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Abstract

Vector fonts are favored by font designers for their
editability. However, reconstructing vector images
from raster glyph images is a cross-modal process. Ex-
isting methods either struggle to reconstruct fine con-
tours or fail to represent glyphs concisely. This pa-
per proposes a dual-modal vector denoising diffusion
model that integrates vector and raster images for re-
constructing quadratic Bézier curves from raster im-
ages. Specifically, we pre-calculate the signed distance
function (SDF) values for each input glyph to effec-
tively capture the geometric information of the glyph.
Then, we integrate the image and vector dual modali-
ties to enhance the stability of the reconstruction pro-
cess. By incorporating a variable masking mechanism,
the model gradually reduces its dependency on the vec-

tor modality, enabling end-to-end cross-modal vector
reconstruction during the inference process. Our vector
diffusion model employs a transformer architecture and
an innovative vector representation method, capable of
modeling various vector geometric shapes. In the realm
of vector font reconstruction, our approach outper-
forms existing techniques. The font images generated
by our method can be readily converted into TrueType
fonts, highlighting the significant practical value of this
research. Keywords: Vector Font Generation, Multi-

Modal Representation, Variable-Rate Masking,Vector
Quantization.

1. Introduction

Vector fonts define outlines through a set of param-
eterized shapes, allowing for easy adjustments and ex-
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pansion of glyph appearances. However, developing
vector fonts is a time-consuming task, as it requires
font designers to create glyph outlines for 9,169 Chi-
nese characters. This process relies on the expertise
and experience of the designers, setting a high thresh-
old for font development and making the fusion of art
and technology a valuable endeavor. With advance-
ments in image generation technology, deep learning-
based font reconstruction methods can generate pixe-
lated glyph images. The reconstruction of vector glyph
images from raster ones helps further simplify and ex-
pedite the font design process. However, due to the
topological structure, parameter sequence length, and
stylistic diversity of vector fonts, reconstructing vector
glyphs from pixelated glyph images remains a challeng-
ing and ongoing problem.

The development of deep generative models has
led to the emergence of several effective and powerful
methods for reconstructing aesthetically pleasing raster
glyph images. The development of Chinese font li-
braries is gradually transitioning from manual creation
to automation, significantly enhancing the efficiency
of Chinese font creation. Some methods have been
proposed that through deep generative models[12, 37],
a small portion of reference style images designed by
designers is learned to generate raster glyph images
of 9,169 characters in an end-to-end manner. Other
methods have been proposed to learn separate repre-
sentations for Chinese character style and content in
an unsupervised manner, enabling the generation of
raster images for arbitrary style-content combinations
[33, 29, 17, 6]. However, after the model generates
raster images for all Chinese characters, these raster
glyphs need to be converted into vector glyph images.
However, due to the complexity of glyph shapes, this
conversion process still requires significant manual in-
tervention.

In recent years, researchers have paid extensive at-
tention to font reconstruction and recognition based
on sequential representations. FontRNN[27] and Write
Like You[26] encode and decode sequences of handwrit-
ten trajectories using RNN or LSTM, achieving vec-
tor reconstruction of handwritten strokes. The Deep
imitator[38] accurately mimics handwritten trajecto-
ries by introducing attention mechanisms, resulting
in the generation of editable handwritten fonts. Re-
cently, Liu et al.[11] and Yang et al.[35] proposed on-
line stroke analysis tasks during the author’s writing
process. However, unlike conventional TrueType Font
(TTF), these methods treat handwriting as time-series
data, focusing on capturing dynamic stroke variations
during the writing process rather than static glyph
outlines. TTFs precisely describe glyph outlines us-

ing mathematical formulas and coordinate parameters,
forming complex closed shapes composed of quadratic
Bézier curves and lines[8]. This representation method
is widely used in the Scalable Vector Graphics (SVG)
format[39]. With the advancement of sequence genera-
tion models, Lopes et al.[14] and Deepsvg[1] proposed
transforming the vector font reconstruction problem
into generating SVG drawing parameters, making it
possible to reconstruct vector fonts based on these pa-
rameters. Researchers have made much effort to di-
rectly reconstruct vector fonts in recent years. A typ-
ical approach is to model each glyph as a shape prim-
itive composed of several Bézier curves, mapping from
raster images to vector images through combination
and adjustment of vector shapes [32, 13]. However,
deep neural networks struggle to directly learn and un-
derstand explicit representations of vector glyphs. The
main challenges lie in the long-sequence dependencies
exhibited by vector graphics and the ambiguity in de-
picting glyph contours.

In this study, we aim to address the challenging
problem of reconstructing vector glyphs with com-
pact contours from rasterized glyph images. To cap-
ture long-range dependencies and accommodate the
irregularity of vector representations, we introduce a
transformer-based vector diffusion model. We convert
vector glyph data into SVG representations, making it
more suitable for the denoising diffusion model and the
learning process of the Transformer. Given the hetero-
geneity between image modality and vector modality
data, establishing a direct connection between the two
modalities is challenging. Therefore, we precompute
the signed distance function (SDF) values for each in-
put glyph, effectively capturing the geometric informa-
tion of the glyph while bridging the differences between
the modalities. We then apply a modality alignment
strategy. During the joint training of image modal-
ity and vector modality, we employ a masking mech-
anism that gradually increases over training time to
reduce the model’s reliance on vector modality and
enhance its focus on image modality features. Next,
we quantize the features of the vector modality to ob-
tain discrete indices for each feature. Subsequently,
we use a self-supervised learning approach to train the
image modality to predict the corresponding feature
indices of the vector modality, thereby enhancing the
consistency between the two modalities. Finally, dur-
ing inference, the model predicts the quantized indices
of unmasked vector features solely through the image
modality, achieving the cross-modality task of vector
reconstruction during the inference process. Our pro-
posed model is capable of reconstructing vector glyphs
from raster glyph images in an end-to-end manner.



Furthermore, it excels in generating various types of
icons. In summary, our main contributions are as fol-
lows

• We propose a masked diffusion transformer model
that integrates vector and image modalities, ef-
fectively ”upsampling” low-resolution raster glyph
images into vector representations.

• We condition the vector diffusion model on the
SDF values of raster glyphs, allowing the model to
”denoise” noisy vector glyph representations into
structured Bézier curves of the glyph.

• We introduce a new framework for reconstruct-
ing vector glyphs. During training, we gradually
reduce the model’s dependence on vector modal-
ity through variable-rate masking and predict the
missing vector modality information based on im-
age modality, thereby achieving the cross-modality
task of vector reconstruction.

• We conducted extensive experiments and achieved
state-of-the-art performance in generating multi-
language vector fonts and vector icons, produc-
ing outputs that are comparable in quality and
compactness to those designed by humans. The
outputs can be easily converted into common font
formats.

2. Related Work

2.1. Vector Font Generation

Vector font reconstruction methods can be catego-
rized into supervised and unsupervised approaches. In
unsupervised methods, Im2vec [21] maps raster images
to drawing commands by adjusting control points on
the unit-circle contour. VecFontSDF [32] fits glyph im-
ages by combining and adjusting multiple Bézier curves
forming closed shapes. DualVector [13] treats each
glyph as a collection of closed paths and obtains glyph
contours through Boolean operations on these closed
paths. While these methods are suitable for recon-
structing vector glyphs of simple characters, the result-
ing vector glyphs often suffer from redundant curves
and non-smooth contours. Supervised vector font re-
construction methods rely on annotated vector glyphs
as training data. SVG-VAE [14] was the first to build a
sequential generative model for SVG fonts. DeepSVG
[1] developed a hierarchical transformer-based genera-
tive model for generating complex SVG icons and inter-
polations. DiffVG [9] made vector curves differentiable,
establishing the relationship between vector graphics
and bitmaps, making them suitable for optimization

through networks, and gradually becoming the theo-
retical basis for many vector shape generation works.
DeepVecFont [30] and DeepVecFont-v2 [31] jointly rep-
resent features of font images and sequences, establish-
ing relationships between vector graphics and bitmaps,
and leveraging the Transformer’s ability to model long
sequences to generate drawing commands. However,
the vector reconstruction process is a cross-modal task,
and the heterogeneity of the data makes it challeng-
ing to establish direct connections between these two
modalities. To address this issue, we precompute the
SDF values for each input glyph, which effectively cap-
tures the geometric information of the glyph while co-
ordinating the differences between the modalities.

2.2. Diffusion Model

Diffusion models are a novel type of generative
model that use an iterative reverse diffusion process
to generate high-quality images. Sohl-Dickstein et al.
[24] first elucidated the concept of diffusion probabilis-
tic models and denoising diffusion probabilistic models
(DDPM). DDPM [4] is a latent variable model where
a denoising autoencoder gradually converts Gaussian
noise into the original data. Compared to GANs, dif-
fusion models produce higher quality images and ex-
hibit better training stability. Consequently, they have
garnered increasing attention in the field of image re-
construction. Building on this, the introduction of con-
ditional constraints has further expanded their applica-
tion scope, allowing models to generate corresponding
outputs based on specific input conditions. Currently,
conditional diffusion models are widely used in tasks
ranging from text-to-image generation. CTIG-DM [40]
introduces four types of text-image generation modes
in the diffusion model, using images, text, and styles
as conditions. DEADiff [18] proposes a mechanism to
decouple the style and semantics of the reference im-
age, achieving an optimal balance between the inher-
ent text controllability of text-to-image models and the
style similarity to the reference image. DiffuSeq[3] and
DiffuSeq-v2[3] propose a diffusion model specifically
designed for sequence-to-sequence (Seq2Seq) text gen-
eration tasks, demonstrating the enormous potential of
diffusion models in complex conditional sequence gen-
eration tasks. The task of vector font reconstruction
is viewed as a problem of reconstructing SVG drawing
parameter sequences. We condition the vector diffu-
sion model on the SDF values of raster glyph images,
using the diffusion model to ”denoise” the vector glyph
representation into structured Bézier curves that rep-
resent the glyph.



2.3. Multi-Modality Representation Learning

Multimodal models involve the integration of vari-
ous types of data and information, such as text, im-
ages, etc., to complement or align these pieces of infor-
mation, thereby enhancing model performance and ef-
fectiveness. Multimodal representation can be divided
into Joint Representation and Aligned Representation.
In Joint Representation studies, models like BLIP [7],
ViLBERT [15], and ALIGN [5] merge information from
different modalities into a shared latent space through
methods like feature vector concatenation and averag-
ing, enabling joint representation for tasks like visual
question answering and visual commonsense reasoning.
Models such as CLIP [19]and A-CLP [34] align data
from different modalities in the latent space to more ef-
fectively learn their correlations and mutual influences.
This alignment method unifies visual and language
tasks under a single framework, facilitating the fusion
and modeling of multimodal information. Aligned Rep-
resentation can handle both understanding-based tasks
(like image-text retrieval) and generation-based tasks
(like image captioning) within the model architecture.
However, due to potential significant differences in the
distributions of feature sets from different modalities,
the representational capacity of fused features may be
insufficient, thereby limiting model performance. In
our approach, we leverage features from both glyph im-
age and vector modalities, sharing a learned codebook
across modalities, and encoding glyph image and se-
quence modalities into a unified embedding space. Us-
ing self-supervised learning, we predict the correspond-
ing vector feature’s discrete index for image features to
achieve effective alignment between the two modalities.

3. Method Description

3.1. Problem Statement and Method Overview

Our goal is to develop a model capable of re-
constructing vector images from raster glyph images.
Since this conversion process involves cross-modal gen-
eration, it is highly challenging to apply traditional au-
toregressive or non-autoregressive models to generate
outputs in a single step. Therefore, we employ a diffu-
sion model that iteratively optimizes the generated se-
quence of drawing parameters, using a Transformer to
capture the long-range dependencies and adapt to the
irregularities of vector representations. To make the
vector data suitable for the denoising diffusion model
and the Transformer learning process, we convert the
unstructured glyph vector image into structured tensor
data during data preparation, which is then used for
feature embedding. Additionally, we incorporate glyph
image and vector modalities as guiding conditions in

the model. We precompute the SDF values for each
input glyph, enriching the model’s learning capability
by combining the global information from the glyph im-
age’s SDF values with the structural information from
the vector modality.

To accomplish the cross-modal vector reconstruction
task, we propose a novel cross-modal generation strat-
egy. During training, we employ a variable-rate mask-
ing mechanism, gradually increasing the masking rate
as training progresses, focusing on different modal in-
formation at different stages. Initially, the model em-
phasizes learning the features of the vector modality.
As the masking rate increases, the model shifts its focus
to learning the features of the image modality. Dur-
ing inference, the model uses the image modality fea-
tures to predict the indices of the unmasked vector fea-
tures, thereby substituting the features from the vector
modality. Through this strategy, the model can fully
rely on the image modality to complete the vector re-
construction task, achieving the conversion from glyph
images to vector glyphs.

3.2. Data Preprocessing

3.2.1 Vector Glyph

A vector glyph is defined by a series of drawing pa-
rameters and is considered unstructured data (see Ap-
pendix A for more details). Due to varying levels of
glyph complexity, the length of these drawing param-
eters may differ. To enable parallel processing by the
model, we convert the unstructured drawing param-
eters into structured tensor data. Each vector glyph
image consists of N drawing parameters S, where each
drawing parameter si = (c, p) is composed of a draw-
ing command type and drawing coordinate parame-
ters. The drawing command type is represented by
commands c ∈ {< SOS >,M,L,V,H,Q,Z, < EOS >},
where < SOS > and < EOS > represent the start and
end of the sequence, respectively. The drawing coordi-
nate parameters are given as p = (x1, y1, x2, y2). If the
length of S is less than N , it is padded with −1 (see
Appendix B for more details).

3.2.2 Signed Distance Function

The SDF value is calculated as the distance from each
pixel to the nearest contour, with a sign indicating
whether the pixel is inside or outside the contour. For
a vector glyph image, it is first converted into a binary
image B, where a pixel value of 1 indicates that it is
outside the glyph, and 0 indicates that it is inside. The
SDF value Xsdf (x, y) at position (x, y) is then defined
as
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Figure 1. Detailed data flow of the SDF encoder and masked diffusion transformer model. Given a Chinese character from
a font, the model receives its drawing parameters and SDF image as input, which are processed separately by the SDF
decoder and sequence decoder to extract image features and vector features, respectively. The vector features, after vector
quantization, are partially masked by 75%, and this masked part, along with the image features, is fed into the diffusion
transformer model for reconstructing vector drawing parameters. Image features predict the discrete indices of corresponding
vector features through an MLP layer to align the modalities. In the inference phase, the model uses the image modality
to predict the quantized indices of unmasked vector features, thus enabling the model to generate corresponding vector
drawing parameters relying solely on raster images.

Xsdf (x, y) =

{
d(x, y), B(x, y) = 1

−d(x, y), B(x, y) = 0
. (1)

Let C be the set of contour points. The SDF value
for any pixel point (x, y) is

d(x, y) = min
(xc,yc)∈C

√
(x− xc)

2
+ (y − yc)

2
. (2)

3.2.3 Embedding of Drawing Parameters Features

Given the discrete nature of the drawing parameters,
we apply feature embedding techniques commonly used
in natural language processing. For each drawing pa-
rameter si, we embed the drawing command type c.
An 8-dimensional one-hot vector δc represents c, where
only one dimension corresponds to the current com-
mand type index. This is then mapped to a vector of
dimension d using a learnable matrix Wcmd ∈ Rd×8,
resulting in the embedded vector eicmd = Wcmdδc.

The size of the vector image is set to 128× 128, and
it includes a padding flag of −1. For the coordinates
in the drawing parameter, a one-hot vector is first used
to represent each coordinate, which is then mapped to
a d-dimensional vector via a learnable weight matrix
Wx ∈ Rd×130. The embedded vector is computed as
eicoord = Wxδx1

⊕Wxδy1
⊕Wxδx2

⊕Wxδy2
. Finally, an

absolute position encoding eipos is introduced to help
the model capture positional relationships within the
sequence. The final feature embedding for each si is
given by zi = (eicmd ⊕ eicoord) + eipos.

3.3. Vector Diffusion

In the forward process, noise is injected into the
feature-embedded vector drawing parameters. After T
steps of forward random perturbation, the parameters
eventually become Gaussian noise.

q (zt | zt−1) = N
(
zt;

√
1− βtzt−1, βtI

)
, (3)



where t = 1, 2, . . . , T and β1 < . . . < βT are predefined
parameters that control the mean and variance of the
noise. Let αt = 1− βt, and

∏t
i=1 αi, so that zt at any

time can be obtained as

zt =
√
αtz0 +

√
1− ᾱt · ε, (4)

where ε stands for Gaussian noises. For the reverse
process, conditioned on the information obtained from
the image modality and vector modality c, the isotropic
Gaussian noise is removed from zT .

pθ (zt−1 | zt, c) = N (zt−1;µθ (zt, t, c) , σθ (zt, t, c)) ,
(5)

where µθ(·) and σθ(·) are the predicted parame-
terizations of the mean and standard deviation of
q (zt | zt− 1) in the forward process. Using Bayes’
rule, we can obtain the parameterized mean of q(zt−1 |
zt, z0) as

µt (zt, z0) =

√
αt (1− ᾱt−1)

1− ᾱt
zt +

√
ᾱt−1βt

1− ᾱt
z0. (6)

We use a Transformer architecture to model fθ. The
model estimates the final target result directly at each
time step, predicting the vector drawing parameters in
an iterative non-autoregressive manner. By applying
the Clamping Trick [10] to map back from continuous
latent space representations to discrete vector embed-
dings, we reduce errors caused by rounding or floating-
point precision.

zt−1 =
√
ᾱ · Clamp (fθ (zt, t)) +

√
1− ᾱ · ε. (7)

The Clamp( · ) operation maps fθ (zt, t) to the near-
est vector embedding, ensuring that the generated
zt− 1 is precisely aligned with the discrete vector em-
bedding. The objective function of the model is

Ldiff = min
θ

[
T∑

t=2

‖z0 − fθ (ẑt, t)‖2

+ ‖EMB(S)− fθ (ẑ1, 1)‖2

+R
(
‖z0‖2

)]
.

(8)

where , the mathematically equivalent regularization
term R

(
‖z0‖2

)
regularize the embedding learning.

3.4. Sequence Encoder

As shown in Figure 1 (a), the sequence encoder con-
sists of six layers of multi-head self-attention Trans-
former modules . To enable the vector image V com-
posed of drawing parameters to participate in model

operations, it is first converted into structured tensor
data S. After the feature embedding operation, it is in-
put into the encoder to obtain the feature Fseq for the
vector modality. We then introduce the vector modal-
ity into the diffusion model using cross-attention.

3.5. SDF Encoder

As shown in Figure 1 (b), we input the SDF val-
ues Xsdf of the glyph vector image V into the image
modality encoder, which uses a six-layer multi-head at-
tention transformer as the encoder. We flatten it into
SDF patches Xp ∈ RL×P 2 , where L = H×W

P 2 is the
number of SDF patches, and P is the size of each SDF
patch.

Additionally, we extend the boundaries of the
patches by o pixels to a size of (P+2o)×(P+2o). This
extra extension ensures overlap between each patch,
allowing the encoder to better understand adjacent
patches and perceive positional information. Simulta-
neously, positional embeddings Epos ∈ RL×d are added
to form patch embeddings. The patch embedding Esdf

is input into the SDF decoder to obtain the latent vec-
tor Fsdf . We then introduce Fsdf into the diffusion
model using cross-attention.

3.6. Dual-modal Fusion

During the model training phase, we utilize features
from both the glyph image modality and the vector
modality for training. To ensure that during the in-
ference phase, the model can solely rely on the image
modality to complete the vector reconstruction task,
we design a bimodal feature alignment strategy.

First, the features of the vector modality are quan-
tized. A discrete latent space V ∈ Rd×K is defined,
where K is the size of the latent space, and d is the
dimension of the latent embedding vector.

There exist K embedding vectors vj ∈ V , j ∈
{1, 2, . . . ,K}. For each latent feature f i

seq ∈ Fseq in
the vector modality, f i

seq is mapped to the nearest em-
bedding vector vjseq based on the L2 distance, as follows

vjseq = argmin
vj∈V

∥∥f i
seq − vj

∥∥2
2
. (9)

The latent features Fseq in the sequence modality
are mapped to a discrete latent space V through vec-
tor quantization, denoted as F̂seq. Yseq = [yi]

N
i=1 repre-

sents the discrete indices of the latent features in the
sequence modality. The features F̂seq are input to the
diffusion model after masking 75% of them using the
variable masking rate module.

During the model inference phase, the sequence en-
coder is removed. To compensate for the information
loss caused by removal of the sequence decoder, we



employ self-supervised learning to predict the discrete
indices of vector features from image features, and then
use a shared codebook to restore the indices to origi-
nal features. Specifically, the image modality features
Fimg are used to predict indices Yimg = [yi]

N
i=1 through

an MLP layer. The model minimizes the difference be-
tween Yimg and Yseq using cross-entropy loss, enabling
features from both modalities to be transformed into
sequences of discrete indices in the same latent space.

The codebook, shared across modalities, is trained
end-to-end through the loss function to optimize the
differences between each latent feature in terms of code-
book and sequence modality.

LVQ = ‖sg[Fseq]− V ‖22 + β ‖sg [V ]− Fseq‖22 , (10)

where sg [·] denotes the stop gradient operation, and β
represents the loss weight for the commitment loss.

To align features in the discrete space between im-
age and vector modalities, we use the sequence indices
Yseq as predicted target labels, aligning them with the
indices of the image modality Yimg using cross-entropy
loss.

Lalign =
N∑
i=1

`CE

(
yiimg, y

i
seq

)
. (11)

3.7. Variable Masking Rate

Initially, the model relies on the vector modality, but
as the training progresses, it increasingly concentrates
on learning image modality features. During the model
training process, we apply a masking operation, de-
noted as M = [mi]

L
i=1, to extract a subset by replacing

part of the features in F̂ seq with a special < MASK >
tag.

The mask is created using a variable-rate masked
generation function. For each training sample, a mask-
ing rate r ∈ [0, 1] is sampled from a truncated cosine
distribution with density function γ(r)

γ(r) =
π

4
cos

(π
2
(1− r)2

)
. (12)

This distribution truncates at a masking rate of 0.75,
tending to produce higher masking rates[36, 2]. We
uniformly select γ( t

T ) · L markers in F̂seq at intervals
linearly related to the training time, denoted by t

T , to
place masks .

4. Experiments

4.1. Dataset

Vector Font Dataset: We collected 300 different
styles of vector fonts from the official websites of Hanyi

and Founder fonts for model training and testing pur-
poses. A random selection of 250 fonts was used for
training, while the remaining 50 fonts were used for
testing.

Character Dataset: We selected a set of 3,500 com-
monly used Chinese characters based on their fre-
quency of usage. Of these, 3,000 characters were used
to train the model, and 500 characters were reserved
for testing.

Data Augmentation: Each glyph vector image is de-
fined by graphical parameters, where each parameter
includes a drawing command type c and drawing coor-
dinate parameters p = (x1, y1, x2, y2). We introduce
small offsets ∆x and ∆x to the coordinates, where
∆x,∆y ∈ [−10, 10] , to translate the glyphs horizon-
tally and vertically.

4.2. Comparison with Other Methods

Vector glyph reconstruction methods can be di-
vided into two categories: vector-supervised and
vector-unsupervised approaches. Among them,
DeepSVG [1],VecFusion[28], DeepVecFont [30], and
DeepVecFont-v2 [31] use self-supervised approaches to
minimize the difference between input data and data
reconstructed through encoders and decoders. These
methods learn the mapping of vector glyph data to la-
tent space and generate vector glyphs by sampling in
latent space. Another category of methods adjusts the
coordinate parameters of Bézier curves to reconstruct
vector glyphs for raster images of glyphs. Examples
include Im2Vec [21] and VecFontSDF [32].

4.2.1 English Vector Font Generation

In this experiment, we compared the performance of
different methods in reconstructing vector images of
English characters, with a qualitative comparison as
shown in Figure 2. Among the two categories of meth-
ods compared, vector-supervised methods show sig-
nificantly better quality in generating English vector
glyphs compared to the other category. Im2Vec de-
forms any original closed shape as a deformation of
the unit circle, which can only preserve rough shapes.
VecFontSDF fits curves to all right angles, resulting
in a lack of detail at glyph corners. DeepSVG over-
comes the challenge of generating complex vector lines
by decomposing vector graphics into smaller compo-
nents; however, characters are usually composed of
many continuous parts that can not be easily decom-
posed. DeepVecFont and DeepVecFont-v2 reconstruct
vector glyphs in a self-supervised manner, capable of
reconstructing complex vector glyphs, but the gener-
ated vector graphics have less smooth edges. Com-
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Figure 2. Qualitative comparison of English vector glyphs generated by our method and five other methods.

pared to the above methods, our method can gener-
ate English vector glyphs with clear outlines and sharp
edges.

4.2.2 Chinese Vector Font Generation

To evaluate the effectiveness of these methods in gen-
erating Chinese vector fonts, we selected three simple
Chinese characters and three complex Chinese char-
acters for each font style. The quantitative compar-
isons are illustrated in Figure 3. Overall, vector-
supervised methods demonstrate strong performance
in generating vector glyphs. These methods, which are
based on the AE model, generate vector glyph plot-
ting parameters in an autoregressive manner, avoiding
the complexities of cross-modal transformations from
raster to vector, thereby achieving more precise re-
sults. While DeepVecFont and DeepVecFont-v2 pro-
duce satisfactory vector glyphs through vector super-
vision, they struggle to reconstruct vector images from

raster glyphs. Our method accurately reproduces both
the overall shape and finer details of raster glyph im-
ages. However, issues with contour line details persist
across all methods. Even small deviations in each pa-
rameter coordinate can result in non-smooth contours
in the rendered raster images, especially when a curve
is composed of multiple Bézier curves .

4.2.3 Quantitative Comparison of Chinese Vector
Fonts

Since the generated vector drawing parameters from
different methods can not be aligned with real vector
drawing parameters, we converted the generated vector
glyphs into raster images for comparison. To quanti-
tatively evaluate the performance of the models, we
used L1, RMSE, SSIM, and LPIPS pixel-level evalu-
ation metrics to measure the differences between the
generated vector glyphs and real ones. Additionally,
we conducted a user study with 30 volunteers. Each
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Figure 3. Qualitative comparison of our method with five other methods in Chinese vector glyph generation. Compared to
other methods, our bimodal model-based approach achieves higher-quality outputs. Our method demonstrates advantages
in handling complex characters and obtaining more accurate contours.

participant was presented with 50 characters generated
by various methods mixed with 50 randomly selected
characters from real fonts, and asked to identify the
model-generated characters. The quantitative results
are presented in Table 1.

Vector-unsupervised methods, which adjust vector
plotting parameters to fit raster glyphs, can not recon-
struct high-quality vector glyphs for complex Chinese
characters. The other three methods, where the in-
put and output of the model are of the same modal-
ity, are more stable and produce higher-quality results.
Our method achieves results comparable to human-
designed vector fonts, but due to the characteristics of
Bézier curves, even small errors in the plotting param-
eter coordinates can lead to edge noise in the rendered
raster images.

4.2.4 Compactness of Drawing Commands Analysis

We calculated the number of drawing command types
used in reconstructing vector glyphs for each method,
where a smaller number indicates a more compact rep-
resentation of the generated vector glyphs. For each
method, we selected ten different font styles and cal-

culated the number of drawing commands used to re-
construct 200 characters for each font, then averaged
the results. The results are shown in Table 2. Methods
that adjust Bézier curve coordinates to fit glyph raster
images generate vector drawing parameters with a con-
siderable amount of redundancy. Im2Vec, which uses a
fixed number of drawing parameters, contains more re-
dundancy than VecFontSDF. Vector-supervised models
sample from the original plotting parameters and are
supervised using vector data, resulting in a generated
number of plotting parameters closer to the real num-
ber of plotting parameters. Our method, which com-
bines multimodal data with vector data supervision,
achieves a level of compactness comparable to that of
human-designed fonts.

4.2.5 Comparison with Vectorisation Tools

In addition to the deep learning-based methods dis-
cussed earlier, several computer graphics techniques
are widely used for raster-to-vector image conversion.
To comprehensively evaluate the effectiveness of our
method, we qualitatively compare it with Potrace [23]
and Adobe Image Trace (AIT). Potrace approximates



Table 1. Quantitative comparison between our method and the state-of-the-art methods for vector font generation.

Methods Vector
Supervision Image-to-vector L1 loss ↓ RMSE ↓ SSIM ↑ LPIPS ↓ User ↓

Im2Vec[21] × X 0.0578 0.652 0.421 0.823 0.98
VecFontSDF[32] × X 0.0451 0.571 0.551 0.601 0.81
DeepSVG[1] X × 0.0614 0.623 0.483 0.782 0.86
DeepVecFont[30] X × 0.0442 0.587 0.542 0.584 0.79
DeepVecFont-v2[31] X × 0.0402 0.501 0.621 0.493 0.67
VecFusion[28] X X 0.0395 0.492 0.664 0.486 0.66
Ours X X 0.0312 0.443 0.711 0.431 0.60

Table 2. The average number of commands used per glyph for different methods in the font generation task.
Methods Vector

Supervision Image-to-vector M L H V Q C Total ↓

Im2Vec[21] × X 8 0 0 0 0 160 168
VecFontSDF[32] × X 8.61 0 0 0 78.8 0 87.41
DeepSVG[1] X × 7.12 26.8 0 0 40.2 0 74.12
DeepVecFont[30] X × 6.12 21.7 0 0 0 34.8 62.62
DeepVecFont-V2[31] X × 5.31 17.2 0 0 0 29.5 53.01
VecFusion[28] X X 8.34 16.1 0 0 48.4 0 72.84
Ours X X 5.42 14.6 7.4 6.8 24.2 0 58.42
Human-Designed N/A N/A 4.41 12.4 5.4 5.3 24.2 0 51.71

polygons with Bézier curves to generate vector images.
The qualitative results are shown in Figure 4, with
different colors used to identify each vector contour.
Potrace tends to use more Bézier curves to finely fit
bitmap images. While AIT produces vector glyphs that
avoid most of the artifacts found in Potrace’s output, it
still introduces a significant amount of redundant draw-
ing parameters. Our method, by learning a substantial
amount of prior information about vector fonts, pro-
duces vector glyphs that are more accurate and closer
in quality to manually vectorized glyphs than those
generated by other methods.

4.3. Ablation Studies

4.4. Impact of Masked Generation Function

In our method, the quality of generated vector
glyphs is significantly influenced by the Masked Gen-
eration function. This function calculates the mask
ratio of latent features at different training times
0/T, 1/T, · · · , (T−1)/T . The Masked Generation func-
tion γ(r) ∈ [0, 1] must be a continuous function that
is monotonically increasing with respect to r, satisfy-
ing γ(0) → 0 and γ(1) → 0.75. We considered some
common functions and made slight modifications to
meet these properties. These functions fall into three
categories, as shown in Figure 5. The first category
is linear functions, where the masked token count in-
creases linearly with r. The second category consists
of concave functions, where the model needs to mask a
small number of features initially and sharply increases
the masking rate towards the end. The third category
comprises convex functions, which are the opposite of

concave functions, sharply increasing the masking rate
initially and gradually increasing it later on.

In the ablation study, we conducted experiments us-
ing only different Masked Generation functions while
keeping other settings constant. After each training it-
eration t, an inference experiment was performed. In
each inference, drawing parameters were generated for
the same 100 glyphs, rendered into raster images, and
the L1 loss with respect to the ground truth raster im-
ages was calculated and visualized in Figure 6. Gener-
ally, all functions achieve similar performance midway
through training, but the performance of concave func-
tions deteriorates as training continues. Initially, lower
mask rates enable the model to achieve higher perfor-
mance levels because it can extract sufficient informa-
tion from the sequence modality. However, with the
rapid increase in mask rates later on, the model’s per-
formance deteriorates due to the introduction of more
uncertain information. Further research on Masked
Generation functions will be a key direction for future
work.

4.5. Feature Visualization Validation

To validate the effectiveness of our proposed cross-
modal vector reconstruction strategy, we conducted a
feature visualization experiment. As is shown in Fig-
ure 7, we presented the visualization of attention scores
at t/T = 0.1, t/T = 0.3, and t/T = 1.0 respectively.
In the initial phase at t/T = 0.2, the model primar-
ily focuses on the features of the vector modality, with
relatively less attention to the image modality. As the
training progresses, the model’s dependency on vector
modality features gradually decreases, shifting its fo-
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Figure 5. The six masked generation functions we selected.
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Figure 6. Relationship between L1 Loss and model iteration
T under different masked generation function settings.
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Figure 7. Visualization of attention scores across different
training phases to demonstrate the effectiveness of the pro-
posed cross-modal vector reconstruction strategy

cus more towards the image modality. By the time
it reaches t/T = 1.0, 75% of the features in the vec-
tor modality are masked, and the model extracts fewer
features from the vector modality, significantly enhanc-
ing the focus on image modality features. This shift
validates the effectiveness of our proposed cross-modal
vector reconstruction strategy.

4.6. Multi-Language Vector Font Generation

In this experiment, we further validated the ability
to generate vector glyphs for different languages. We
focused on Japanese and Korean, which are two promi-
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tion experiments.

nent Asian languages written in two-dimensional forms
and have more diverse styles compared to alphabetic
languages. The generation results, shown in Figure
8, indicate that our method produces vector fonts for
Japanese and Korean with results comparable to the
target glyphs. This further underscores the effective-
ness of our method in cross-language scenarios.

4.7. Vector Icon Generation
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Figure 9. Experiments on generating vector icons.
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Figure 10. Tend to use smooth curve fitting for complex
shapes.

To further showcase its capability in reconstructing
vector icons, we collected samples of vector icons from
different application domains on the Icons8 website,
including commonly used vector icons in communica-
tion, entertainment, social media, and utility tools. Af-
ter fine-tuning our model on these datasets, the gener-
ated vector icon results are presented in Figure 9. Our
model can accurately handle icons filled with details

and smoothly curved lines. This further validates the
versatility and practical value of our method.

5. Conclusion and Future Work

Our proposed cross-modal generation strategy ex-
cels not only in technical aspects but also lays the
groundwork for future work and provides strong refer-
ences for researchers in the field. This report introduces
a masked diffusion transformer model that integrates
vector and image modalities, effectively ”upsampling”
low-resolution raster glyph images into vector represen-
tations. Our proposed cross-modal generation strategy
not only excels in technical aspects but also lays a solid
foundation for future research, providing valuable in-
sights for scholars in the field. Limitations: As shown
in Figure 10, our method tends to use smooth curve
fitting when generating glyph vector outlines for char-
acters with many curved paths, overlooking their de-
tailed shapes. Future work: As the research progresses,
we expect our method and its derivative techniques to
find broader applications across various domains. Fu-
ture work will focus on further improving model per-
formance and expanding to reconstruction in more lan-
guages and vector graphics.
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A. Appendix

A.1. Vector Font

Vector fonts define glyphs precisely using mathemat-
ical equations, drawing contours of Chinese characters
using lines and Bezier curves. This approach grants
vector fonts scalability and editability, showcasing high
flexibility in design and application. In recent years, re-
searchers have extensively explored glyph reconstruc-
tion in vector glyphs. The method based on Bezier
curves is a commonly used approach [20]. Bezier curves
in vector fonts are described by general SVG drawing
commands. SVG, as an open standard vector graph-
ics format, accurately and flexibly presents the shapes
of Chinese characters [22]. SVG uses a series of com-
mands to describe the shapes to create, and through
the drawing commands in Table 3, each glyph in the



font can be drawn. As shown in Figure 11, in vector
fonts, each glyph consists of a different number of SVG
drawing commands, with each command representing a
parameterized shape contour.Unlike traditional raster
font image generation, the creation of vector glyphs
resembles a cross-modal generation task from image
to text[25, 16]. However, compared to the flexibility
of natural language generation, generating SVG draw-
ing parameters requires strict syntax rules and struc-
tures, making it more complex and challenging for vec-
tor glyph generation.

Table 3. Vector glyphs consist of a different number of SVG
drawing commands, with each drawing command represent-
ing a parameterized shape contour.

Commands Arguments Example Description

M x, y Move from (x0, y0)
to (x1, y1)

L x, y Draw a line from
(x0, y0) to (x1, y1)

H x, y Draw horizontal
line from (x0, y0)
to (x1, y0)

V x, y Draw vertical line
from (x0, y0) to
(x0, y1)

Q x1, y1
x2, y2

Draw quadratic
Bessel curve from
(x0, y0) to (x2, y2)
,Control point
(x1, y1)

Z ∅ Close path from
(x0, y0) to (x0, y1)
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Figure 11. A vector glyph is composed of a varying number
of SVG drawing commands, with each command represent-
ing a parameterized shape contour.
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Figure 12. Visualization of the drawing parameter data
structure. Left: glyph vector images and their SVG repre-
sentations. Right: Vector data tensor representation with
an example stroke.

A.2. Vector Data

Glyph raster images are represented as fixed-size ar-
rays of pixels, while vector glyphs are defined by a
series of drawing parameters and appear as unstruc-
tured data. Due to variations in glyph complexity, the
lengths of drawing parameters can differ. To enable
parallel processing by the model, we convert unstruc-
tured drawing parameters into structured tensor data.

Each glyph vector image consists of N drawing
parameters S. Each drawing parameter si = (c, p)
consists of its drawing command type and draw-
ing coordinate parameters. Drawing command types
such as those listed in Table 3 are represented by
commands c ∈ {< SOS >,M,L,V,H,Q,Z, < EOS >},
where < SOS > and < EOS > denote special markers
indicating the beginning and end of the sequence, re-
spectively. These markers help the model identify the
boundaries of drawing parameters during data process-
ing, aiding the model in correctly initiating and ter-
minating the generation process. We use fixed-length
drawing coordinate parameters p = (x1, y1, x2, y2). If
the length of the drawing command S is less than N ,



we pad it with -1. Figure 12 illustrates an example
of a Chinese glyph vector image and its tensor repre-
sentation, focusing on one stroke. The stroke begins
with the special marker < SOS > denoting the start
of the drawing command, followed by the command
M for moving to the starting point, then drawing a
straight line L, followed by a series of Bezier curve Q,
and finally, the command Z to close the path, with the
< EOS > command indicating the end of the drawing
process.

References

[1] A. Carlier, M. Danelljan, A. Alahi, and R. Timofte.
Deepsvg: A hierarchical generative network for vector
graphics animation. Advances in Neural Information
Processing Systems, 33:16351–16361, 2020. 2, 3, 7, 10

[2] H. Chang, H. Zhang, L. Jiang, C. Liu, and W. T.
Freeman. Maskgit: Masked generative image trans-
former. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
11315–11325, 2022. 7

[3] S. Gong, M. Li, J. Feng, Z. Wu, and L. Kong.
Diffuseq-v2: Bridging discrete and continuous text
spaces for accelerated seq2seq diffusion models. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2023, pages 9868–9875, 2023. 3

[4] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion
probabilistic models. Advances in neural information
processing systems, 33:6840–6851, 2020. 3

[5] C. Jia, Y. Yang, Y. Xia, Y.-T. Chen, Z. Parekh,
H. Pham, Q. Le, Y.-H. Sung, Z. Li, and T. Duerig.
Scaling up visual and vision-language representation
learning with noisy text supervision. In International
conference on machine learning, pages 4904–4916.
PMLR, 2021. 4

[6] C. Li, Y. Taniguchi, M. Lu, S. Konomi, and H. Na-
gahara. Cross-language font style transfer. Applied
Intelligence, 53(15):18666–18680, 2023. 2

[7] J. Li, D. Li, C. Xiong, and S. Hoi. Blip: Bootstrap-
ping language-image pre-training for unified vision-
language understanding and generation. In Inter-
national Conference on Machine Learning, pages
12888–12900. PMLR, 2022. 4

[8] Q. Li, J.-P. Li, and L. Chen. A bezier curve-based
font generation algorithm for character fonts. In
2018 IEEE 20th International Conference on High
Performance Computing and Communications; IEEE
16th International Conference on Smart City; IEEE
4th International Conference on Data Science and
Systems (HPCC/SmartCity/DSS), pages 1156–1159.
IEEE, 2018. 2

[9] T.-M. Li, M. Lukáč, M. Gharbi, and J. Ragan-Kelley.
Differentiable vector graphics rasterization for editing
and learning. ACM Transactions on Graphics (TOG),
39(6):1–15, 2020. 3

[10] X. Li, J. Thickstun, I. Gulrajani, P. S. Liang, and
T. B. Hashimoto. Diffusion-lm improves controllable

text generation. Advances in Neural Information Pro-
cessing Systems, 35:4328–4343, 2022. 6

[11] J.-Y. Liu, Y.-M. Zhang, F. Yin, and C.-L. Liu.
Transformer-based stroke relation encoding for on-
line handwriting and sketches. Pattern Recognition,
148:110131, 2024. 2

[12] Y. Liu, F. binti Khalid, C. Wang, M. R. binti Mustaffa,
and A. bin Azman. An end-to-end chinese font gen-
eration network with stroke semantics and deformable
attention skip-connection. Expert Systems with Ap-
plications, 237:121407, 2024. 2

[13] Y.-T. Liu, Z. Zhang, Y.-C. Guo, M. Fisher, Z. Wang,
and S.-H. Zhang. Dualvector: Unsupervised vector
font synthesis with dual-part representation. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 14193–14202,
2023. 2, 3

[14] R. G. Lopes, D. Ha, D. Eck, and J. Shlens. A learned
representation for scalable vector graphics. In Pro-
ceedings of the IEEE/CVF International Conference
on Computer Vision, pages 7930–7939, 2019. 2, 3

[15] J. Lu, D. Batra, D. Parikh, and S. Lee. Vilbert: Pre-
training task-agnostic visiolinguistic representations
for vision-and-language tasks. Advances in neural in-
formation processing systems, 32, 2019. 4

[16] Y. Ma, J. Ji, X. Sun, Y. Zhou, and R. Ji. Towards
local visual modeling for image captioning. Pattern
Recognition, 138:109420, 2023. 13

[17] S. Park, S. Chun, J. Cha, B. Lee, and H. Shim. Few-
shot font generation with localized style representa-
tions and factorization. In Proceedings of the AAAI
conference on artificial intelligence, volume 35, pages
2393–2402, 2021. 2

[18] T. Qi, S. Fang, Y. Wu, H. Xie, J. Liu, L. Chen, Q. He,
and Y. Zhang. Deadiff: An efficient stylization dif-
fusion model with disentangled representations. Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2024. 3

[19] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh,
G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin,
J. Clark, et al. Learning transferable visual models
from natural language supervision. In International
conference on machine learning, pages 8748–8763.
PMLR, 2021. 4

[20] N. K. B. Razali, N. N. B. C. Draman, S. M. B. Nor-Al-
Din, and N. B. M. Sukri. Cubic curve fitting method in
reconstruction of chinese calligraphy outline. In Jour-
nal of Physics: Conference Series, volume 2084, page
012020. IOP Publishing, 2021. 12

[21] P. Reddy, M. Gharbi, M. Lukac, and N. J. Mitra.
Im2vec: Synthesizing vector graphics without vector
supervision. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 7342–7351, 2021. 3, 7, 10

[22] Y. Ren, S. Liu, Y. Jiang, J. Yan, and Y. Gao. Design
and draw patterns based on bezier curves. In 2022
International Symposium on Intelligent Robotics and
Systems, pages 13–15. IEEE, 2022. 12



[23] P. Selinger. Potrace: a polygon-based tracing algo-
rithm, 2003. 9

[24] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and
S. Ganguli. Deep unsupervised learning using nonequi-
librium thermodynamics. In International conference
on machine learning, pages 2256–2265. PMLR, 2015.
3

[25] J. H. Tan, C. S. Chan, and J. H. Chuah. End-to-end
supermask pruning: Learning to prune image caption-
ing models. Pattern Recognition, 122:108366, 2022.
13

[26] S. Tang and Z. Lian. Write like you: Synthesizing
your cursive online chinese handwriting via metric-
based meta learning. In Computer Graphics Forum,
volume 40, pages 141–151. Wiley Online Library, 2021.
2

[27] S. Tang, Z. Xia, Z. Lian, Y. Tang, and J. Xiao.
Fontrnn: Generating large-scale chinese fonts via re-
current neural network. In Computer Graphics Forum,
volume 38, pages 567–577. Wiley Online Library, 2019.
2

[28] V. Thamizharasan, D. Liu, S. Agarwal, M. Fisher,
M. Gharbi, O. Wang, A. Jacobson, and E. Kaloger-
akis. Vecfusion: Vector font generation with diffu-
sion. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
7943–7952, 2024. 7, 10

[29] C. Wang, M. Zhou, T. Ge, Y. Jiang, H. Bao, and
W. Xu. Cf-font: Content fusion for few-shot font gen-
eration. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
1858–1867, 2023. 2

[30] Y. Wang and Z. Lian. Deepvecfont: Synthesizing high-
quality vector fonts via dual-modality learning. ACM
Transactions on Graphics (TOG), 40(6):1–15, 2021. 3,
7, 10

[31] Y. Wang, Y. Wang, L. Yu, Y. Zhu, and Z. Lian.
Deepvecfont-v2: Exploiting transformers to synthesize
vector fonts with higher quality. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 18320–18328, 2023. 3, 7, 10

[32] Z. Xia, B. Xiong, and Z. Lian. Vecfontsdf: Learning
to reconstruct and synthesize high-quality vector fonts
via signed distance functions. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 1848–1857, 2023. 2, 3, 7, 10

[33] Y. Xie, X. Chen, L. Sun, and Y. Lu. Dg-font: De-
formable generative networks for unsupervised font
generation. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pages
5130–5140, 2021. 2

[34] Y. Yang, W. Huang, Y. Wei, H. Peng, X. Jiang,
H. Jiang, F. Wei, Y. Wang, H. Hu, L. Qiu, and
Y. Yang. Attentive mask clip. In 2023 IEEE/CVF In-
ternational Conference on Computer Vision (ICCV),
pages 2771–2781, 2023. 4

[35] Y.-T. Yang, Y.-M. Zhang, X.-L. Yun, F. Yin, and C.-
L. Liu. Dygat: Dynamic stroke classification of online

handwritten documents and sketches. Pattern Recog-
nition, 141:109564, 2023. 2

[36] L. Yu, Y. Cheng, K. Sohn, J. Lezama, H. Zhang,
H. Chang, A. G. Hauptmann, M.-H. Yang, Y. Hao,
I. Essa, et al. Magvit: Masked generative video trans-
former. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
10459–10469, 2023. 7

[37] J. Zeng, Q. Chen, Y. Liu, M. Wang, and Y. Yao.
Strokegan: Reducing mode collapse in chinese font
generation via stroke encoding. In Proceedings of the
AAAI conference on artificial intelligence, volume 35,
pages 3270–3277, 2021. 2

[38] B. Zhao, J. Tao, M. Yang, Z. Tian, C. Fan, and
Y. Bai. Deep imitator: Handwriting calligraphy imita-
tion via deep attention networks. Pattern Recognition,
104:107080, 2020. 2

[39] S. Zhou, D. Gao, and D. Zhou. Quick draw of the
original handwriting base on quadratic bezier curve.
International Journal of Wavelets, Multiresolution and
Information Processing, 14(04):1650025, 2016. 2

[40] Y. Zhu, Z. Li, T. Wang, M. He, and C. Yao. Con-
ditional text image generation with diffusion mod-
els. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
14235–14245, 2023. 3


