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Abstract

Few-Shot Anomaly Detection (FSAD) has a wide
range of applications in industrial anomaly monitor-
ing. However, when confronted with the specific chal-
lenge of Stone Surface Defect Detection, traditional
FSAD methods exhibit limitations, particularly in re-
construction fidelity and segmentation accuracy. More-
over, the lack of high-quality datasets on stone surface
defects poses a significant challenge for research in this
area. To address these issues, we propose the Mask-
Guided and Semantic-Guided Diffusion-based frame-
work (MSD) for stone surface defect detection and in-
troduce Stone Surface Defect Dataset (StoneDD), a few-
shot dataset designed specifically for vision-based de-
fect detection and segmentation. Our framework inte-
grates a pixel-space with feature-space and latent-space,
further enhanced by a Mask-Guided Knowledge Dis-
tillation network (MGKD) and a Semantic-Guided En-
hancement Network (SGEN). The MGKD network con-
centrates on anomalous regions, improving the accuracy
of image reconstruction, while the SGEN network skill-
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fully reconstructs these areas while preserving semantic
accuracy. By utilizing multi-scale feature information, it
ensures precise localization and classification, substan-
tially reducing the likelihood of false detections. Exten-
sive experimental results show that MSD achieves su-
perior performance, underlining its potential for future
deployment in industrial quality inspection applications.

Keywords: Few-shot anomaly detection, Diffusion-
based framework, Stone surface defect detection

1. Introduction

Stone panels are widely utilized in various settings,
including architectural cladding and interior decoration.
However, many stone manufacturers still rely on inefficient
manual inspection methods, making stone surface defect
detection a persistent challenge. Compared with traditional
vision detection, stone surface defect detection has the fol-
lowing characteristics: 1) Due to the intricate textures and
complex defects inherent in the stone surface, accurately
identifying surface anomalies poses a significant challenge.
2) Theoretically, the variety of stone surface imperfections
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tends to be infinite. 3) The limited number of erroneous
stone layouts and the scarcity of surface defects made it
challenging to collect the dataset.

Currently, most stone manufacturers continue to rely on
manual inspection for detecting surface defects in stone.
As an alternative to this inefficient and labor-intensive ap-
proach, numerous model-driven conventional methods have
been proposed for more effective detection. Several studies
[6, 30] have explored synthesis-based and embedding-based
methods for detecting surface anomalies. However, these
methods encounter substantial hurdles in stone detection,
including the management of multiple negative sample cat-
egories and the long-tail phenomenon [32]. Diffusion-based
methods [28, 10, 31] can largely mitigate these issues due
to their capacity to reconstruct images and model complex
distributions effectively.

Diffusion-based methods can effectively complete the
task of stone surface anomaly detection. A Diffusion-based
framework for multi-class Anomaly Detection (DiAD) [10]
utilizes a diffusion model to synthesize anomalies and fine-
tunes a pre-trained feature extractor for multi-class anomaly
detection. Similarly, Denoising Diffusion Anomaly Detec-
tion (DDAD) [19] employs score-based diffusion models to
generate normal samples and enhances domain transfer with
pre-trained feature extractors. However, in stone surface
defect detection, diffusion-based methods may misclassify
stone background textures as defects during denoising, re-
sulting in higher false detection rates and suboptimal re-
construction outcomes just as shown in Fig. 1. To tackle
the mentioned challenges, we introduce a Mask-Guided
and Semantic-Guided Diffusion-based framework(MSD)
for stone surface defect detection.

Conducting research in the area of stone surface defect
detection is challenging due to the lack of publicly available
datasets. To address this gap, we introduce a novel dataset
called StoneDD, specifically designed for stone surface de-
fect detection. StoneDD presents a range of potential chal-
lenges in this field and is the first publicly available dataset
of its kind, as illustrated in Fig. 2. This dataset encompasses
the following key properties:

• Defect types: spot, stain, bubble, gap, chromatic-
aberration, and oil-paper (paper sticks to the stone).

• Data volume: 1,290 images with corresponding
masks.

• Multi-resolution: images available in both 900x900
and 256x256 resolutions to support comprehensive ex-
perimentation

• Diversity: features richly textured stone slabs with
subtle variations in local color, presenting realistic
challenges in distinguishing natural textures from ac-
tual defects

Our key contributions can be summarized as follows:

• We develop the MGKD network that effectively differ-
entiates between anomalous regions and background
areas through weighted allocation, leading to enhanced
reconstruction precision.

• We introduce the SGEN network, designed to inte-
grate multi-scale features and improve both anomaly
detection and localization accuracy, effectively reduc-
ing false detection rates.

• We present a few-shot Stone Surface Defect dataset,
and demonstrate the effectiveness of our MSD frame-
work through extensive experimentation, achiev-
ing outstanding localization and detection scores of
95.8/67.3 and 99.1/97.6 (AUROC/AP), respectively.

2. Related Work

2.1. Stone Surface Detection

Stone surface detection is an essential task across various
industries, including construction, archaeology, and quality
control in stone manufacturing. Over the years, numerous
methodologies [14, 15, 2, 9, 13, 23, 19]have been proposed
to enhance the precision and efficiency of detecting anoma-
lies and features on stone surfaces.

Traditional approaches often relied on manual inspec-
tion, a process that is not only time-consuming but also sus-
ceptible to human error. With advancements in computer vi-
sion and machine learning, automated detection techniques
have increasingly taken center stage. For example, P. Kap-
salas et al. [14] utilized optical detection techniques to
quantify surface decay in stone materials, while J. Lee et
al. [15] explored robust and efficient automatic methods
for detecting tool defect in polished stone. Additionally, A.
Borel et al. [2] discussed optimization methods for wear
detection and characterization on stone tool surfaces.

Recently, many studies have begun to use deep learn-
ing methods to detect surface defects in stone surface. M.
Guerrieri et al. [9] used deep learning with inexpensive de-
tection equipment to identify and measure damage on flex-
ible and rocky road surfaces. H. Kabir et al. [13] employed
Mask R-CNN for stone detection and segmentation in un-
derground pipeline inspection robots. M. Smith et al. [23]
discussed using machine vision technology for inspecting
polished stone materials in manufacturing processes. Ad-
ditionally, A. Mousakhan et al. [19] utilized a score-based
pre-trained diffusion model to generate normal samples and
fine-tuned feature extractors for domain transfer, enhancing
detection across various stone surfaces.

Despite these advancements, challenges remain due to
the variability and complexity of stone surface textures.
Future research should focus on developing more robust



Figure 1: Comparison of results of different methods. (a) DiAD exhibits poor reconstruction quality and insufficient heatmap
convergence. (b) Our proposed approach demonstrates superior defect detection capability and improved image reconstruc-
tion quality.

Figure 2: Samples from StoneDD.

and adaptable models, which can use weakly supervised
anomaly detection methods to detect various abnormal de-
fects on stone surfaces.

2.2. Anomaly Detection

Traditional stone surface detection methods often strug-
gle with issues such as out-of-distribution detection for un-
seen samples during training. Anomaly detection tech-
niques, however, can mitigate these challenges. Anomaly
detection [8, 16, 24] can be categorized into three primary
approaches:

1) Synthesis-based methods generate anomalies from
normal image samples. During training, both normal and
artificially generated abnormal images are fed into the net-
work, helping in anomaly detection and localization. Za-
vrtanik et al. [30] proposed the Discriminatively Trained
Reconstruction Anomaly Embedding Model (DRAEM), an

end-to-end network combining a reconstruction component
with a discriminative sub-network for synthesizing and gen-
erating out-of-distribution anomalies. However, synthesiz-
ing all possible anomaly variations remains challenging due
to the diverse and unpredictable nature of anomalies in real-
world scenarios.

2) Embedding-based methods map the original image’s
three-dimensional information into a high-dimensional fea-
ture space [21]. Several approaches [11, 25, 26, 17] utilize
networks pre-trained on ImageNet [7] for feature extraction.
Deng et al. [6] proposed the Reverse Distillation paradigm
For Anomaly Detection (RD4AD), using Wide Residual
Networks (WideResNet50) as a teacher model for feature
extraction and a reverse network as a student model to com-
pute anomaly scores based on cosine similarity. Defard et
al. [5] introduced Patch Distribution Modeling (PaDiM),
leveraging pretrained CNNs for patch embedding and mul-



tivariate Gaussian distributions to probabilistically repre-
sent the normal class.

You et al. [29] developed the Unified model for
multi-class Anomaly Detection (UniAD), which enhances
reconstruction networks with layer-wise query decoders,
neighbor-masked attention modules, and feature jittering.
However, discrepancies between industrial images and Im-
ageNet’s data distribution may limit these features’ applica-
bility for industrial anomaly detection [3, 22, 27].

3) Diffusion-based methods train models on anomaly-
free data to identify patterns in normal data. The diffusion
model [28] has garnered significant attention due to its im-
pressive reconstruction capabilities. It has shown excep-
tional performance in various tasks, including image gen-
eration [31], video generation [12], object detection [4],
and image segmentation [1]. Blattmann et al. [20] pro-
posed High-Resolution Image Synthesis with Latent Dif-
fusion Models (LDM), which introduces conditioning via
cross-attention to control the generation process. However,
accurately preserving the original semantic content in re-
constructed images remains a challenge. Wyatt et al. [28]
introduced Anomaly Detection with Denoising Diffusion
Probabilistic Models (AnoDDPM), the first application of
a diffusion model for medical anomaly detection. He et al.
[10] developed a Diffusion-based framework for multi-class
Anomaly Detection (DiAD), utilizing a diffusion model
to generate synthetic anomalies while fine-tuning a pre-
trained feature extractor for improved detection across var-
ious anomaly classes.

However, the reconstruction results of these methods of-
ten exhibit limitations, such as susceptibility to background
noise, which can lead to normal features being misclassi-
fied as anomalies. To overcome these issues, this paper pro-
poses a mask-guided and semantic-guided diffusion-based
framework for stone surface anomaly detection, improving
the quality of reconstructed images and enhancing the pixel-
level localization of anomalies.

3. Method

During training (S1, {P1, P2, P3}, S2, S3). S1: Encod-
ing the input image x as the latent-space representation;
{P1, P2, P3}: {P1: Forward diffusion, adding noise to the
latent-space representation; P2: Enter the latent-space rep-
resentation into SGEN for a more definitive location of the
defect edge P3: The latent-space representation is overlaid
with masks and then into MGKD for precise defect ranges};
S2: Integrating Mask-Guided and Semantic-Guided repre-
sentation to facilitate the reverse denoising process and ob-
tain reconstructed representation; S3: Decoding the recon-
structed representation as the reconstructed image x̂0 (i.e.
flawless image/ Repaired image).

During testing (S4). x and x̂0 are inputted into the
same pre-trained feature extraction network to obtain fea-

ture maps {f1, f2, f3} of different scales, and calculate their
anomaly scores S by cosine similarity.

How it work. When the input image passes through the
latent space on the right, a defect-free reconstructed image
is generated. Both the input and the reconstructed images
are then passed to the left to compute the cosine distance.
The greater the pixel-level difference, the more pronounced
the corresponding anomaly in the heatmap. In simple terms,
by comparing the differences between the two images, the
regions of discrepancy are displayed in red. Therefore, the
accuracy of the heatmap largely depends on the quality and
level of detail in the reconstructed image. To address this
issue, we employed semantic and mask guidance to opti-
mize the reconstruction process, resulting in more precise
reconstructions and achieving heatmap convergence.

The proposed MSD pipeline, depicted in Fig. 3, com-
prises three components: 1) Feature Space, 2) Pixel Space,
3) Latent Space.

3.1. Feature Space

For defect localization and detection, we utilize the same
pre-trained ResNet50 feature extraction network Ψ to ex-
tract features from both the input image x and the recon-
structed image x̂0. We then calculate the anomaly map on
different scale feature maps Mn using cosine similarity:

Mn (x0, x̂0) = 1− (Ψn (x0, x̂0))
T ·Ψn (x0, x̂0)

‖Ψn (x0, x̂0)‖ ‖Ψn (x0, x̂0)‖
, (1)

Where n denotes the n-th feature layer fn, and the
anomaly score S for an input-pair of anomaly localization
is:

S =
∑
n∈N

σnMn (x0, x̂0) , (2)

Where σn denotes the upsampling factor to maintain the
original dimension of the pixel space image, and N indi-
cates the number of feature layers used during inference.

3.2. Pixel Space

The pixel space autoencoder {E,D}: an encoder, which
maps the input image to the latent-space, and a decoder,
which reconstructs the latent-space representation back into
an image. These autoencoder module is tasked with learn-
ing low-dimensional representations of data. It achieves
this by receiving the input image and encoding them as the
latent-space representation within the latent-space.

3.3. Latent Space

The latent-space primarily encompasses three compo-
nents: latent diffusion model (LDM), Mask-Guided Knowl-
edge Distillation network (MGKD), and Semantic-Guided



Figure 3: Framework of the proposed MSD. During training (S1, {P1, P2, P3}, S2, S3), the input image x0 is processed in
parallel by {P1, P2, P3}, Then reverse denoising Process RD to get the reconstructed image x̂0. During testing (S4), x0 and
x̂0 are inputted into the feature space to generate feature maps and calculate anomaly scores S.

Enhancement Network (SGEN). We will elaborate on each
of these three modules below:

3.3.1 Latent Diffusion Model

Latent Diffusion Model (LDM) focuses on the low-
dimensional latent space with conditioning mechanisms.
The network compresses images using an encoder, conducts
diffusion and denoising operations in the latent representa-
tion space, and subsequently reconstructs the images back
to the original pixel space using a decoder. The training
optimization objective is:

LLDM = Ez0,t,c,ε∼N (0,1)

[
‖ε− εθ (Zt, t, c)‖22

]
, (3)

where c represents the conditioning mechanisms which
can consist of multimodal types such as text or image, con-
nected to the model through a cross-attention mechanism.
Zt represents the full-noise representation,

The LDM [28] comprises two processes: diffusion for-
ward process and reverse denoising process, just as Fig. 4.

In the diffusion forward process, a noisy sample xt is
generated through a Markov chain that gradually introduces
Gaussian-distributed noise to an initial data sample x0 as
Eq. (4).

xt =
√
ᾱtx0 +

√
1− ᾱtεt, εt ∼ N (0, I), (4)

Figure 4: Denoising diffusion probabilistic model.

Where αt = 1 − βt, ᾱt =
∏T
i=1 αi =

∏T
i=1(1 − βi),

and βi represents the noise schedule regulating the amount
of noise added at each timestep.

In the reverse denoising process, xt is sampled from
Equation 1, and xt−1 is reconstructed using xt and the
model prediction εθ(xt, t) as Eq. (5).

xt−1 =
1
√
αt

(
xt −

1− αt√
1− ᾱt

εθ (xt, t)

)
+ σtz, (5)

Where z ∼ N (0, I), σt is a fixed constant related to the
variance schedule, and θ represents the learnable parame-
ters.

3.3.2 Mask-Guided Knowledge Distillation network

Mask-Guided Knowledge Distillation network (MGKD) fo-
cus on more precise and larger possible areas of defects.
Specifically, the latent-space representation and grid are
overlaid by dot product to obtain the mask representation,



then the mask teacher model and student model are passed
in synchronously, the mask weights are used as a bench-
mark to correct the student model, simultaneously the stu-
dent model is allowed to learn from the teacher through
LKD, as Eq. (1). The gap between them is continuously
reduced in n rounds of iteration, and finally the best weights
optimize the Semantic-Guided network, which assists in
the reverse denoising process so that it is bound to be ef-
fective in the flawed region search. The network consists
of a pre-trained teacher encoder E, sourced from sam-vit-
base Automatic-Mask-Generation, and a trainable student
decoder D. During training, the student decoder learns to
mimic the teacher encoder’s behavior by minimizing the
similarity loss LKD. The best logits are generated based
on this learning process, which are then used to further op-
timize the SGEN model.

LMSE = Dist(zS , zT ) ==
1

n

n∑
i=1

(
z
(i)
T − z

(i)
S

)2
(6)

Where Dist(·) denotes the Euclidean distance and n denotes
the number of categories, ZT and Zs denote the outputs of
the mask teacher model and student model;

LKL =
1

n

n∑
i=1

σ(z
(i)
T /τ) · log

(
σ(z

(i)
T /τ)

σ(z
(i)
S /τ)

)
(7)

where LKL denotes the Kullback-Leibler scattering loss
function, and σ denotes the Softmax function, τ denotes the
temperature parameter, which is used to adjust the degree
of “softening” of Softmax;

LKD = α · LMSE + β · LKL (8)

where LKD denotes the overall loss function of the knowl-
edge distillation network, α and β denote the weighting co-
efficients, which can be manually adjusted to achieve the
optimal distillation effect.

3.3.3 Semantic-Guided Enhancement Network

Semantic-Guided Enhancement Network (SGEN) focuses
on accurately locating the edges and contours of defects.
Specifically, the pre-trained BPNet first extracts multi-level
features and integrates them to obtain semantic representa-
tions. Through a series of semantic modules that progres-
sively refine the defective edges, the Spatial-aware Feature
Fusion (SFF) block then combines the fused features with
the original features, which collaboratively optimizes the
reverse denoising process and this will surely be able to find
the defective edges for subsequent heat map visualization.

BPNet combines bottom-up and top-down modules to
enhance low-resolution feature maps by fusing them with

high-resolution ones, thereby enriching semantic informa-
tion. SGEN reconstructs anomaly areas while retaining the
original image’s semantics, leveraging multi-scale features
for precise localization and classification. The model fo-
cuses on identifying anomalies while minimizing attention
to irrelevant background elements.

SGEN is designed to tackle the specific challenges faced
by LDMs in multi-class defect detection tasks. To address
the limitations associated with LDMs, particularly in effec-
tively reconstructing anomalies while retaining the semantic
information of the input image, we introduce the SGEN as
a solution to enhance performance in multi-class scenarios.

Given an input image x0 ∈ R3×H×W in pixel space, the
pre-trained encoder E encodes x0 into a latent-space rep-
resentation z ∈ Rc×h×w, where z = E(x0). Now, the
forward diffusion process can be characterized as follows:
z = E(x0). Now, the forward diffusion process can be char-
acterized as follows:

zt =
√
ᾱtz0 +

√
1− ᾱtεt, εt ∼ N (0, I). (9)

The perturbed representation zT and input X are simul-
taneously fed into the RD and SGEN network, respectively.
After T steps of the reverse denoising process, the final vari-
able ẑ is restored to the reconstructed image X̃ from the pre-
trained decoderD giving X̂ = D(ẑ). The training objective
of MSD is:

LMSD = Ez0,t,ci,ε∼N (0,1)

[
‖ε− εθ (zt, t, ci)‖22

]
+ λLKD.

(10)

4. Experiment

4.1. Stone Defect Dataset

In the field of stone surface defect detection, to the best
of our knowledge, we are the first team to propose the few-
shot Stone Defect Dataset (StoneDD). We hope that the
StoneDD will provide effective support for subsequent re-
searchers to advance the stone surface defect detection tech-
nology, thus helping the stone industry to move away from
traditional manual inspection methods to automated and in-
telligent defect detection. We aim to provide a small-scale
muti-resolution Stone Defect Dataset (StoneDD) with com-
prehensive annotations that can expose the challenges of
stone surface defect detection and segmentation. The spe-
cific process of dataset construction is shown in the Fig. 5.

Raw Data Collection. We manually photographed and
collected original stone images and selectively collected
complete, high-resolution images of the stone surface. Be-
cause these images contained many types of defects that
were difficult to recognize, we manually selected the six
most obvious and distinguishable types of defects, resulting



Table 1: Comparison with other detection methods on StoneDD dataset.

Metrics Non-Diffusion Methods Diffusion-based Methods

PaDiM DRAEM RD4AD UniAD AnoDDPM DiAD MSD
21’ICPR 21’ICCV 22’CVPR 22’NeurIPS 22’CVPR 24’AAAI Ours

AUROCseg 88.7 91.5 93.7 94.8 89.3 93.8 95.8
APseg - 18.3 23.9 43.1 47.1 47.0 56.8

F1maxseg - 17.3 26.3 49.5 11.2 55.1 49.7

AUROCcls 86.9 60.9 79.1 96.5 67.9 98.7 99.1
APcls - 84.6 95.2 97.9 78.1 99.5 97.6

F1maxcls - 88.7 90.3 95.7 88.7 99.2 99.2

Figure 5: The generation pipeline of StoneDD, which includes raw data collection, data preprocessing and partitioning,
manual defect screening, and annotation.

Table 2: Ablation studies of different feature extraction
backbones.

Metrics VGG19 ResNet50 WideResNet101

AUROCseg 92.5 95.8 96.4
AUROCcls 91.3 99.1 95.6

Table 3: Ablation studies of different feature layers.

f1 f2 f3 f4 f5 AUROCseg AUROCcls

X X X X X 94.1 93.9
X X X 95.4 97.0

X X X 95.8 97.2
X X X 95.8 99.1

in 1,045 original images ( defect types: spot, stain, bubble,
gap, chromatic-aberration, and oil-paper).

Data Preprocessing and Partitioning. We preprocess
the collected raw data through cropping, segmentation, and
normalization. The dataset is then organized into positive
samples (without defects) and negative samples (with de-
fects) using the COCO format to facilitate subsequent ex-
periments.

Manual Defect Screening. We perform manual screen-

ing, primarily removing stone images that contain arrow la-
bels and artificially drawn lines. Subsequently, we select
high-quality images to ensure both the quality and quantity
of The StoneDD .

Annotation. We use the Labelme tool for annotation,
which consists of two main steps: first, labeling the defec-
tive regions and generating masks; and second, categorizing
each defect and recording its type. This detailed annotation
process is crucial for subsequent model training and evalua-
tion. As shown on the right side of Fig. 5, the thoroughness
of this approach ensures high-quality annotations that sig-
nificantly contribute to the model’s performance.

The StoneDD dataset supports a range of downstream
tasks, such as target detection and instance segmentation.
It is characterized by small sample sizes, a wide variety of
defects, and similar background textures, making it particu-
larly suited for few-shot anomaly detection.

4.2. Evaluation Metrics

Building on prior research, this study employs AUROC,
AP, and F1max metrics to assess both defect localization
and detection tasks. Specifically, ’seg’ refers to pixel-level
defect localization, while ’cls’ denotes image-level defect
detection.

Among these metrics, AUROC is the most representa-
tive. However, since this study focuses on detecting de-



fect edges for localization, we place greater emphasis on
the segmentation metric (i.e., AUROCseg is considered the
most important and representative metric), subsequent ex-
periments will primarily be evaluated based on the AUROC
metric.

4.3. Implementation Details

This design adopts ResNet50 as the feature extraction
network and chooses n ∈ {2, 3, 4} as the feature layers used
in calculating the anomaly localization. We train on a single
NVIDIA Ampere A40 GPU for 1000 epochs on 48GB, with
a batch size of 12. The learning rate is set to 1 × 10−5 for
the Adam optimizer [18].

4.4. Comparison with Other Anomaly Detection Methods

4.4.1 Quantitative experiment

We employ recent state-of-the-art methods as benchmark
comparisons. As illustrated in Table 1, our proposed MSD
method achieves significantly superior performance in both
pixel-level defect segmentation and image-level localiza-
tion.

4.4.2 Qualitative experiment

To better illustrate the experimental effects, we present
heatmaps for transparent visualization. This allows for a
clearer observation of our refined experimental outcomes,
demonstrating that our method is more suitable for stone
surface defect detection, as shown in Fig. 6 and 7.
Where Rec. represents reconstructed images, GT represents
ground truth for the anomaly location, and Loc. represents
heatmap images.

4.5. Ablation Studies

4.5.1 Effect of pre-trained feature extractors

Table 2 shows the use of different pre-trained backbone net-
works for quantitative comparison of feature extraction net-
works. We use ResNet50 as the pre-trained feature extrac-
tion network.

4.5.2 Effect of different feature layers used in anomaly
score calculating

The specific data is presented in Table 3. After obtaining the
feature maps at various degrees, we extract features at five
different scales using a pre-trained backbone. The anomaly
score is then calculated by determining the cosine similarity
between the feature maps of different layers.

4.5.3 The architecture design of MSD

The method of this design achieves 99.1/97.6/99.2 and
pixel-level accuracy, respectively. The AUROC/AP/F1max

index of 95.8/56.8/49.7. We conducted ablation experi-
ments on the architecture design of MSD to verify the ef-
fectiveness of SGEN and MGKD networks. The specific
data is shown in Table 4.

Table 4: Ablation studies on the design of MSD.

SD MGKD SGEN AUROCseg AUROCcls

93.8 98.7
X 92.0 95.3
X X 95.7 93.1

X X 94.6 98.6
X X X 95.8 99.1

5. Conclusion

This paper presents a Mask-Guided and Semantic-
Guided Diffusion-based framework (MSD) for Stone Sur-
face Anomaly Detection, addressing the challenges of
poor reconstruction quality and high false positive rates
in diffusion-based methods. The Mask-Guided Knowl-
edge Distillation Network (MGKD) emphasizes anomalous
regions to enhance image reconstruction precision, while
the Semantic-Guided Enhancement Network (SGEN) inte-
grates multi-scale features to improve anomaly detection
accuracy and reduce false detection rates.

We also introduce StoneDD to include diverse stone
surface defects at varying resolutions. Our MSD ap-
proach achieves impressive localization and detection AU-
ROC/AP scores of 99.1/97.6 and 95.8/67.3, respectively, on
StoneDD. Despite its high performance, there is potential
for further improvement in pixel-level localization and de-
tection. Future work will focus on expanding The StoneDD
and utilizing larger models to enhance reconstruction per-
formance.
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