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Abstract

Due to poor bias calibration, current semi-supervised
learning (SSL) is over-confident in false predictions.
Modeling data noise helps alleviate confirmation bias.
Specifically, we consider a posteriori knowledge that the
data embedding follows a Gaussian distribution. We let
the model predict and learn the mean (classification fea-
tures) and variance (noise features) for each sample. In
this way, the network can estimate and isolate noisy in-
formation in the latent space. Additionally, we propose
Noise Estimation Curriculum Learning (NECL) to fit
differences in noise level between classes. NECL can en-
courage the model to learn from hard classes actively.
Extensive experiments demonstrate the effectiveness of
our method, which is also orthogonal to FixMatch-based
frameworks. InfoMatch with our components (NE-Info)
showed state-of-the-art (SOAT) performance on several
benchmarks such as CIFAR-10/100, SVHN, STL-10 and
ImageNet.

Keywords: Semi-supervised learning, Image classifica-
tion, Noise estimation, Multivariate Gaussian distribution

1. Introduction

Deep learning has great success because of large labelled
datasets. However, labelling is boring and expensive. How
to make model learn from wild images becomes a research
hotspot. Among them, semi-supervised learning (SSL) is
a main method to reduce the reliance on manual labelling.
It gets better generalizability by joint training on unlabeled
and labelled datasets.

Recently, mainstream SSL methods have combined
pseudo-labeling [23] with consistency regularization (Laine
and Aila 2016). For example, FixMatch [29] encourages
the model to output the same prediction for two differently
perturbed images. Although many methods improved this
baseline from the perspectives of thresholding [40, 34, 37],
negative learning [9, 38], entropy estimation [8, 17], etc.,
none of them weaken noisy feature actively. Noise makes
pseudo-labels false even have a high confidence [16, 2].
Semi-supervised has poor tolerance of noise because very

(a) FixMatch (b) NE-Fix
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Figure 1: Experiments on Two-Moon Dataset with only 6
labeled samples (pentagram blue points) with others as un-
labeled samples in training a 3-layer MLP classifier

few labeling, limiting its generalizability on real-world data.
To solve the problem, we introduce noise estimation

(NE) (Kendall and Gal 2017) into SSL, which has been
proven effective in other computer vision tasks. A simi-
lar work to ours is UPS [27], which pre-trained a model
with uncertainty-aware on labeled datasets. The quantified
uncertainty is used as part of the thresholding for filtering
low quality pseudo-labels. However, in embedding space
the distributions of labeled and unlabeled data are not com-
pletely consistent. Furthermore, UPS has not good perfor-
mance when labeled data is low. We consider the embed-
dings in latent space to be a combination of classification
features and other noisy features. And these noises follow
a Gaussian distribution. We let the network predict the pa-
rameters of the distribution for each sample, thereby esti-
mating noisy information while learning classification fea-
tures. This estimation acts as a constraint on confidence of
pseudo-labels. Additionally, there are also distribution and
noise differences between classes, the sensitivity of classi-
fication features to noise interference also differs. We flex-
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ibly adjust thresholds for different categories at each time
step based on NE. If a category has bad noise estimate, it
will get a lower threshold by this method called NECL. It
can achieve a more balanced inter-class learning by encour-
aging the model to learn more from challenging categories.

We conducted experiments on Two-Moon Dataset with
only 6 labeled samples (3‰ of the total sample). Fig. 1
(a) and (b) shows that FixMatch no longer overfitting with
NE. NE-Fix can find a decision boundary that has lower
data density. And it produced higher quantity and quality
pseudo-labels during training as shown in Fig. 1 (c) and (d).
In summary, our contributions are as follows:

• We find that there is negative info in mapping space
affecting SSL. To the best of our knowledge, this is the
first time that SSL has been modeled from the view of
noise.

• Modelling noise estimation of data in SSL, proposed
a simple yet effective method by weakening noise fea-
tures. NE-method achieved tighter intra-class spacing
and reduced data density at decision boundaries.

• Experiments showed that our approach is fully orthog-
onal to the FixMatch-based framework that can be de-
ployed in current SSL algorithms easily and improve
performance. Based on our components, we achieved
state-of-the-art (SOTA) performance in multiple di-
mensions.

2. Related Work

Semi-Supervised Learning is an important direction in
deep learning. Its success has enabled networks to greatly
reduce dependence on labels, thereby reducing data costs.
SSL has a range of applications in several fields of com-
puter vision such as image classification [29, 17], seman-
tic segmentation [30, 19], object detection [35, 33], facial
recognition [31, 13] and so on. We will focus on the SSL
for image classification, which is most relevant to our work.

Noise estimation in deep learning has been widely
studied [1, 39, 24]. For quantization of noise, it can
be broadly categorized into internal and external meth-
ods. Internal methods capturing the noise of the param-
eters in model [15, 20]. External meth-ods measure the
noise of training data, e.g., error predictors, extra hidden
units [7, 28]. Our approach is an external one.

Noise estimation in semi-supervised learning is a
novel direction. Most previous methods try to keep high
quality of pseudo-labels by a high threshold [29, 40]. How-
ever, it has no ability to correct hard samples. UPS pre-
trains an uncertainty-aware model on labelled datasets [27],
but it does not work when there are very few labels. In
contrast, we estimate uncertainty for pseudo-labels from the

Figure 2: Embedding distribution before and after applying
Noise Estimation on FixMatch. Embeddings of easy and
semi samples become tighter. Embeddings of hard samples
will be close to the plane but away from center.

perspective of learning noise, which implements an end-to-
end framework. It is more direct and effective by training
on all samples.

3. Methodology

In this section, we review pseudo-labeling and consis-
tency regularization in SSL for image classification. Then,
we re-veal noisy estimates of data in continuous mapping
spaces. Finally, we propose NE and NECL to improve
FixMatch-based frameworks [29, 17].

3.1. Preliminaries

In SSL framework for C-class classification problem, we
set DL = {xli, yli}

NL
i=1 and DU = {xui }

NU
i=1 denote the la-

beled and unlabeled datasets, respectively. NL and NU
is the number of datasets, NL ≪ NU . We use xli, x

u
i ∈

RH×W×3 to represent labeled and unlabeled image, and yli
is the ground-truth label which be one-hot. In SSL, there
are both supervised and unsupervised objective, i.e., LS and
LU . For the supervised loss, it is computed by cross-entropy
loss (H) on DL in a BL-sized batch:

LS =
1

BL

BL∑
i=1

H
(
yli, p(y|xli)

)
, (1)

where p(y|x) ∈ RC denotes the model’s predic-
tion on x. For the unsupervised loss, FixMatch-based
methods are use pseudo-labeling with consistency regu-
larization, which mask out unconfident pseudo-labels by
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Figure 3: Overview of the proposed NE-Fix. The model outputs class (µ) and noisy (ψ) feature for a sample. The parameters
are reparametrized before being fed into the fully-connected layer. The local threshold Γt(c) for class c is determined by its
credibility Ci. Our method is fully orthogonal to FixMatch [29].

a high threshold. Specifically, FixMatch formulates LU
as the weighted cross-entropy loss between pseudo-label
from weakly-augmented sample ω(xui ) and prediction of
strongly-augmented sample Φ(xui ):

LU =
1

BU

BU∑
i=1

I(max(pi) > τ)H (p̂i, p(y|Φ(xui ))) , (2)

where p̂i denotes the one-hot pseudo-label from
argmax(pi), and pi = p(y|ω(xui )); BU is the batch size
for unlabeled data; τ is the setting threshold to mask out p̂
which has low max(pi). In summary, total loss of SSL is
L = LS + LU .

3.2. Noise estimation in mapping space

The classification task is actually a mapping from X to
Y . We use a deep learning model to fit this mapping rela-
tionship through training. But xi ∈ X contain more than
pure category information c(xi) also noise n(xi). Con-
sider a simple situation where c(xi) and n(xi) follow ad-
ditive multivariate Gaussian distribution with mean of zero
and x-dependent variance. Then in the mapping space:
yi = f(c(xi)) + f(c(n(xi))), ϵ ∼ N (0, I ∈ Rd). The
f(·) is the embedding function we want to get which can
extract classification features and noise features separately.
The two parameters of the Gaussian distribution: mean and
variance then fit c(xi) and ϵ(n(xi)) [5, 14, 6, 26]. The prob-
lem with previous SSL has been lack of estimation of noise.
They cannot quantify how reliable the pseudo-labels are.
A significant portion of pseudo-labels during training are
wrong, i.e., confirmation bias [2].

Also, consider a noiseless case, then the distribution of
the sample’s feature in mapping space is a linear plane.
Samples embedded close to the center are usually more nor-
malized. Color, variety, etc. make the embedding far from
the center but still on this linear plane. Adding additive
noise moves feature points away towards the direction of the
plane’s normal vector. Deep learning fits this feature plane
through training. But it can estimate and weaken noise of
data while fitting the feature plane with Noise Estimation,
which could achieve tighter intra-class spacing as shown in
Fig. 2.

3.3. Noise estimation in SSL

The overall architecture of our proposed method is
shown in Fig. 3, called NE-SSL. We first define si be the
represented of xi in latent space, then we model the dis-
tribution of si by using Gaussian distribution as posteriori
knowledge.

p(si|xi) ∼ N (µi, σ
2
i I) (3)

Now, we let the model learning Gaussian embedding for
each sample. The two parameters µi, ψi = log(σ2

i ) ex-
tracts classification features and noise features, separately,
which are obtained by adding two independent fully con-
nected layers after the backbone. Let the network predict
the logarithmic of variances ψi for a stable training, since
negative and over large variances are difficult to interpret.
We reparametrize (Kingma and Welling 2013) µi and ψi
for an end-to-end optimization:

zi = µi + ϵ
√
eψi , ϵ ∼ N (0, I), (4)
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Algorithm 1: NE-Fix

Input: Labeled data xl, yl and unlabeled data xu
Parameter: Initialize Model’s weights θ
1: while i not reach the maximum iteration do.
2: Sample labeled batch xl, yl, unlabeled batch xu.
3: Forward inference for networks N .
4: Calculate σ2

l = eψl , σ2
wu = eψwu and σ2

su = eψsu .
5: Calculate LScls

using Equation (1).
6: Calculate LLkl

using Equation (5).
7: Calculate Γt using Equation (8).
8: Calculate mask: l(max(swu) ≥ Γt(argmax(swu))).
9: Calculate LU using Equation (2) · mask.
10: Calculate LsUkl

using Equation (5).
11: Update the θ of N via loss L.
12: end while
13: return µ for test

where ϵ is noise from a normal distribution by random
sampling. It is worth noting that Eq. (4) is a reparametriza-
tion trick making the random sampling of Eq. (3) differ-
entiable. Now, zi is the final embedding of each image xi,
we input it into Equation (1) and (2) to participate in the
cross-entropy. New supervised and unsupervised classifica-
tion loss replaced with LclsS and LclsU .

In addition to make si match our posteriori hypothesis,
we introduce a regularization as an explicitly constraint.
Concretely, we calculate the KL-dispersion between si and
the normal distribution N (0, I):

Lkl = KL
[
N (si;µi, σ

2
i )∥N (ϵ|0, I)

]
= −1

2

(
1 + ψi − µ2

i − eψi
) (5)

It’s an unsupervised process. We apply Lkl on labeled
LklL and strongly-augmented LklsU data as a regularization
term in optimization. Thus, the final loss of our method:

L = LclsS + LclsU + λ(LklL + LklsU ), λ ∈ [0, λmax] (6)

In summary, Lcls and Lkl are responsible for the gradi-
ent descent of classification and noise features, separately.
As a sample’s latent distribution closer to the multivariate
standard normal distribution, i.e., the average of variances
closer to one, the noise features are estimated better. Hence
when the model converges, the mean variance of the simple
sample will be closer to 1. When a sample is more diffi-
cult, the KLD is larger. The model will actively adjust the
distribution by changing µi and ψi to consider whether xi
belongs to another category or not. This is also why the em-
beddings of hard ones is far from the center in latent space
as shown in Fig. 2. The two losses form a good balance to
encourage the model to make more careful predictions for

challenging categories. In testing, we feed µ of data into the
classification layer. The pseudo-code of our method based
on FixMatch (NE-Fix) is shown in Algorithm 1.

3.4. Noise estimation curriculum learning

One situation to consider is that in real data distributions,
each class is not uniformly noise. And applying same noise
to samples from different classes does not result in the same
degree of destruction to their classification features. For ex-
ample, a flipped airplane might be easier to classify than a
flipped cat. Inspired by curriculum learning [3, 40], we in-
troduce local dynamic thresholds for each class, aiming for
the model to learn separately according to the difficulty of
each class. We name it NECL. Specifically, we use the de-
gree of proximity of σ2

wi to one quantifies the credibility Ci
of ω(xui ),

Ci =
1

d

d∑
i=1

(I− |I− σ2
wi|), (7)

where d is the dimension of the ψi, which we use 128.
The threshold for class c at time step t:

Γt(c) =
τ

N

B∑
i=1

CiI(p̂i = c), (8)

where N is the number of pseudo-labels that are pre-
dicted to be class c in a batch. We substitute Γt(c) for τ
in LclsU . With NECL, the model will actively learn those
categories with poor noise weakening.

4. Experiments

We conduct extensive experiments on five benchmark
datasets, including CIFAR-10/100 [21], SVHN [25], STL-
10 [10] and ImageNet [12], which are widely used in SSL.
We select varying amounts of labeled data for experiments.

We evaluate our method based on FixMatch [29] and In-
foMatch [17], the former is classical and the latter is re-
cent. For a fair comparison, we follow the experimental
setup exactly as in original work. Specifically, WideRes-
Net (Zagoruyko and Komodakis 2016) is used as backbone
on Cifar10/100, STL-10, SVHN and ResNet50 [18] on Im-
ageNet. Consistent with previous works, the optimizer is
standard stochastic gradient descent (SGD) with cosine de-
cay learning rate at momentum 0.9, which the initial learn-
ing rate set to 0.3. We use RandAugment [11] as augmenta-
tion approach for data. All experiments are iterated a total
of 220 times and test using an EMA model with a momen-
tum of 0.999.

4.1. Main results

Qualitative analysis: As shown in Fig. 4, using a trained
model to inference on test set. There are few simple and
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Dataset CIFAR-10 CIFAR-100

# Label 40 250 4,000 400 2,500 10,000

PseudoLabel [23] 74.61±0.26 46.49±2.20 15.08±0.19 87.45±0.85 57.74±0.28 36.55±0.24
MeanTeacher [32] 70.09±1.60 37.46±3.30 8.10±0.21 81.11±1.44 45.17±1.06 31.75±0.23
MixMatch [4] 36.19±6.48 13.63±0.59 6.66±0.26 67.59±0.66 39.76±0.48 27.78±0.29
ReMixMatch [22] 9.88±1.03 6.30±0.05 4.84±0.01 42.75±1.05 26.03±0.35 20.02±0.27
UDA [36] 10.62±3.75 5.16±0.06 4.29±0.07 46.39±1.59 27.73±0.21 22.49±0.23
Dash [37] 7.47±0.28 4.86±0.05 4.21±0.08 44.82±0.96 27.15±0.22 22.20±0.12
FlexMatch [40] 4.97±0.06 4.98±0.09 4.19±0.01 39.94±1.62 26.49±0.20 21.90±0.15
UPS [27] 5.26±0.29 5.11±0.08 4.25±0.05 41.07±1.66 27.14±0.24 21.97±0.23
SimMatch [41] 5.60±1.37 4.84±0.39 3.96±0.01 37.81±2.21 25.07±0.32 20.58±0.11
FreeMatch [34] 4.90±0.04 4.88±0.18 4.10±0.02 37.98±0.42 26.47±0.20 21.68±0.03
SoftMatch [8] 4.91±0.12 4.82±0.09 4.04±0.02 37.10±0.77 26.66±0.25 22.03±0.03
FullMatch [9] 5.89±1.01 4.64±0.12 3.75±0.08 40.58±1.40 26.94±0.40 21.44±0.10
FixMatch [29] 7.47±0.28 4.86±0.05 4.21±0.08 46.42±0.82 28.03±0.16 22.20±0.12
NE-Fix(Ours) 5.29±0.31 4.61±0.06 3.83±0.08 41.37±0.85 25.01±0.15 20.76±0.13
InfoMatch [17] 4.22±0.14 4.01±0.07 3.29±0.08 - - 19.47±0.56
NE-Info(Ours) 3.98±0.17 3.52±0.09 3.16±0.10 - - 19.25±0.59
Fully-Supervised 4.62±0.05 19.30±0.09

Table 1: Top-1 error rates (%) on CIFAR-10/100 datasets. Bold indicates the best result and underline indicates the second
best result.

Figure 4: The credibility level Ci distribution of CIFAR-10
and CIFAR-100. The models are trained on 40 labeled and
400 labeled, respectively.

hard samples, and most of samples are semi. It’s consistent
with the distribution of data in real world. In the la-tent
space, as noise features are removed as much as possible,
the feature points are closer along the direction of normal
vector of the feature plane.

However, ambiguous ones will be far away from the cen-
ter because the model is not overconfident. More de-tails
can be found in the T-SNE analysis in 4.3. Embedded space
visualization via t-SNE.

Quantitative analysis: We evaluate NE-Fix and NE-
Info to compare with fully-supervised learning method and

Method Top-1 Top-5
FlexMatch [40] 43.66 21.80
FreeMatch [34] 40.57 18.77
SoftMatch [8] 40.52 18.70
FixMatch [29] 43.66 21.80
NE-Fix(Ours) 41.05 19.90
InfoMatch [17] 36.21 15.91
NE-Info(Ours) 35.79 15.30

Table 2: Error rates (%) on ImageNet with 100 labels per
class. Bold indicates the best result.

a range of representative semi-supervised learning methods.
We calculate the mean and variance of top-1 error rates

when training on 5 different ”folds” of labeled data. Results
for CIFAR-10/100, SVHN, STL-10 with various labeled
data size in section 4 and section 4.1. The results show
that our method achieves the superior performance across
all benchmarks. In particular, NE-Fix enhance performance
by 5.05% for baseline on CIFAR-100 with just 400 labeled
data. It also evident that our components are orthogonal to
the FixMatch-based approach.

4.2. Results on ImageNet

ImageNet [12] is a large and complex dataset that more
closely fits the real data situation. We re-port the perfor-
mance of NE-Fix and NE-Info trained on ImageNet using
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Dataset SVHN STL-10

# Label 40 250 1,000 40 1,000

PseudoLabel [23] 64.61±5.60 15.59±0.95 9.40±0.32 74.68±0.99 32.64±0.71
MeanTeacher [32] 36.09±3.98 3.45±0.03 3.27±0.05 71.72±1.45 33.90±1.37
MixMatch [4] 30.60±8.39 4.56±0.32 3.69±0.37 54.93±0.96 21.70±0.68
ReMixMatch [22] 24.04±9.13 6.36±0.22 5.16±0.31 32.12±6.24 6.74±0.14
UDA [36] 5.12±4.27 1.92±0.05 1.89±0.01 37.42±8.44 6.64±0.17
Dash [37] 2.19±0.18 2.04±0.02 1.97±0.02 34.52±4.30 6.39±0.56
FlexMatch [40] 8.19±3.20 6.59±2.29 6.72±0.30 29.15±4.16 5.77±0.18
UPS [27] - - - - 6.02±0.40
SimMatch [41] 7.60±2.11 2.48±0.61 2.05±0.05 16.98±4.24 5.74±0.31
FreeMatch [34] 1.97±0.02 1.97±0.01 1.96±0.01 15.56±0.55 5.63±0.15
SoftMatch [8] 2.33±0.25 2.09±0.05 2.01±0.01 21.42±3.48 5.73±0.24
FullMatch [9] 2.35±0.10 - 1.99±0.03 - 5.74±0.09
FixMatch [29] 3.81±1.18 2.02±0.02 1.96±0.03 35.97±4.14 6.25±0.33
NE-Fix(Ours) 3.01±1.17 1.95±0.03 1.93±0.03 32.78±4.19 5.71±0.36
InfoMatch [17] 1.84±0.07 1.79±0.01 1.75±0.03 9.86±1.13 5.27±0.09
NE-Info(Ours) 1.78±0.10 1.72±0.02 1.69±0.04 9.67±1.11 5.15±0.10
Fully-Supervised 1.20±0.01 -

Table 3: Top-1 error rates (%) on SVHN and STL-10 datasets. Bold indicates the best result and underline indicates the
second best result.

(a) w/o NECL Quantity (b) w NECL Quantity (c) w/o NECL Quality (d) w NECL Quality

Figure 5: Ablation study of NECL. (a) and (b) Quantity of pseudo-labels by NE-Fix w/o NECL and w NECL (c) and (d)
Quality of pseudo-labels by NE-Fix w/o and w NECL.

just 100 labels per class. NE-Fix reduces by 2.61% in Top-
1 error rate and 1.9% in Top-5 error rate compared to Fix-
Match. The results in section 4.1 confirm the effectiveness
of NE-SSL on complex data with uneven distribution.

4.3. Ablation study

For ablation study of NE, the model degrades to original
FixMatch when NE is not used which has been reported in
Main Results. We test different combinations of NE on DL,
ω(DL) and ϕ(DL). The results in section 4.3 show that NE
works best when it is used on DL and ϕ(DU ). We analyze
that this is because the gradient of ω(DU ) does not update
and the model cannot converge on noise. It is also shown
that the Lcls is an important restriction for Lkl.

For ablation study of NECL, we conduct experiments
on CIFAR-10 with 40labels for NE-Fix w or w/o NECL.
Fig. 5 shows the quantity and quality of pseudo labels of
each category during training. NECL offers higher quan-

DL ω(DU ) ϕ(DU ) Error Rate
✓ 7.40

✓ 10.56
✓ 6.57

✓ ✓ 9.67
✓ ✓ ✓ 8.58
✓ ✓ 5.22

Baseline 7.47

Table 4: Ablation study of different combinations of NE on
DL, ω(DU ) and ϕ(DU ). Bold indicates the best result.

tity and quality of pseudo-labels for NE-Fix and the model
converges faster especially in the first 100 epochs.

For ablation study of λ, We explore impact of hyperpa-
rameter of Lkl. When λ is zero, the performance is close
to baseline. As the λ is increased, the model begins to es-
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(a) w/o NECL Quantity (b) w NECL Quantity (c) w/o NECL Quality (d) w NECL Quality

Figure 6: t-SNE of representations obtained for the test set of CIFAR-10/100 using FixMacth and NE-Fix. (a) and (b)
FixMatch and NE-Fix on CIFAR-10 with 40 labels. (c) and (d) FixMatch and NE-Fix on CIFAR-100 with 400 labels. Best
viewed in color.

(a) Cifar10 Quantity (b) Cifar10 Quality (c) Cifar100 Quantity (d) Cifar100 Quality

Figure 7: Quantity and quality of pseudo-labels for FixMatch and NE-Fix on CIFAR-10/100. (a) and (b) Quantity and quality
on CIFAR-10 with 40 labels. (c) and (d) Quantity and quality on CIFAR-100 with 400 labels.

λ Error Rate
0.0 7.46

0.01 6.32
0.1 5.22
0.5 8.95
1.0 15.98

Baseline 7.47

Table 5: Results ofLkl trained on 40 labeled CIFAR-10 with
different trade-off λ.

timate noise of data. When λ is too large, the model over-
adjusts the predicted parameters of embeddings. Thus, the
performances deteriorate rapidly because classification loss
is difficult to converge and low quantity of pseudo-labels.
The results are reported in section 4.3.

4.4. Embedded space visualization via t-SNE

Fig. 6 compares t-distributed stochastic neighbor embed-
ding (t-SNE) (Van and Hinton, 2020) of representations ob-
tained for the test set of CIFAR-10/100 using FixMatch and
NE-Fix. We can observe that the representations obtained
using NE-Fix has clearer boundaries. The shapes of cate-

gory embedding become tighter and narrower. This is prob-
ably because the data embeddings show a linear distribution
after weakening noise by NE. The challenge points are lo-
cated more at the edge of category area, close to the deci-
sion boundary. The results are consistent with the theory in
3. Methodology and the qualitative analysis in 4. Experi-
ments.

4.5. Quantity and Quality of Pseudo-Labels

In Fig. 7, we visualize the quantity and quality of
pseudo-labels generated by FixMatch and NE-Fix on the
CIFAR-10 with 40 labels, CIFAR-100 with 400 labels. Our
comparison reveals that NE-Fix outperforms FixMatch in
both the quantity and quality of pseudo-labels during the
training process on CIFAR-10. This indicates that NE-Fix is
more effective at producing reliable labels in this scenario.
Since CIFAR-100 is more complex, NE-Fix adopts a more
cautious prediction, leading to a lower overall number of
pseudo-labels. But the quality of the pseudo-labels gener-
ated by NE-Fix on CIFAR-100 is significantly higher than
that of FixMatch, highlighting the trade-off between quan-
tity and quality in challenging environments.
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(a) FixMacth Cifar10 (b) NE-Fix Cifar10 (c) FixMacth Cifar100 (d) NE-Fix Cifar100

Figure 8: Confusion matrices of the class predictions on the test set of CIFAR-10/100 using FixMacth and NE-Fix. (a) and
(b) FixMatch and NE-Fix on CIFAR-10 with 40 labels. (c) and (d) FixMatch and NE-Fix on CIFAR-100 with 400 labels.

(a) Bird (b) Deer (c) Cat (d) Dog

Figure 9: Prediction distribution of FixMatch w and w/o NE for low confidence samples.

Method Bird Deer Cat Dog
FixMatch [29] 0.0158 0.0176 0.0134 0.0157
NE-Fix(Ours) 0.0104 0.0168 0.0155 0.0152
InfoMatch [17] 0.0295 0.0183 0.0182 0.0157
NE-Info(Ours) 0.0124 0.0148 0.0138 0.0174

Table 6: Variance of the mean confidence for ambiguous
samples trained on CIFAR-10 40 labels.

4.6. Class-wise Balance

We compared confusion matrix on CIFAR-10/100 with
40/400 labels using FixMatch and NE-Fix in Fig. 8. The
results show that NE has better learning ability for difficult
categories, especially “Bird” and “Dog”, which has an im-
pressive improvement over FixMatch.

As shown in section 4.5 and Fig. 9, NE-Fix’s vari-
ance of the mean confidence for ambiguous samples
(argmax(p)<0.6) is lower than baseline, which NE actively
considers the possibility of otherness. FixMatch tends to
confuse “Bird” with “Deer” and “Cat” with “Dog” due to
overconfident iterations. This means that more cautious
forecasting can produce more accurate results in SSL.

Method Precision Recall F1 Score AUC
FixMatch [29] 0.9410 0.9378 0.9369 0.9928
NE-Fix(Ours) 0.9510 0.9508 0.9505 0.9957
InfoMatch [17] 0.9544 0.9545 0.9544 0.9946
NE-Info(Ours) 0.9573 0.9573 0.9572 0.9969

Table 7: Precision, recall, f1 score and AUC results on
CIFAR-10 with 40 labels.

4.7. Detailed results

To comprehensively evaluate the performance of the
method in classification, we further reported the precision,
recall, F1 score, and AUC (area under the curve) on the
CIFAR-10 dataset. As shown in section 4.6, we observed
that in addition to reduced error rate, the NE method also
achieved the best performance in terms of precision, recall,
F1 score, and AUC. These metrics, along with the error
rate (accuracy), demonstrate the powerful performance of
our proposed method. We also re-ported the median error
rate of the last 20 checkpoints, with all methods running
the same number of iterations. There were 1024 iterations
between every two checkpoints. The results shown in sec-
tion 4.6 indicate that our method can significantly improve
the performance of existing SSL algorithms. These conclu-
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Figure 10: Quantity and quality of pseudo-labels for FixMatch and NE-Fix on CIFAR-10/100. (a) and (b) Quantity and
quality on CIFAR-10 with 40 labels. (c) and (d) Quantity and quality on CIFAR-100 with 400 labels.

Dataset CIFAR-10 CIFAR-100
Method 40 250 4,000 400 2,500 10,000
FixMatch [29] 7.76±0.59 5.22±0.33 4.42±0.11 47.87±1.19 28.10±0.25 22.96±0.12
NE-Fix(Ours) 5.32±0.41 4.97±0.31 4.18±0.10 42.42±0.91 26.16±0.21 21.01±0.09
InfoMatch [17] 4.43±0.15 4.51±0.08 3.78±0.09 - - 20.36±0.54
NE-Info(Ours) 3.76±0.16 3.82±0.08 3.35±0.10 - - 20.19±0.55

Table 8: Median error rates of the last 20 checkpoints on CIFAR-10/100.

sions are consistent with the results shown in section 4 and
section 4.1 in the main text, demonstrating the effectiveness
of our proposed NE algorithm.

4.8. Convergence speed

Another notable advantage of NE-Fix is its superior con-
vergence speed, which is evidenced by the comparison of
loss and Top-1 accuracy between FixMatch and NE-Fix on
the CIFAR-10 dataset with a 40-label split, as illustrated in
Fig. 10. The results show that the loss for NE-Fix decreases
at a faster rate compared to FixMatch throughout the train-
ing process. This rapid decline in loss indicates that NE-Fix
is able to learn more efficiently and effectively, leading to
quicker improvements in performance. Consequently, NE-
Fix not only achieves better accuracy more rapidly but also
suggests a more effective utilization of the training data.
This enhanced convergence speed is a significant advan-
tage for practitioners looking to optimize their model per-
formance in a shorter timeframe.

4.9. Noise estimation analysis

We graded the difficulty level based on the Ci computed
from the images after model inference, with Ci in the top
20% considered “Easy”, Ci in the bottom 20% considered
“Hard”, and the rest “Semi”. Some of the images are shown
in Fig. 11 and Fig. 12. We invited 20 volunteers who had
never seen CIFAR-10/100 to score randomly selected im-
ages. There are 2 images of each of the 3 difficulty levels
for each class, totaling 60 images. Each person sees the
same set of images. Segment descriptions and scoring re-
sults are displayed in table 9 and table 10. The mean score

Score Description
1 Highly Uncertain
2 Somewhat Uncertain
3 Somewhat Certain
4 Certain
5 Highly Certain

Table 9: Score descriptions

Dataset Level Mean Score
Easy 4.76

CIFAR-10 Semi 3.88
Hard 1.43
Easy 4.49

CIFAR-100 Semi 3.55
Hard 1.28

Table 10: Mean scores for different dataset levels

for the “Hard” are about 3.2 points lower than the “Easy”.
The result demonstrates that our model’s judgment a picture
is basically in line with visual intuition.

Fig. 13 shows category embedding representation and
difficulty level embedding representation. The darker color
of the embeddings, the harder they are. The results show
that most of the difficult samples are distributed at the de-
cision boundary, far from the feature center. And the error
samples are basically difficult. This shows that NE-Fix has
good estimation ability for noise.

9



Figure 11: Model’s judgment of the difficulty for Cifar10. The models are trained on 40 labeled.

Figure 12: Model’s judgment of the difficulty for Cifar100. The models are trained on 400 labeled.

4.10. Performance of NE on other benchmarks

We conducted a comparative analysis of various semi-
supervised learning (SSL) benchmark methods, examin-
ing their performance alongside NE-enhanced counterparts.
This evaluation was performed using the CIFAR-10, which
featured a split of 40 labeled examples, as well as the
CIFAR-100 dataset, which included 400 labeled examples.
The results of our comparative analysis are summarized in
table 11. This table provides a clear and detailed illustration
of the performance metrics for each method evaluated. No-
tably, it demonstrates that the incorporation of the Neigh-
borhood Enhancement (NE) component leads to consistent
improvements across all baseline SSL methods.

5. Conclusion

In this work, we propose a novel method that takes an
orthogonal approach to existing semi-supervised learning
(SSL) techniques by focusing on the issue of data noise.
Our method, termed NE-SSL, aims to extract purer classifi-
cation features by effectively estimating and mitigating the
influence of noisy features within the data. This process not
only enhances the quality of the features used for classifica-
tion but also ensures more reliable learning outcomes. Ad-
ditionally, we introduce a curriculum learning framework
that is based on noise estimation, which serves to refine
the learning process and address the biases that can arise
in traditional methods. Comprehensive experiments con-

10



(a) Cifar10 (b) Cifar100

Figure 13: t-SNE of representations obtained for the test set
of CIFAR-10/100 using NE-Fix. Best viewed in color.

Table 11: More SSL benchmarks with NE. The ↓ darkgreen
is the error rate that has decreased compared to the original
version.

Dataset CIFAR-10 CIFAR-100

Method Method w NE Method w NE

PseudoLabel [23] 61.86 (↓ 12.75) 75.16 (↓ 12.09)
MeanTeacher [32] 52.08 (↓ 18.01) 69.02 (↓ 12.09)
MixMatch [4] 27.40 (↓ 8.79) 57.70 (↓ 9.89)
FlexMatch [40] 4.56 (↓ 0.41) 37.62 (↓ 2.32)
FullMatch [9] 4.83 (↓ 1.06) 36.13 (↓ 0.97)
FreeMatch [34] 4.61 (↓ 0.29) 36.18 (↓ 1.80)

ducted across multiple benchmark tests illustrate that our
proposed approach has achieved significant improvements
in performance metrics, showcasing its efficacy. Further-
more, we delve into an analysis of how our noise estima-
tion (NE) and noise estimation-based curriculum learning
(NECL) strategies influence the training dynamics of SSL.
This is explored through both qualitative observations and
quantitative results, providing a thorough understanding of
their impact.

Looking ahead, our future work will focus on extending
the application of NE to other semi-supervised tasks, in-
cluding text, audio, and video classification, thereby broad-
ening the scope and potential of our proposed methodology.
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