geometry processing field.
The overall procedure typically involves fragment segmen-
tation, feature selection, and surface matching, in order to
identify and align compatible fragments. Early works such
as [32, 33] tackled the problem of solid 3D shape assembly.
Later, as the assembly tasks became more complex, several
methods [22, 17, 6] were presented to handle the assembly
of more intricate shapes. Recently, despite the development
of deep learning techniques in 3D shape processing, [34, 27]
continued to explore geometric approaches for fragment
reassembly. Although demonstrating success in different
scenarios, procedural methods are usually time-consuming
given the complexity of the procedure. Moreover, they rely
on hand-crafted features which are hard to define and cannot
easily generalize to unseen object categories with different
shape characteristics.
Learning-based shape assembly. In recent years, the in-
creasing availability of 3D shapes has enabled their usage
for machine learning. Various representations such as point
clouds, voxels, meshes, and implicit functions have been ex-
plored in the field of geometric learning [49]. Existing works
such as [51, 20, 31] have utilized deep learning on various 3D
shape datasets [7, 48, 30] to solve shape assembly problems.
Moreover, specific methods targeting CAD models such
as [46, 14] have also been proposed. Implicit function-based
shape completion methods such as [23, 25, 24] emerged
lately for shape restoration. Unlike previous works focusing
more on assembling semantic shapes with complete geome-
try, [9] demonstrated the potential of using a learning-based
approach for fractured shape assembly. Recently, several
more advanced learning-based methods have been proposed
for the assembly of fractured objects. One such method
is Jigsaw [28], which introduces a transformer-based ap-
proach utilizing a novel geometry descriptor. Additionally,
the work [47] incorporates the concept of SE(3) equivariance
into the network architecture, thereby enhancing the quality
of the assembled results. Furthermore, a unified diffusion-



based model has been proposed in the paper [38], capable of
reassembling both 2D and 3D fractured objects.

We are also interested in assembling a fractured shape,
while we do not have the canonical pose assumption of the
shape and thus support arbitrary poses. Meanwhile, our
combination of learning-based and geometry-processing-
based approaches results in highly precise alignments.
Point cloud registration. Point cloud registration is widely
used for aligning two or more point clouds [41]. Regis-
tration methods can be roughly categorized into (i) global
registration where point clouds can have arbitrary poses,
and (ii) local registration whose performance depends on
initial poses. The former aims to provide robust initial poses
while the latter targets achieving optimal poses with good
initialization (e.g., from the former). The Random Sample
Consensus (RANSAC) framework [10] and the derivatives
therein [1, 29, 35] play an important role in global regis-
tration, especially when the input point clouds are contam-
inated by noises and outliers. For relatively smooth point
clouds, feature-based methods are also commonly used to
identify matched points with consistent hand-crafted fea-
tures [19, 12, 36, 42]. Regarding local registration, the It-
erative Closest Point (ICP) method [3, 8] and its variants
such as [26, 11, 4] are well adopted. With the rise of deep
learning, differentiable versions of RANSAC and ICP have
been developed with learned features, such as those pro-
posed in DSAC [5] and DCP [44], which are compatible
with learning-based tasks. However, the small overlap be-
tween pairs of point clouds poses new challenges, which
were recently addressed by incorporating ambient guidance
fields [16], a learning-based approach attentive to overlap
regions [18], or combining the registration and completion
tasks [50]. Thanks to the shape prediction and interface label-
ing ability of our learning-based module, simple RANSAC
and ICP can precisely align two input fragments in our
geometry-processing module.

3. Methodology

Problem definition. Before elaborating on the details of our
method, we first describe the problem settings. Considering
a shape represented by a point cloud P = {pi ∈ R3|i =
1, ..., N} sampled from the underlying mesh surface, it has
been broken into two fragments Pa and Pb with fractured
regions in arbitrary poses. Our goal is to find a seamless
reassembly Pab composed of Pa and Pb as accurately as
possible to restore P .
Overview. As shown in Figure 1, our hybrid method con-
sists of two major components: a shape prediction module
for complementary and fracture surface points prediction,
and a geometric registration module for shape alignment. In
the shape prediction module,

Based on a specifically designed attention mechanism that
effectively correlates Pa and Pb, the network learns to predict

the fracture face points as well as the two complementary
shapes Pb∗ and Pa∗ (for Pa and Pb, respectively), such that
the combined shape Pab∗ composed of Pa and Pb∗ well
approximates the full shape Pab, so as Pba∗ composed of Pb

and Pa∗ . More specifically, we have:

Pab∗ = Pa ⊕ Pb∗

Pba∗ = Pb ⊕ Pa∗ ,
(1)

where ⊕ is the point cloud combination operator.
Next, we feed Pab∗ and Pba∗ into the geometric registra-

tion module to calculate the accurate transformation for rela-
tive pose estimation between the input fragments. The initial
alignment between Pa and Pb is estimated by RANSAC
using the predicted full shape Pab∗ and Pba∗ . The final align-
ment is optimized using ICP based on the fracture face points
of Pa and Pb predicted by the previous the neural network
module.

3.1. Shape Prediction for Fragments

Considering that the fraction of fracture faces among frag-
ments is usually small, a sufficient amount of overlapping
points should be provided before we can perform the registra-
tion for fragments. To achieve this, we propose to learn the
complementary of a fragment, given the real one as a refer-
ence, and simultaneously predict the fracture surface points
on the input fragments. We employ an encoder-decoder ar-
chitecture to fulfill this goal, as depicted in Figure 1 (top
row).
Point Cloud Feature Encoder. We first feed the point
clouds Pa and Pb of the two input fragments separately into
a shared point cloud feature backbone to obtain their initial
features fa and fb. To balance performance and efficiency,
we choose Dynamic Graph CNN (DGCNN) [45] as the point
cloud feature backbone. fa and fb each have the dimension
of 1024 × 128, where 1024 is the number of input points
and 128 is the feature dimension per point.

The two input point clouds are highly correlated since
they can be assembled into a full shape. However, the above
initial point features have not been related to each other.
Inspired by recent work [37] of feature matching, we em-
ploy a graph neural network (GNN) with carefully-designed
attention mechanisms to enhance the initial features based
on their correlations for better complementary shape and
fracture surface points prediction.

Similar to [37], we adopt self-attention [43] based on
self-edges to build relationships within each point cloud.
Self-attention computes a weight for each feature in one
input based on how well it matches with other features in
the same input, allowing the network to capture relation-
ships between different features within a point cloud. To
handle the relationship between two different point clouds,
we use cross-attention that builds edges between points in
Pa and Pb. The message passing formulation can be referred
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Figure 1. Pipeline. Our method mainly contains two components: a shape prediction module and a geometric registration module. The
former consists of a point cloud encoder based on DGCNN, a graph network with a specifically designed attention mechanism, and an output
layer based on MLP. Given two input fragments Pa and Pb, it learns to predict both the fracture face points and their complementary shapes
Pb∗ and Pa∗ , resulting in combined shapes Pab∗ and Pba∗ , respectively. The geometric registration module takes Pab∗ and Pba∗ as input
and employs RANSAC to achieve an coarse alignment {Rinit, tinit} between Pa and Pb, followed by ICP acting on the predicted fracture
face points to compute a refined alignment for the final reassembly Pab.

to [13, 2]. The multi-head attention [43] is also used to
improve expressive ability. The multi-head attention mech-
anism allows the network to attend to multiple parts of the
input simultaneously, which is useful for capturing complex
relationships between features of the two point clouds. The
alternating usage of self- and cross-attention can make the
network sufficiently learn the geometric features and the
transformations among each other, resulting in correlated
features f̂a and f̂b for Pa and Pb, respectively. Different
from previous work [37] applying on images, we use the
features f̂a and f̂b from GNN layers to predict shapes rather
than matching descriptors. In our experiments, using n = 6
GNN layers suits both memory and performance require-
ments.

3.1.1 Network Module Details

Point Cloud Encoder. Previous paragraph describes the
usage of Dynamic Graph CNN (DGCNN) as the point cloud
encoder. The encoder is designed with 5 EdgeConv (as
denoted in [45]) convolution layers followed by an Instance
Norm layer and a LeakyReLU layer with a negative slope of
0.2 as the activation function. The number of filters in each
layer are [64, 64, 128, 256, 128]. The feature dimension is set
to 128, and the k-NN parameter in graph feature integration
is set to 16.
Attentional Graph Neural Network. The transformer con-
sists of 6 attention-based GNN layers with self- and cross-

attention mechanisms. Each GNN layer includes an atten-
tional propagation module containing 4 multi-head attention
layers and an MLP with three hidden layers of dimensions
128, 512, and 128. An Instance Norm is applied following
the propagation module. During forward propagation, self-
and cross-attention are alternately executed in this part. The
attention layers are based on the approach described in [37],
and the detailed settings of these layers can be found therein.

Multi-Layer Perceptron. In the last part of the network,
an MLP is used to predict the offset of points instead of
regressing the pose, which is different from previous works
such as [9, 51]. The MLP has 3 hidden layers of dimensions
256, 256, and 128. It maps the features from the GNN layers
to 3D displacement vectors for the input point clouds Pa

and Pb. The MLP also predicts the probability indicating
whether a point lies on the fracture faces.

Complementary Shape and Fracture Points Prediction.
Instead of directly regressing the poses of shape com-

ponents [9, 51], we learn the complementary shape Pb∗ (or
Pa∗ ) of the given shape Pa (or Pb) by predicting the displace-
ment of each point in Pb (or Pa), and the fracture surface
in-between by also predicting the key points therein. We
use a Multi-Layer Perceptron (MLP) with 3 hidden layers
(256, 256 and 128 neurons for each) to map f̂a and f̂b to
the final predictions. Specifically, the MLP outputs a three-
dimensional vector as the displacement for each input point
of Pb and Pa to abtain Pb∗ and Pa∗ . The MLP also out-



puts a probability that indicates how possible a point lies
in the fracture surface connecting the two input fragments.
After combining Pb∗ and Pa∗ with the input fragments Pa

and Pb, respectively, the generated point cloud (Pab∗ and
Pba∗ ) forms a shape under the given poses of Pa and Pb, not
limiting to any canonical pose.
Loss functions. During training, we use the Mean Squared
Error (MSE) loss Lmse and the geometry reconstruction loss
Lrecon for complementary shape prediction. More specif-
ically, the MSE loss controls the shape of the predicted
complementary point cloud according to the ground truth
shape:

Lmse = La
mse + Lb

mse, (2)

where

Lx
mse =

1

Nx

Nx∑
i=1

(pix∗ − pix)
2. (3)

Here x ∈ {a, b} and Nx is the number of points of Pa or
Pb. pix∗ refers to the i-th point in Px∗ , while pix denotes the
corresponding point in the ground truth point cloud Px.

The reconstruction loss Lrecon regularizes the distances
D between every pair of points in a single point cloud. For
a point cloud with N points, D can be represented as a
distance matrix:

D =


d11 d12 · · · d1N
d21 d22 · · · d2N

...
...

. . .
...

dN1 dN2 · · · dNN

 , (4)

where dij is the Euclidean distance between two points pi
and pj . Lrecon is defined as the sum of two losses La

recon

and Lb
recon:

Lrecon = La
recon + Lb

recon, (5)

where Lx
recon, x ∈ {a, b} is defined as the L1 norm of the

difference between two distance matrices:

Lx
recon = ||DPx∗ −DPx

||1. (6)

Here DPx represents the distance matrix for the ground truth
point cloud Px, and DPx∗ represents the distance matrix for
the reconstructed point cloud Px∗ .

Additionally, the Binary Cross-Entropy (BCE) loss Llabel

is used to compute the error of fracture surface points pre-
diction:

Llabel = − 1

N

N∑
i=1

[yi log(y
∗
i ) + (1− yi) log(1− y∗i )] (7)

Here, N is the total number of points in the input fragments,
yi ∈ {0, 1} is the ground truth label (1 for points on the

fracture surface otherwise 0) for the i-th point, and y∗i is the
predicted probability of the i-th point.

Finally, the total loss function used to train our neural
network is the sum of the above losses by treating them with
equal contribution:

L = Lmse + Lrecon + Llabel. (8)

3.2. Geometric Registration Module

Given Pab∗ and Pba∗ with labeled points on the fracture
faces connecting Pa and Pb, we explicitly process their ge-
ometries to accurately align Pa and Pb in a coarse-to-fine
manner to obtain a seamless assembly, as shown in Figure 1
(bottom row).

3.2.1 Coarse Alignment using Predicted Shapes

Given Pa and Pb (so as Pab∗ and Pba∗) are in arbitrary
poses, we first employ the classic Random Sample Consen-
sus (RANSAC) algorithm to obtain a coarse alignment be-
tween Pab∗ and Pba∗ , each of which comprises 2048 points.

In our experiment, we randomly select two 4-point sub-
sets from Pab∗ and Pba∗ . Suppose Pab∗ (including Pa)
serves as the reference, then based on the bijective mapping
between the two subsets, a candidate pose of Pba∗ (includ-
ing Pb) can be explicitly deduced to align with Pab∗ . The
preference of the candidate pose is measured by the number
of inliers (well-matched points) after aligning Pab∗ and Pba∗

based on it. This procedure is repeated for a fixed number
of iterations (100 in our setting) or until a satisfactory align-
ment is found. The pose (including a rotation matrix Rinit

and a translation vector tinit) yielding the maximal number
of inliers is selected to produce the final coarse alignment
between Pab∗ and Pba∗ (also applies for Pa and Pb).

Note that the coarse alignment can only roughly align
Pa and Pb due to two reasons: 1) the predicted comple-
mentary parts Pb∗ and Pa∗ would not be perfect, and 2) the
randomized nature of RANSAC would not guarantee the
global optimum. Therefore, we further refine the alignment
as follows.

3.2.2 Alignment Refinement using Predicted Fracture
Points

Although the coarse alignment is not optimal, it already
provides an initial pose that is good enough for further re-
finement. As our last step of shape assembly, we employ the
Iterative Closest Point (ICP) method to refine the initial pose.
In our implementation, we apply conventional ICP to the
predicted fracture surface points of Pa and Pb by iteratively
identifying the closest points as the corresponding points
and minimizing their point-to-point distances.



Labeled Point
on the fracture 

face

Selecting 
labeled faces

Region
Growing

Sparse labels

Dense labels

Resampled dense points

Region Growing Algorithm Original Region
Growing Region

Figure 2. Dense points are sampled based on the predicted fracture
surface points and their associated mesh faces. Region growing
is applied to fill the gaps between mesh faces and enable dense
sampling.

However, Pa and Pb each contains 1024 points thus only
a limited number of points were sampled at the fracture sur-
faces whose areas are usually small w.r.t. the entire shape.
Hence closest points are not good approximations of cor-
responding points. To resolve this, we up-sample fracture
surface points with the help of the original mesh surfaces
and apply ICP to align dense points, yielding better align-
ment performance. As demonstrated in Figure 2, in the
up-sampling process, we first extract the underlying mesh
faces on which the predicted fracture surface points lie. For
sparsely sampled points, the extracted mesh faces are likely
to be disconnected or have holes among them. We then
apply region growing on the extracted mesh faces to form
a disk-like interface patch. Finally, we up-sample points
(1k in our setting) from the fracture patch and perform ICP
using the densely sampled points, which allows better point
correspondences thus further improving the accuracy of the
alignment.

4. Experiments and Results

This section demonstrates our experimental results. We
first present how we prepare data to evaluate fractured object
reassembly from a pair of fragments followed by quantitative
evaluation metrics. We then demonstrate the advantage of
our method in terms of accuracy and robustness by com-
paring it with both baseline and state-of-the-art methods.
Finally, we validate the effectiveness of different compo-
nents of our method through an ablation study.

4.1. Data Preparation

We conduct experiments on the emerging Breaking Bad
dataset [39], which consists of more than 20 object cate-
gories and features 2,547 meticulously crafted 3D models.
Each object category has numerous instances that vary in
scale and pose. The ”Everyday” model set in the Break-
ing Bad dataset [39] was used in our work. It consists
of 20 categories of objects, including ‘BeerBottle’, ‘Bot-
tle’, ‘Bowl’, ‘Cookie’, ‘Cup’, ‘DrinkBottle’, ‘DrinkingUten-

sil’, ‘Mirror’, ‘Mug’, ‘PillBottle’, ‘Plate’, ‘Ring’, ‘Spoon’,
‘Statue’, ‘Teacup’, ‘Teapot’, ‘ToyFigure’, ‘Vase’, ‘WineBot-
tle’, ‘WineGlass’. The scripts provided by [39] were used to
extract fractured objects as original mesh .obj files for point
sampling. And we focused on fractured objects each with
two pieces of fragments.

The 3D models in the Breaking Bad dataset are initially
man-made and represented as surface meshes. We lever-
age all the pairwise fragments with different fractured types,
even those with a low cut-off ratio (the ratio of the fragment
over the complete object) in a total of 13,954 pairs. We
use a 60/20/20 scheme for the training/validation/test split.
To convert the data from surface meshes to more general
point clouds, we first conducted a dense sampling to gener-
ate 10K points from each mesh. We then down-sample it to
1024 points through farthest point sampling. For each pair
of fragments, we normalize them by the longer bounding
box diagonal. During the training phase, we sample rotation
matrices and translation vectors to generate random poses
for each pair of fragments. When applying random trans-
formation for each fragment, its complementary fragment is
also transformed “implicitly” to serve as ground truth, but
not as input to our method. Note that the models provided
by the Breaking Bad dataset are all in canonical poses by de-
fault. We also create a “non-canonical” dataset by randomly
perturbing the canonical poses to evaluate the influences of
different methods.

4.2. Evaluation Metrics

To quantitatively evaluate our results, we follow [44, 9]
to measure the error between the predicted rotation R∗ and
translation t∗ and the ground truth ones. More specifically,
we compute the rotation error Er and translation error Et as
follows:

Er(R
∗) = ||RT

gtR
∗ − I||F

Et(t
∗) = ||tgt − t∗||2

(9)

Here, {Rgt, tgt} and {R∗, t∗} denote the ground truth and
estimated transformation, respectively. I is the identity ma-
trix. || · ||F and || · ||2 denote matrix Frobenius norm and
vector L2 norm, respectively.

4.3. Implementation Details

Our model was implemented using Jittor [15] and trained
using a small batch size of 4 on a Linux server with an Intel
Xeon Sliver 4210 CPU and a single TITAN RTX GPU with
24GB of memory. We used the Adam optimizer [21] with
a learning rate of 0.0001 to train the network. In terms of
running time performance, the network is designed to be
lightning-fast and it typically takes only seconds to infer the
shape predictions and labels for each pair with 1,024 points
for each fragment. The geometric registration usually takes
0.5 ∼ 1.0 minute, mainly spent on point sampling.



Methods Canonical Dataset Non-canonical Dataset
Er(×10−3) ↓ Et(×10−3) ↓ Er(×10−3) ↓ Et(×10−3) ↓

DCP [44] 1390.69 416.67 1457.24 362.45
ICP [3] 1715.98 403.01 1899.88 451.33

CTF-Net [50] 884.79 933.52 940.11 952.33
PREDATOR [18] 458.70 267.11 432.81 245.62

DGL [51] 105.22 94.78 234.31 110.13
JIGSAW [28] 18.11 23.61 60.19 64.24

SE(3)-Equiv [47] 22.98 26.34 46.72 53.52

Ours - Regressor 10.16 21.40 42.56 49.98
Ours 8.95 18.04 9.47 20.42

Table 1. Quantitative comparison of reassembly accuracy on the Breaking Bad dataset against baseline methods.

Input

Ours

NSM

Figure 3. Visual comparison with Neural Shape Mating [9].

4.4. Comparison with other methods

We compared our method with both traditional ICP [3]
and state-of-the-art learning-based methods, including
DCP [44], PREDATOR [18], and DGL [51]. The quantita-
tive comparison results are listed in Table 1, which demon-
strates significant superiority of our method in both rotation
and translation errors compared to other methods. Qualita-
tive results in Figure 11 show that our method outperforms
the other methods on different types of models.

Traditional ICP relies heavily on the initial pose and the
availability of overlapped regions and performs the worst for
fragment assembly among competing methods. DCP is a
deep learning based ICP method [3]. It also heavily relies
on initial poses and point correspondences, which would be
challenging to obtain in our setting with arbitrary fragment

poses. Similarly, PREDATOR works on low-overlap point
cloud registration, whereas our task can be more challenging
since the only overlapped region is on fractured surfaces.
DGL utilizes a GNN to infer relationships between 3D parts
and directly predicts their poses. This may not be effective
for accurate pairwise fragment alignment.

We also compared with a modified version of our method,
dubbed “Ours - Regressor,” which replaced the shape predic-
tion design with pose regression similar to [51, 9]. However,
when objects in the dataset are not canonically posed for
training, the regressor tends to perform poorly in predict-
ing rotations. One possible reason is that pose prediction
may be influenced by implicit semantic information such
as canonical poses, which can affect the generalization per-
formance under arbitrary poses. In contrast, our relative



pose learning method focuses on the information between
object fragments rather than global semantics, making it
more robust to challenging real-world data.

Comparison to completion-and-registration [50]. Our
method shares some common designs with [50] in terms
of using completion to facilitate alignment. The main dif-
ference is that we aim at a different task - fractured object
assembly and our method also predicts fractured surface
points to further refine the alignment, achieving accurate
reassembly results. This is possible in our task as points on
the fractured surface are generated based on fracture simu-
lation, but not object modeling as those sampled from the
original object. Therefore, directly applying the previous
completion-and-registration method to our task would lower
the performance. We compare with [50] by re-training
their model using our dataset. The rotation error Er(×10−3)
and translation error Et(×10−3) are (8.95, 18.04) for our
method and (884.79, 933.52) for [50], showing the superior-
ity of our work. Note that the training in [50] further requires
the ground-truth missing part that is not present in either Pa

or Pb, thus cannot generalize well to our task (assumes no
missing part).

In addition to comparing with the method in [50], we
also compared our approach with the state-of-the-art (SOTA)
methods [28] and [47]. The quantitative and qualitative
results demonstrate our method’s superiority, which stems
from the advanced geometry registration module. It is worth
noting that [47] outperforms [28] on non-canonical datasets
because it addresses the rotation problem through SE(3)
equivalence to some extent.

We also attempted to compare with the recent NSM [9].
Unfortunately, this is not feasible without access to the pre-
trained model or the datasets used for training. As an alterna-
tive, we provide a visual comparison in Figure 3 based on the
example results shared by the authors. It can be seen that our
method can further improve the accuracy of the alignment as
witnessed by the visually seamless overlapping area in the
final reassembly.

Moreover, our method demonstrates effectiveness in han-
dling different relative poses. When various non-canonical
poses are used as input, our proposed approach achieves
satisfactory assembly results.(see Fig. 4)

Relative Poses 1 Our Result Relative Poses 2 Our Result Relative Poses 3 Our Result

Figure 4. Qualitative results of different relative poses.

Solid Type Shell Type

Figure 5. Qualitative examples of the solid type and shell type.

4.5. Evaluation on Solid/Shell Shape

Fractures can be categorized into two types, namely
‘solid’ and ‘shell’, based on their shapes and breaking pat-
terns (see Fig. 5). We have specifically evaluated each frac-
ture type, and the results are presented in Table 2 (upper part).
It is worth noting that the number of solid and shell fractures
in our dataset is not balanced, making it difficult to train
using separate shapes for each type. To overcome this, we
have trained our model on all fracture shapes and tested it on
randomly selected subsets of 100 cases for each type. Due
to the inherently lower contact area of fracture faces in shell
fractures, fewer points are generated on these fracture faces
compared to solid fractures. This can pose a challenge in
achieving accurate geometry registration, thereby affecting
the overall performance of the model.

4.6. Evaluation on Noisy Point Clouds

In practical applications, point cloud data acquired from
depth sensors are often affected by noise. To evaluate the
impact of noise on the performance of our model, we aug-
mented our dataset by adding Gaussian noises to the clean
point clouds. Specifically, we added noise with a mean of 0.0
and a standard deviation of 0.05 to each point in the dataset.
Table 2 (second last row) also shows the model’s perfor-
mance on the augmented dataset. It can be seen that the
presence of noises only slightly degrades the performance
of the model, demonstrating that our method is robust to
noisy data (see also qualitative examples in Fig. 6). The
performance drop is mainly due to the impact on the proba-
bility predictions. Numerically, The predicted accuracy of
the label from network has decreased by about 10% with
noisy input data.

Experiment Settings Canonical Dataset Non-canonical Dataset
Er(×10−3) ↓ Et(×10−3) ↓ Er(×10−3) ↓ Et(×10−3) ↓

Original 8.95 18.04 9.47 20.42
Original + test on solid shapes only 8.34 17.58 9.21 18.67
Original + test on shell shapes only 16.57 18.61 18.84 21.22

Noisy Data Reassembly 10.72 20.90 12.53 22.48
Unseen Category Reassembly 45.28 29.33 53.71 35.98

Table 2. Quantitative results of additional experiments with different
settings.
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Figure 6. Qualitative examples of reassembling noisy point clouds.

4.7. Generalization for Unseen Category

We also conducted experiments to validate the general-
ization of our method. We tested on the ‘Bottle’, ‘Plate’,
‘Bowl’, and ‘Cup’ categories based on training using the
remaining 16 categories. Experiment results can be found in
Table 2 (last row). Note that our network design is based on
relative poses, and focuses more on geometry-related infor-
mation rather than global semantic information. Compared
with the training setting with all categories, the performance
degrades only moderately (comparable to NSM [9]). Our
training data includes information on both the shape of frac-
tures and the types of cuts present on their faces. While
some categories in our training data may have similar shapes
to the test data, our results suggest that the accuracy of point
label predictions on fracture faces is influenced not only by
their shape but also by the unseen types of fracture faces.
The performance degradation we observed is likely due to
multiple factors, and it is possible that the initial transforma-
tion from RANSAC is affected by the poor quality of the
generated shapes. Moreover, incorrect label prediction may
cause issues with the sampling of dense points before ICP,
affecting the registration performance of ICP.

We mainly focus on the recent fractured object reassem-
bly task [9, 39], which aims to reassemble fragmented parts
with incomplete and irregular shapes, rather than composing
semantic parts with complete geometry as in the previous
shape assembly task [20, 31, 51]. Our evaluation is based
on the latest benchmark [39]. The 20 categories therein
well represent common fractured objects (e.g., glass objects,
china tablewares, clay potteries, etc.), and are generated us-
ing a state-of-the-art physical simulation framework ‘Break-
ing Good’ [40]. Our method can even handle unseen, non-
categorized objects in [39] (see Fig. 7). We understand that
ShapeNet/PartNet contains more categories but it is more
useful for the semantic shape assembly task, as the objects
are not ‘randomly’ fractured but ‘regularly’ composed of
semantic parts.

Our Result1Input1 Input2 Our Result2 Input3 Our Result3

Figure 7. Additional unseen examples.

4.8. Ablation Study

We also conducted ablation experiments to validate the
effectiveness of the design choices of our method. More
specifically, we compared our full method with down-graded
versions where we removed RANSAC, Fracture Points Re-
sample, and ICP one at a time. First, we remove RANSAC
from the geometric registration module, where P ∗

ab and P ∗
ba

from the shape prediction module are directly used for ICP
without a good initial alignment. Second, we only perform
ICP on sparse key points predicted as fracture surface points
without resampling dense points. Third, we remove ICP
along with the dense point resampling process. The quantita-
tive comparisons are detailed in Table 3, while the qualitative
examples are shown in Figure 9.

We can see that our method achieves good performance
even without the ICP module. This indicates that, benefiting
from the large potential overlapping regions provided by
our shape prediction network, the RANSAC module can
already provide good initial pose. Reassembly with higher
accuracy can be achieved with ICP on top of it. On the other
hand, missing RANSAC or fracture point resample modules
causes the usage of ICP in an ill-posed condition, leading to
non-optimal registration results. Note that in Table 3, ICP
is applied to two completed point clouds P ∗

ab and P ∗
ba from

the shape prediction module, while the methods in Table 1
are given incomplete point clouds Pa and Pb. This also
demonstrates the benefit of using reconstructed global shape
information other than the limited overlapping region for
reassembly.

It is indeed effective as demonstrated by the overall per-
formance compared with previous methods, and also the
ablation experiments (only applying ICP without RANSAC
on the completed point clouds leads to promising results).

For more validation, we quantitatively compare the pre-
dicted point clouds using different losses with the ground
truth based on Chamfer Distance: with reconstruction loss
- 0.0725, without reconstruction loss (only MSE loss) -
0.0994. Qualitative examples are shown in Fig. 8.

GT with 
Recon. loss

w/o 
Recon. loss GT with 

Recon. loss
w/o 

Recon. loss

Figure 8. Ablation study on complementary shape prediction.

4.9. Failure case

Our method may fail in extreme cases with very small
fractured surfaces (see Fig. 10), where the prediction of



Method Canonical Dataset Non-canonical Dataset
Er(×10−3) ↓ Et(×10−3) ↓ Er(×10−3) ↓ Et(×10−3) ↓

w/o RANSAC 380.81 80.32 391.20 92.12
w/o point resample 120.50 55.01 142.14 67.05
w/o ICP, w/o point resample 86.49 25.44 94.84 41.26
w/ full components 8.95 18.04 9.47 20.42

Table 3. Quantitative ablation study results of the geometric regis-
tration module.

With full componentsw/o RANSAC w/o Point Resample w/o ICP + w/o Point Resample

Figure 9. Qualitative examples of the ablation study.

fractured points is very challenging due to lacking samples
and/or features within the limited region.

GT Failure case GT Failure case GT Failure case

Figure 10. Example of failed cases.

5. Conclusion

We present a novel hybrid approach for the accurate re-
assembly of fractured objects with two fragments. Given
two fragments with arbitrary poses as inputs, our neural
network module first predicts the complementary shapes
of the input fragments and the fracture face points. Next,
we leverage the inferred geometric information for a subse-
quent geometric registration module to effectively initialize
and accurately optimize the alignment of the two fragments,
resulting in seamless and precise reassembly results. The ex-
perimental results demonstrate that our method significantly
outperforms prior works.
Limitations and future work. Albeit the effectiveness of
the geometric registration module, our approach is not based
on an end-to-end architecture. In the future, we would like
to devise an end-to-end model by making the geometric
processing module differentiable and integrating it with the
neural network module. Also, a promising research direction
would be to apply our pairwise fragment assembly method to
multiple fragments. Multiple fragments reassembling can be
broken into multiple pairwise problems by adding pieces in-
crementally. But we are more interested in a ‘comprehensive’
approach where multi-piece features can be simultaneously
learned for a ‘global’ assembly, as a future work.
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