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Abstract

In conditions of low visibility, such as nighttime or
restricted vision, the fusion of thermal and visible light
features becomes particularly important. The Trans-
former technology has gained popularity in recent re-
search for its ability to capture global information,
showing better performance in feature fusion than tra-
ditional CNNs. However, the Transformer-based ap-
proaches often lead to high computational complex-
ity during forward propagation. To solve this prob-
lem, we propose a Light Grouped Residual Transformer
(LightGR-Transformer). It uses a single-layer network
with channel-wise grouping and learnable residual con-
nections, reducing the complexity of multi-layer Trans-
formers. This design reduces computational cost while
preserving important information during feature fu-
sion. It prevents the loss of key features in deeper net-
works. Additionally, to improve the detection accuracy
of small objects in low-light conditions, we introduce
deformable convolution layers during the feature ex-
traction stage. These layers dynamically adjust the re-
ceptive field of the convolution kernel, enhancing local
detail capture. Our experiments on the FLIR dataset
show that LightGR-Transformer improves mAP50 by
3.6% compared to existing state-of-the-art methods. On
the KAIST dataset for nighttime detection, our network
achieves the lowest MR−2 score, reaching state-of-the-
art performance. Our detector also reduces computa-
tional cost by 30%-40% compared to the most advanced
models while maintaining top-level performance.

Keywords: Multispectral object detection, transformer,
feature fusion, cross-modality

1. Introduction

Single-modality detection has become a fundamental
task in modern computer vision, with widespread applica-
tions in areas like surveillance [1] [2] and autonomous driv-
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Figure 1. Comparison between Visible Light (RGB) and Thermal
Images in a Nighttime Scene.

ing [3] [4]. At nighttime or with restricted visibility due to
occlusion, adverse weather, and insufficient illumination, it
is difficult for a single thermal or RGB image to provide
complete scene information [5]. To address these limita-
tions, multi-sensor modal fusion has emerged as a key tech-
nology in detection tasks [6–9].

In recent years, many studies have focused on the fu-
sion of visible and thermal images [10–14]. As shown in
Fig.1, both thermal and RGB images have their distinct ad-
vantages: thermal images can capture the thermal radiation
characteristics of objects in low-light environments, provid-
ing clear outline information, while RGB images contain
rich details and color information. We use arrows to high-
light objects that are unrecognizable under visible light due
to poor illumination, yet their contours become discernible
in the thermal image, enabling the model to accurately de-
tect them.

By fusing these two modalities, models can leverage the
complementary strengths of both modalities. Thermal im-
ages provide adaptability to varying environments, while
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RGB images offer detailed and colorful information. This
combination enhances the accuracy and robustness of detec-
tion tasks. The fusion approach enables the model to main-
tain robust target detection under various weather and illu-
mination conditions, which is especially important in appli-
cation scenarios that require high reliability, such as security
surveillance, autonomous driving, and search and rescue.

CNN-based fusion architectures have made significant
progress in multimodal fusion and are widely used in state-
of-the-art methods. However, due to the limited receptive
fields of CNNs, they struggle to effectively model long-
range feature relationships. To address this limitation, CFT
[15] introduces a Transformer technology for modality fea-
ture fusion. Similarly, ICAF [16] proposes a fusion method
based on the cross-attention mechanism to enhance the in-
formation complementarity between modalities. However,
the existing multimodal fusion methods still face two key
challenges. First, they involve high computational complex-
ity. Second, their performance in detecting small objects
under low-visibility conditions, such as nighttime, is lim-
ited, with a notably higher miss rate compared to daytime
scenes. Whereas tasks such as search and rescue rely heav-
ily on small target detection and detection accuracy, existing
methods do not perform well enough in this regard.

Specifically, the first problem we intend to address is
how to reduce computational complexity while maintaining
detection accuracy. The traditional Transformer architec-
ture is difficult to adapt to resource-constrained real-world
scenarios due to the large number of layers stacked [17]
and the huge computational overhead. Therefore, design-
ing a fusion method that reduces computational overhead
and efficiently learns inter-modal information is still an ur-
gent challenge. The second problem is how to improve the
ability of small target detection and reduce the miss rate at
night.

To address the above problems, this paper proposes a
Light Grouped Residual Transformer for Multispectral Ob-
ject Detection.

Our main contributions are concluded as follows:
(1) To address the first problem, we propose a novel mul-

timodal fusion algorithm called Light Grouped Residual
Transformer (LightGR-Transformer). The algorithm im-
proves on the traditional transformer-based stacked coding
in many ways, adopting channel-wise grouping as well as a
simplification strategy, eliminating the multi-layer stacking
of the traditional transformer, and using only a single-layer
network with a learnable residual structure. This design sig-
nificantly reduces the computational cost, greatly improv-
ing the efficiency of resource utilization while shortening
both training and inference time. In addition, LightGR-
Transformer can efficiently leverage inter-modal informa-
tion interactions during the training process, making the
fused features more representative and discriminative.
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Figure 2. Comparison between existing Transformer architectures
and our structure.

(2) To address the second problem, we design a de-
formable large kernel convolutional layer that dynamically
adjusts the receptive field of the convolutional kernel, en-
hancing the ability to capture local details. This design en-
ables the model to better represent deformed objects and
irregular local features, improving small object detection
and reducing miss rate under poor visual conditions. Com-
parison between existing Transformer architectures and our
structure is shown in Fig.2.

(3) Through experimental validation on the KAIST
dataset [18] and FLIR dataset [19], our method achieves
SOTA in both detection accuracy and computational effi-
ciency.

2. Related Work

2.1. Multispectral object detection

Multispectral pedestrian detection has made continuous
progress in recent years. Hwang et al. [20] established
the first multispectral pedestrian detection benchmark, and
they proposed a manual feature approach based on Aggre-
gated Channel Features (ACF), which could process color-
thermal image pairs simultaneously. To improve the con-
sistency of different modalities, Zhang et al. [21] proposed
a method for cyclic fusion and refinement of multispec-
tral features. To address the effect of diurnal illumination
variations on detection, Guan et al. [22] and Li et al. [23]
proposed illumination-aware modules to predict the light
weights from the images and weight the RGB and thermal
images through gate function. Considering the inter-modal
alignment problem, Zhang et al. [24] used a Regional Fea-
ture Alignment (RFA) module to predict the feature shift be-
tween RGB and thermal images. In order to solve modality
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Figure 3. Structure of our object detection framework. The backbone functions as a mono-modal feature extractor, generating five thermal
and RGB feature maps of different sizes respectively. Our proposed LGRT modules fuse thermal and RGB features, and the fused features
are then fed into the neck network. The neck module performs multiscale feature aggregation, and the head module outputs the final
detection results.

imbalance problems, Zhou et al. [25] designed two models
called DMAF and IAFA, respectively. Kim et al. [6] pro-
posed a new loss function to mitigate the modal differences
considering that color and thermal cameras have different
field-of-views. CFT [15] and LGADet [26] adopt a self-
attention mechanism using transformer, which is different
from previous CNNs-based approaches, to combine thermal
features with RGB features by learning long-range depen-
dencies and integrating global contextual information in the
feature extraction stage. Based on CFT, ICAF [16] further
proposes cross-attention to enhance inter-modal global fea-
ture interaction, aiming at solving the performance degra-
dation problem caused by image misalignment in multi-
spectral image fusion, and also adopting an iterative inter-
action mechanism with parameters sharing to reduce model
complexity and computation cost.

2.2. Attention-based Approach

Attention mechanism is a technique inspired by the hu-
man visual system. The key idea is to assign different
weights to different parts of the input data. This allows
the model to focus on the most important information for
the task while ignoring or weakening irrelevant parts. In
recent years, there has been a great deal of research work
on attention mechanisms. SENet [27] pioneers channel
attention and proposes a novel channel-attention network.
CBAM [28] proposes a lightweight and general module to
enhance the adaptive feature optimization ability of convo-
lutional neural networks by sequentially inferring attention
maps in both channel and spatial dimensions and multiply-

ing them with the input feature map. ECANet [29] pro-
poses a local cross-channel interaction strategy without di-
mensionality reduction and adaptively selects kernel size of
1D convolution with very small parameters for performance
improvement.

Inspired by Azad et al. [19], we integrate a deformable
large kernel attention mechanism into our work. This mech-
anism efficiently captures the global context through a large
convolutional kernel, similar to the self-attention mecha-
nism but with lower computational cost. For image detec-
tion tasks, it combines with deformable convolution to flex-
ibly adjust the sampling grid, which can adapt to the shape
and structure of different objects, thus improving the cap-
ture ability and detection accuracy of target features.

3. Method

3.1. Structure

As shown in Fig.3, our model adopts a dual-branch back-
bone network for feature extraction for RGB-thermal image
pairs. To fully utilize the complementary properties of the
two modal information. In the 3rd, 4th, and 5th layers of
our network’s backbone, we introduce the Light Grouped
Residual Transformer module to fuse thermal and RGB im-
age features at multiple levels, producing high-quality hy-
brid feature maps. The fused feature map is then passed to
the neck to enhance multi-scale feature representation, and
the detection head accurately localizes and classifies the tar-
get.

Given thermal image XT and RGB image XRGB, a dual-
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Figure 4. Illustration of the proposed LGRT module. H and W represent the height and width of the feature map, and C is the number of
channels. we split C into G groups (with G = 4). Fi represents the feature after grouping, and F out

i denotes the output feature of the i-th
sub-block after applying the multi-head attention mechanism and learnable residual connection. The final output feature F

′′
is obtained

through concatenation.

branch backbone network is used to extract features from
the two images separately. The formula is shown below :

FT = Φbackbone (XT; δT) (1)

FRGB = Φbackbone (XRGB; δRGB) (2)

where Φbackbone function performs feature extraction on the
input image. Commonly used backbone functions are CSP-
darkNet [18], ResNet [30], VGG16 [31], etc. The original
input image is transformed into a multi-layer feature map
after backbone extraction. In our model, feature extraction
is performed separately on both the RGB image and the
thermal image. FT and FRGB denote the feature maps ex-
tracted by the thermal branch and RGB branch, respectively.
δT and δRGB denote the parameters of the feature extraction
formula.

For feature fusion in the i-th layer, the formula of the
LightGR-Transformer module is as follows:

F i
fusion = LightGR-Transformer

(
F i

T;F
i
RGB; θf

)
(3)

where LightGR-Transformer(·) denotes the formula for the
fusion of thermal and RGB image features with parameter
θf . The work in HalfwayFusion [32] explores four different
fusion architectures and the results show that the Halfway
fusion approach is more desirable. Based on these find-
ings, we adopt Halfway fusion architecture in our frame-
work. While traditional fusion methods, such as addition
operation and NIN [33] have been widely used, they often
struggle to capture the complex associations between mul-
timodal features, particularly in complex scenes. In recent

years, fusion approaches based on the attention mechanism
have gradually become mainstream, exhibiting stronger fea-
ture capture capabilities. In this context, we improve this
fusion approach for Transformer and propose the LightGR-
Transformer module to more effectively mine and fuse the
complementary information of thermal and RGB image fea-
tures to enhance the model’s performance in multimodal
target detection tasks. F i

fusion denotes the output after the
fusion of the features in the i-th layer. F i

T and F i
RGB denote

the features of thermal and RGB images in the i-th layer of
the backbone, respectively.

The fused multi-scale feature map F i
fusion is input into the

neck structure for further feature processing and enhance-
ment as shown in the following equation:

{B,C} = ϕHead (ϕNeck(Ffusion; θn); θh) (4)

where ϕNeck(·) denotes the multi-scale feature aggregation
function of the neck module, which is used for feature en-
hancement and multi-scale fusion, and in existing research,
structures such as FPN and PANet are often used to real-
ize the functions of the neck module [34, 35]. ϕHead(·) de-
notes the detection head function for target detection, in-
cluding bounding box classification and regression. θn and
θh denote the parameters of the neck module and the detec-
tion head, respectively. {B,C} denotes the detection result,
where B is the bounding box set and C is the category set.
In this paper, we use the detection header of YOLO [18].



3.2. LightGR-Transformer

3.2.1 Design Idea of LightGR-Transformer

Traditional transformer networks usually capture com-
plex feature relationships in the input data by stacking mul-
tiple modules (e.g. 8 or more) in the process of feature ex-
traction. While this stacked approach improves the model’s
representation capability, it also increases computational
complexity. Additionally, as the number of layers grows,
the model tends to introduce more noise and redundant in-
formation. In the process of multiple linear transformations
and nonlinear activation, important features may be gradu-
ally compressed or even lost. This problem is particularly
pronounced in deep networks, where the risk of informa-
tion loss is higher. To address these challenges, we propose
a more efficient method: Light Grouped Residual Trans-
former (LightGR-Transformer) module.

How can we enhance feature preservation while sig-
nificantly improving computational efficiency through our
channel-wise grouping strategy and the use of a single-layer
Transformer?

In the design of the single-layer Transformer, each fea-
ture group is processed independently through multi-head
attention, combined with learnable positional embeddings
to form localized feature representations. The multi-head
attention mechanism captures both intra-modal and inter-
modal feature relationships within each group, while resid-
ual connections ensure the preservation of original feature
information.

This grouping strategy eliminates the need for multi-
layer stacking, achieving efficient compression and reten-
tion of information within a single layer. Since each group
independently performs learning and attention computa-
tion, the model is able to capture different levels of fea-
ture relationships in each subspace. This process can be
viewed as a finer-grained decomposition of the original
high-dimensional space, effectively mapping it into mul-
tiple low-dimensional subspaces for learning, which en-
hances the model’s ability to capture semantic information.

3.2.2 The Design of LightGR-Transformer Structure

As shown in Fig.4, the RGB and thermal images are sep-
arately spread into sequences, then spliced over the chan-
nel to form a feature representation Ffusion with comprehen-
sive semantics. (B, H ∗W , C ) is the reshaped shape of
Ffusion. B represents the batch size, C represents the num-
ber of channels. H and W represent the image height and
width respectively. Cf represents the number of channels
of Ffusion.

In order to process this channel information more effi-
ciently, this paper proposes to group the channel dimension
C. C is divided into G groups with each channel size of Cf

G .

For example, we set G = 4, then the feature Ffusion is divided
into four groups to get Freshape. The formula is shown below
:

Freshape = [F1, F2, F3, F4], Fi ∈ RB∗(H∗W )∗
Cf
G (5)

where every learnable position embedding Pi is added sep-
arately to preserve the spatial position information in each
grouping, which is then processed by the MultiHead atten-
tion function MultiHead (·) respectively to realize the full
interaction of inter- and intra-modal features. On this basis,
the processed features are residually connected with their
original grouped values Fi. The function can be represented
as follows:

F out
i =MultiHead(Fi+Pi) + ρ · Fi (6)

where F out
i denotes the output features of the i-th sub-block

after the multi-attention mechanism and learnable residual
connection. ρ is a learnable weight parameter that adap-
tively adjusts the weights between the original and fused
features.

Finally, splice F out
i together in the channel dimension

to form the fused final feature F
′′

. The function can be
represented as follows:

F
′′
= concat(F out

1 , F out
2 , F out

3 , F out
4 ) ∈ RB∗(H∗W )∗Cf

(7)
This design not only fully utilizes the advantages of the
multi-head attention mechanism, but also preserves the in-
formation of the original features through residual connec-
tion, which makes the final output feature F

′′
have both

global information and local details.
In this paper, the number of heads of the multi-head at-

tention mechanism is set to 8, which can help the model to
better understand and capture the correlation between ther-
mal and RGB features, and to ensure that the information is
adequately expressed in the fusion process.

3.2.3 Comparison of Computation Cost with Other
Transformer-based Fusion Modules

The attention mechanism is applied to each Fi ∈
RB∗N∗

Cf
G separately.

Given the input matrix I , we map it to the weight matrix
Q,K, V , computed as follows:

Q = I ·WQ,K = I ·WK , V = I ·WV (8)

where the dimension of W is RC∗Dk , is used to generate
the weight matrix of query, key, and value.

The formula of the attention mechanism is shown below:

Attention(Q,K, V ) = Softmax
(
QKT

√
DK

)
· V (9)



Table 1. The comparison of computation cost between existing methods and LightGR-Transformer (where n is the number of stacked
transformer encoder blocks, N is the number of tokens, and C is the number of channels, CFE is the module used in ICAF).

Step CFT(n=8) CFE(n=8) Ours(n=1)
QKT O(4N2 × C) O(2N2 × C) O( 12N

2 × C)

Softmax
(

QKT

√
DK

)
O(4N2) O(2N2) O( 12N

2)

Softmax
(

QKT

√
DK

)
· V O(4N2 × C) O(2N2 × C) O( 12N

2 × C)

FFN O(16N × C2) O(8N × C2) O(N × C2)
TOTAL O(4N2 × C + 16N × C2) O(2N2 × C + 16N × C2) O( 12N

2 × C +N × C2)
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Figure 5. Structure of C3_LK. The CBS module in YOLO is a
fundamental unit that combines convolution, batch normalization,
and activation functions to efficiently extract and process image
features.

where in the input matrix I ∈ RL∗Dk , L is the token length
and Dk is the input data dimension. In this study, Dk = C,
i.e. the input and weight matrix are dimensionally identical.

After the attention mechanism, the output of each atten-
tion head is passed through a feed-forward network (FFN).
The FFN consists of two fully connected layers, with a non-
linear activation function in between. The formula for the
FFN can be expressed as:

FFN(x) = max(0, xW1 + b1)W2 + b2 (10)

where x is the input from the attention mechanism. W1 ∈
RDmodel×Dff and W2 ∈ RDff×Dmodel are weight matrices. b1
and b2 are bias terms. Dff is the dimension of the hidden
layer (larger than the input/output dimension Dmodel).

Both CFT and ICAF are Transformer-based fusion meth-
ods, and they use 8 layers of multi-head attention mech-
anisms to capture inter- and intra-modal feature relation-

ships. Table 1 shows a detailed comparison of the compu-
tational cost for each step.

Our network significantly reduces the number of param-
eters compared to the CFT and the CFE module in ICAF
[16]. Among all Transformer-based fusion methods, our
method reduces parameters by over 60% compared to CFT,
and by 30%-40% compared to CFE.

3.3. C3 with Deformable Large Kernel Attention

In order to enhance the detection ability of the model
for small targets and complex deformed objects, this paper
designs a C3_LK module, integrates D_LKA (Deformable
Large Kernel Attention) and replaces the C3 module in
backbone with it. This module dynamically adjusts the re-
ceptive field of the convolutional kernel through a series of
deformable convolutional layers to flexibly capture the posi-
tional information in the input feature map, thus improving
the ability to capture local details. The deformable convo-
lution flexibly adjusts the sampling position of the standard
convolution by introducing additional offsets, enabling the
convolution kernel to adapt itself to changes in image con-
tent.

Compared to the standard C3 module, C3_LK allows the
model to better model deformed objects and irregular local
features, especially in detecting small targets and deformed
objects in complex scenes.

As shown in Fig.5, the first layer of convolution is used
to extract the underlying localized features, which has a
smaller receptive field to capture more subtle features. The
second layer of convolution further expands the receptive
field and is used to initially generate the attention map. The
third layer of convolution (7x7 inflated deformable convo-
lution) combines the properties of dilation convolution to
capture more complex spatial features with a wider range
of receptive field while avoiding too much information loss.

The attention maps are generated sequentially through
the above convolutional operations, and then the number of
channels is finally adjusted by a 1x1 convolutional layer.
The function of this step is to multiply the convolutional
processed feature information with the original input ele-
ment by element, to strengthen the feature expression of key
regions, and thus promote the model’s attention to important
local regions.



4. Experiments

4.1. Datasets

KAIST Dataset. KAIST [20] is a widely used mul-
tispectral pedestrian detection benchmark dataset contain-
ing scenes under different lighting conditions. Because this
dataset is taken from the video continuous frame images,
and the neighboring images do not differ much, it is cleaned
to some extent. The dataset retains only person, cyclist, and
merges the two labels into person. Blank labels and their
corresponding images are removed. The dataset has 7,595
image pairs for training and 1,400 image pairs for testing.
The performance of the KAIST dataset is usually evaluated
based on the log-average miss rate metric [36].

FLIR Dataset. FLIR [37] is a multispectral target de-
tection dataset covering both day and night scenes. The
dataset contains 5,142 pairs of multispectral images, of
which 4,129 pairs are used for training and 1,013 pairs are
used for testing. The dataset consists of three types of tar-
gets, namely person, cars, and bicycles. Given that there
are alignment errors in the images in the original dataset, a
corrected FLIR-aligned version [21] is used for comparative
analysis to improve the accuracy of the experiments.

4.2. Evaluation Metrics

Average Precision. Average Precision is a fundamental
evaluation metric in object detection, used to measure the
accuracy of a detection model. It reflects the model’s ability
to correctly detect objects under different thresholds. Typi-
cally, the IoU threshold is set to 0.5, meaning that when the
IoU between the model’s predicted bounding box and the
ground truth is greater than or equal to 0.5, it is considered
a True Positive. Mean Average Precision (mAP) is the av-
erage of AP across different categories, commonly used in
multi-class object detection tasks to indicate overall detec-
tion performance. mAP50, a widely used metric, refers to
the AP calculated at an IoU threshold of 0.5. In this paper,
the evaluation metrics on the FLIR dataset include mAP50,
AP for each category, and overall mAP. Higher values for
these metrics indicate more accurate detection results.

Log-average Miss Rate. In this paper, the evalua-
tion metric log-average miss rate (MR−2) [36] is used
for the KAIST dataset. The relationship between different
log (MR) and FPPI can be obtained by adjusting different
thresholds of detection confidence. 9 FPPIs within the range
of [0.01,1] are uniformly selected, and their corresponding
9 log (MR) values are obtained. These vertical coordinate
values are averaged, and then the averaged MR−2 is com-
puted. The smaller the metric, the higher the performance
of the detector.

4.3. Implementation Details

Our method is implemented on a Windows system with
PyTorch version 1.10.0+cu113, utilizing an i5-14600KF
CPU and one NVIDIA GeForce RTX 4070 Ti SUPER GPU.
We train the models using a stochastic gradient descent
(SGD) optimizer with an initial learning rate of 1e-2, mo-
mentum of 0.937, and weight decay of 0.0005. The training
runs for 500 epochs with workers of 2 and a batch size of 4.
To enhance performance, we initialize the models with pre-
trained weights from the YOLOv5 model, which is trained
on the COCO dataset [38].

4.4. Ablation Study

4.4.1 The Effect of the Number of LightGR-
Transformer Modules

To evaluate the performance of the LightGR-
Transformer module across different backbones, we design
three comparison experiments. we design three comparison
experiments using CSPDarkNet, VGG16, and ResNet50.
For each backbone, we test the following configurations:

(1) Using the LightGR-Transformer module for fusion at
the 5th layer;

(2) Using the LightGR-Transformer module for fusion at
both the 4th and 5th layers;

(3) Using the LightGR-Transformer module for fusion at
the 3rd, 4th, and 5th layers.

These experiments systematically analyze the perfor-
mance of the LightGR-Transformer module across different
backbones and layer combinations. The default number of
groups for the LightGR-Transformer is set to 4. The results
are shown in Table 2 below.

It is clear that our method significantly reduces the num-
ber of parameters compared to the CFE module in ICAF
[16]. In terms of performance, our method surpasses the
ICAF, primarily due to the efficient feature utilization of
the LightGR-Transformer module. By slicing the chan-
nels, the interference from redundant information is effec-
tively minimized. This allows the model to focus more
on the key features of each sliced block, enhancing the ef-
fectiveness of feature representation. Each sub-block cre-
ated through slicing focuses more on learning local features.
This reduces the impact of noise during the overall compu-
tation, thereby improving accuracy. Using three LightGR-
Transformer modules does not outperform a network with
only two modules, even though it achieves the least compu-
tational cost.

4.4.2 The Effect of the Number of Groups

To assess the impact of different group numbers on per-
formance, we conduct experiments by dividing the channels



Table 2. Performance comparison of the LightGR-Transformer module across different backbone networks and layer configurations. The
best results are highlighted in bold black.

Backbone Fusion Method Params (FLIR) mAP50(%) (KAIST) mAP50(%) (KAIST) MR−2(%)

CSPdarkNet

3CFE 120.2m 79.20 78.11 7.17
+LightGR-Transformer 88.1m 82.45 79.15 7.45

+2LightGR-Transformer 79.8m 82.80 81.43 7.38
+3LightGR-Transformer 77.6m 81.00 79.11 7.61

VGG
3CFE 62.2m 70.12 75.92 15.46

+LightGR-Transformer 54.1m 74.88 76.14 313.76
+2LightGR-Transformer 45.8m 74.66 76.86 13.62

Resnet50
3CFE 313.8m 70.50 74.87 12.68

+LightGR-Transformer 185.6m 72.49 75.92 12.87
+2LightGR-Transformer 153.2m 73.39 76.03 13.01

Table 3. Performance comparison of LightGR-Transformer with different group numbers and layer configurations. The best results are
highlighted in bold black.

Add
LightGR-Transformer Number of Groups Params

(FLIR)
mAP50(%)

(KAIST)
mAP50(%)

(KAIST)
MR−2(%)

CSPdarkNet
+YOLOv5

detector

I=5
Group=2 89.84m 82.40 79.23 7.76
Group=4 88.07m 82.76 81.32 7.42
Group=8 87.63m 81.35 81.21 7.53

I=4,5
Group=2 82.02m 82.21 81,14 7.44
Group=4 79.80m 82.43 81.04 7.38
Group=8 79.26m 82.35 81.27 7.76

Table 4. Experiments of replacing LayerNorm with RMSNorm.(The experiments from left to right are as follows: keeping both Layer-
Norms, replacing the LayerNorm before Attention with RMSNorm, replacing the LayerNorm after Attention with RMSNorm, and finally
replacing both LayerNorms with RMSNorm to compare their effects.)

Metric both LN RN Pre-Attention RN Post-Attention both RN
FPS(Hz) 42.2 42.5 43.2 43.3

(FLIR)mAP50(%) 82.23 82.69 82.50 81.62

into 2, 4, and 8 groups. The goal is to determine the opti-
mal grouping strategy. We compare the performance of us-
ing the LightGR-Transformer module for fusion at the 5th
layer alone versus using it for fusion at both the 4th and 5th
layers. The results are shown in Table 3. By analyzing the
results of these experiments, we evaluate the effect of the
number of groups on the overall performance of the model.

In our experiments, we find that using 4 groups has rel-
atively better performance. This is likely because grouping
into 4 strikes a good balance between information sharing
and computational complexity. Compared to using 2 or 8
groups, 4 groups effectively capture detailed feature infor-
mation while avoiding excessive isolation or computational
overhead, leading to improved overall performance.

Additionally, we observe that replacing LayerNorm with
RMSNorm before the multi-attention mechanism modestly
improves training performance. Unlike LayerNorm, which
re-centers and re-scales the input, RMSNorm simplifies the
process by only re-scaling using the root mean square, fo-
cusing on scaling invariance rather than translation invari-
ance. The results are shown in Table 4.

Although this replacement accelerates training, the
speedup is not particularly significant in our case, as the
number of normalization operations is relatively small and
the overall computational load is already low. However,
RMSNorm still helps preserve useful offset information,
enabling the attention mechanism to better capture subtle
relationships in the input sequence.

4.5. Comparison Experiment

4.5.1 Comparison with State-of-the-art Methods

On the KAIST dataset, as shown in Table 5, our method
performs better than other SOTA methods on the MR−2

metric at nighttime, demonstrating superior performance in
low-visibility conditions. Additionally, on the MR−2 met-
ric, our model performs at a similar level to ICAF, while
reducing the computational cost by 30%-40% compared to
the ICAF architecture.

On the FLIR dataset, our method is compared with other
SOTA methods, and the comparison results are shown in
Table 6. Our method surpasses all SOTA methods in both



Table 5. Comparison on the KAIST Dataset. The best results are highlighted in red and the second-place results are highlighted in blue.

Method Miss Rate(%)↓ FPS(Hz) Platform
All Day Night

FusionRPN+BF [39] 18.29 19.57 16.27 - -
HalfwayFusion [32] 25.77 24.91 26.67 2.33 TITAN X

IAF-RCNN [23] 15.57 14.81 16.70 4.76 TITAN X
IATDNN-IAMSS [22] 14.46 14.18 15.28 4.00 TITAN X

MBNet [25] 8.40 8.62 76.10 14.29 GTX 1080Ti
MLPD [40] 7.58 7.96 6.95 - -

MSDS-RCNN [33] 8.23 8.83 6.75 4.55 GTX 1080Ti
ICAF [16] 7.17 6.82 7.85 38.46 RTX 3090

Ours 7.38 8.53 5.54 45.68 RTX 4070TiS

Table 6. Comparison on the FLIR Dataset. The best results are highlighted in red and the second-place results are highlighted in blue.

Method AP50 (%) mAP50(%) mAP(%)Bicycle Car Person
MMTOD-CG [41] 50.26 70.63 63.31 61.4 -

MMTOD-UNIT [41] 49.43 70.72 64.47 61.5 -
GAFF [42] - - - 72.9 37.3

CFR [8] 57.77 84.91 74.49 72.4 -
BU-ATT [43] 56.10 87.00 76.10 73.1 -
BU-LTT [43] 57.40 86.50 75.60 73.2 -

CFT [15] 61.40 89.50 84.10 78.3 40.2
ICAF [16] 66.90 89.00 81.60 79.2 41.4

Ours 71.80 90.10 85.60 82.8 40.7

AP50 across all categories and mAP50.

4.5.2 Qualitative Analysis

As shown in Fig.6, red markers indicate missed detec-
tions, and yellow markers represent false detections. These
examples are from five different scenarios. The fusion of
thermal and RGB features leverages the complementary
strengths of both modalities. The first and second rows
show detection results using only RGB and thermal fea-
tures, respectively, while the third row displays results after
fusing RGB and thermal features using our method. The
improvements in reducing both missed and false detections
are clearly evident.

As shown in Fig.7, this is a comparison of our method
with ICAF for small object detection. As shown, the first
and second rows are from the same scene. In the first row,
due to the long shooting distance and lack of image clar-
ity, the object features are unclear, causing ICAF to miss
the detection. Even in the second and third row, where the
objects are larger, ICAF still fails to detect them accurately.
However, with the application of the deformable large ker-
nel attention mechanism, our method demonstrates excel-
lent performance in small object detection, effectively cap-
turing and recognizing these hard-to-detect objects.

As shown in Fig.8, The first row shows the ground truth,

while the second row presents the attention heatmap visu-
alization of the ICAF model. The third row displays the
attention heatmap visualization of our method. It is evi-
dent that, compared to ICAF, our method more accurately
captures the key features of the object. Additionally, our
method demonstrates a stronger focus on the object area,
effectively suppressing background interference. This im-
provement significantly enhances the model’s detection ac-
curacy.

5. Conclusions

This paper proposes an efficient Light Grouped Residual
Transformer (LightGR-Transformer) module for the fusion
of thermal and visible features. Compared to traditional
multi-layer Transformer structures, LightGR-Transformer
significantly reduces computational cost through channel-
wise grouping and learnable residual connections while ef-
fectively preserving key information. Additionally, a de-
formable convolutional layer is introduced to improve the
detection accuracy of small targets under low-visibility
conditions. Experimental results show that LightGR-
Transformer reduces computation costs by 30%-40% while
maintaining excellent performance on multiple datasets,
providing strong support for the low-cost deployment of
RGB-T detection.
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Figure 6. The illustration shows detection results based on different feature sets. The first row presents the results using only RGB features.
The second row shows the detection based solely on thermal features. The third row displays the results after feature fusion of both RGB
and thermal. Red arrows highlight the missed detections, while yellow arrows mark the false detections.

(1) (2) (3) (4) (5)(1) (2) (3) (4) (5)

(a) RGB and thermal images (b) ICAF detection results (c) ours detection results(a) RGB and thermal images (b) ICAF detection results (c) ours detection results(a) RGB and thermal images (b) ICAF detection results (c) ours detection results

Figure 7. The results on the KAIST dataset. Columns 1 and 2 represent the RGB and thermal images, respectively. Columns 3 and 4 show
the ICAF detection results after feature fusion, while columns 5 and 6 present our module’s detection results after feature fusion. Red
arrows highlight the missed detections, while yellow arrows mark the false detections.
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Figure 8. Visualization of Attention Maps on KAIST and FLIR Datasets. The first row shows ground truth, the second row displays the
attention heatmaps from the ICAF network, and the third row presents the attention heatmaps from our method.
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