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Abstract

Audio-visual video parsing (AVVP) aims to recog-
nize audio and visual event labels with precise temporal
boundaries, which is quite challenging since audio or vi-
sual modality might include only one event label with
only the overall video labels available. Existing label
denoising models often treat the denoising process as a
separate preprocessing step, leading to a disconnect be-
tween label denoising and AVVP tasks. To bridge this
gap, we present a novel joint reinforcement learning-
based label denoising approach (RLLD). This approach
enables simultaneous training of both label denoising
and video parsing models through a joint optimization
strategy. We introduce a novel AVVP-validation and soft
inter-reward feedback mechanism that directly guides
the learning of label denoising policy. Extensive experi-
ments on AVVP tasks demonstrate the superior perfor-
mance of our proposed method compared to label de-
noising techniques. Furthermore, by incorporating our
label denoising method into other AVVP models, we find
that it can further enhance parsing results.

Keywords: Video Parsing, Reinforcement Learning,
Label Denoising, Weakly-Supervised.

1. Introduction

With the rapid progress of Internet technology, large-
scale visual data can be found on the Internet, bringing sig-
nificant opportunities for novel processing of visual infor-
mation, as well as commercial applications. The Computa-
tional Visual Media Conference series, of which this is to
be the first conference, is intended to provide a major new
international forum for exchanging novel research ideas and
significant practical results both underpinning and applying

Visual Media. The primary rationale for this new confer-
ence series is to target cross disciplinary research which
amalgamates aspects of computer graphics, computer vi-
sion, machine learning, image processing, video process-
ing, visualization and geometric computing. Original re-
search is sought in areas concerning the classification, com-
position, retrieval, synthesis, and understanding of visual
media.

The way humans perceive knowledge is through multi-
ple modalities, including auditory, visual, tactile, and taste.
Numerous studies have demonstrated that integrating these
various senses can enhance natural knowledge perception
[17,29, 26, 4]. Specifically, visual and auditory are partic-
ularly prevalent in conveying vast amounts of information
during interactions with the environment.

In recent years, the majority of research focus on vi-
sual scene understanding [15, 32] or video parsing [24, 23],
often overlooking other modalities. Prior works in multi-
modal learning [3, 38] primarily examine the synergy be-
tween text and visual modalities to acquire joint representa-
tions. However, auditory and visual data often coexist and
provide complementary cues in human perception. There-
fore, more recently, some works [31, 40, 5, 44, 25, 27, 18]
investigate on localizing audio and visual event tasks, called
Audio-Visual Video Parsing (AVVP), which aims to gen-
erate temporal audio, video, and audio-visual event labels.
Most of existing works explore weakly-supervised learning
for AVVP task since densely annotated event modality and
category label with temporal boundaries is extremely ex-
pensive and time-consuming. For instance, [31] formulates
the AVVP task as a Multimodal Multiple Instance Learn-
ing (MMIL) problem and introduces an attentive MMIL
pooling method to adaptively explore useful audio and vi-
sual content from different temporal extents and modali-
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Figure 1. 1) Feature extraction is performed on both the image and speech data. 2) The noisy labels, along with the extracted features from
the two modal models, are input into a label denoising model to make decisions about label noise. 3) The denoised labels are then used
to train a video parsing model, which is validated on a validation set to obtain quantitative analysis results of the parsing. 4) Based on the
obtained quantitative analysis results, the reward is calculated. The obtained reward is fed back to the label denoising model to guide its
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training process. a.,;,,,; and ag, 4;, are actions of the denoising model.

ties. While existing audio-visual parsing works often as-
sume temporal alignment of audio and visual events, this
alignment hypothesis may not hold in practical scenarios.
As pointed out by [37, 6], "some event clues that do not
appear in one of the two modalities.” This is exemplified
by the saying I have not seen the person, but I have heard
his voice.” For example, in a basketball game video, even
if the commentator cannot be seen, their voice and cheering
can be heard, making sound signals crucial for comprehen-
sive video understanding. Thus, the commentator’s speech
serves as a noisy label for the visual modality, and the bas-
ketball is considered audio-specific noise in some video
clips. This issue is defined as modality-specific noisy.

Pioneering researchers in the field of audio-visual
video parsing have made concerted efforts to address the
modality-specific noisy problem. For example, an audio-
visual modality exchange method [37] aimed at deriving
precise modality-aware event labels is proposed to, thus
safeguard models from being misled by ambiguous overall
labels. In a similar vein, [0] tackle the modality-specific
noisy issue by collaboratively computing a nosie estima-
tor and forward modality losses. Leveraging the estimated
noise ratios, they prioritize noisy samples based on forward
losses. Notably, both the cross-modal and joint modal ex-
change mechanisms treat label denoising as a preliminary

stage, disconnected from the subsequent AVVP process.
This limitation precludes direct guidance of the denoising
process by AVVP outcomes. Recently, VALOR [42] in-
corporates large-scale contrastively pre-trained models as
the modality teachers to enhance learning with weak labels.
An iterative optimization approach [27] using the EM algo-
rithm is proposed to overcome the challenge of weak labels.
However, the two most recent works ignore the modality-
specific noisy problem. Since it is unknown which labels
are noise in video parsing, the exploration strategy based on
reinforcement learning can be utilized to tackle the problem
of label denoising. Therefore, we introduce an innovative
training strategy that integrates label denoising and audio-
visual video parsing into a unified learning framework. This
approach enables seamless interaction between denoising
and parsing components, leading to more robust and accu-
rate audio-visual video analysis.

In this paper, we introduce a novel Reinforcement
Learning-based Label Denoising (RLLD) framework for
audio-visual video parsing. The objective of RLLD is to
enhance the identification of noisy labels and facilitate la-
bel denoising, thereby improving the overall performance of
AVVP. Figure 1 provides an overview of the RLLD frame-
work. The core component of RLLD is a reinforcement
learning agent that is trained to identify noisy labels. This



agent is guided by a joint reward signal derived from both
the validation results and the soft inter-reward. This ap-
proach ensures that the denoising agent can maintain pre-
diction accuracy while reducing convergence time. In addi-
tion, RLLD integrates label denoising and AV VP into a uni-
fied training framework. This integration enables the direct
mitigation of label denoising and AV VP, facilitating more
effective learning and optimization.

RLLD not only directly identifies noisy labels from a sin-
gle modality, eliminating the need for computationally ex-
pensive cross-modal comparison, but also trains the denois-
ing agent using validation results from the AVVP model.
This approach ensures a more direct impact on enhancing
AVVP performance, leading to superior temporal localiza-
tion outcomes. We validate the effectiveness of RLLD on
the standard AVVP dataset under several settings. The re-
sults demonstrate that RLLD achieves better performance
than existing state-of-the-art label denoising models and
further enhances the performance of state-of-the-art AVVP
models. To summarize, our key contributions are as fol-
lows:

e We propose to address the label denoising issue in
AVVP by reinforcement learning to learn the noisy la-
bel discovery strategy. To the best of our knowledge,
we are the first to introduce reinforcement learning into
AVVP to solve the label denoising problem.

* We carefully design the validation-based reward and
the soft inter-reward functions to guide the label de-
noising strategy learning, which directly drives the la-
bel denoising for improving the performance of AVVP.

* The experiments on the AVVP dataset validate the
effectiveness of our method, which can alleviate
modality-specific noise during the jointly training
framework.

2. Related Work

The traditional audio-visual learning primarily empha-
size the representation learning [1, 19, 2, 7, 16], video
captioning [28, , ], audio-visual sound separation
[34, 8, 11], etc. For example, [2] propose a knowl-
edge distillation-based procedure to transfer discriminative
visual-knowledge from well established visual recognition
models into the sound modality to get the better sound
representation. Vid2Seq [39] leverages unlabeled narrated
videos for dense video captioning by reformulating sen-
tence boundaries of transcribed speech as pseudo event
boundaries, and using the transcribed speech sentences as
pseudo event captions. All the past audio-visual related
works assume audio and visual data are always correlated.
In practice, the event label is contained in different modal-
ities with different boundaries. Therefore, [31] introduce

a new fundamental problem: audio-visual video parsing
(AVVP) that recognizes every event label containing in au-
dio and visual modalities with temporal boundaries.

HAN [31] is the pioneering weakly supervised frame-
work to solve the audio-visual video parsing problem. HAN
formulates the AVVP as a multi-instance learning problem
and use a hybrid attention network to learn the unimodal
and the cross-modal temporal contexts. The label smooth-
ing technique is adopted to suppress the impact of noisy
label from individual modality. Furthermore, MM-Pyramid
[40] attempt to capture temporal pyramid features via sev-
eral stacking pyramid units. The previous proposed AVVP
models take the overall event labels to supervise both vi-
sual and audio modalities learning. Recently, several lat-
est models are proposed to solve the AVVP task like MGN
[25], DHHN [18], CVCMS [22], CPSP [43], CMPAE [10],
and poiBin [27] etc. For example, audio, visual, and audio-
visual streams are treated separately and an audio-visual
class co-occurrence module is adopted to jointly explores
the relationship of different categories among all streams
[22]. CPSP [43] introduces the available full or weak label
as a prior that constructs the exact positive-negative sam-
ples for contrastive learning. In practice, visual modality
may not include the audio event, and vice versa. Therefore,
the denoising methods [37, 6] aim to remove the noisy label
for each modality by considering cross-modal connections
and differences. LSLD [©] designs language prompts to de-
scribe all cases of event appearance for each video since the
language could freely describe how various events appear in
each segment beyond fixed labels. Zhou et al.[45] use CLIP
and CLAP to estimate the events in each video segment and
generate segment-level visual and audio pseudo labels, re-
spectively. However, all the label denoising approaches in
AVVP formulate the modality-specific denoising as a pre-
processing stage, leading to a disconnect between label de-
noising and AVVP tasks.

In contrast to these methods, we generate reliable event
labels independently for each modality via a joint training
framework. We utilize validation results from the AVVP
model to guide the learning of the label denoising strat-
egy. This approach directly addresses the label denoising
problem within the AVVP learning process, enabling more
effective modality-specific denoising and improved overall
performance.

3. Method

In this section, we elaborate on the new framework, Re-
inforcement Learning-based Label Denoising (RLLD) for
AVVP. As depicted in Figure 1, RLLD comprises two dis-
tinct networks: label denoising network and task network.
The label denoising network is implemented as a hybrid at-
tention network for generating policy to determine which
modality-specific label is the noisy label. We use the HAN



[31] as the task network to guide the denoising policy learn-
ing, though our method can not only adapt to HAN but also
to any task networks for AVVP, such as [42, 27, 25, 18],
among others.

3.1. Problem Statement

The input video sequence is denoted as {A;, V;}1_;,
where 7' represents the overall duration of the video. Each
Ay and V; corresponds to the audio and visual modalities,
respectively. The objective of AVVP is to segment the
boundaries of audio and visual events and assign event la-
bels that are present in each modality. During the train-
ing stage, only the overall video-label y € {0,1}¢ can be
used to train the parsing network. Therefore, AVVP is a
classic multiple instance learning problem. During valida-
tion stage, the audio, visual and audio-video event labels
yt € {0,1}¢, ¢yt € {0,1}¢, 9%, € {0,1}¢ are available
to assess whether the event occurs in both the visual and au-
dio tracks at time ¢. In our formulation, following MA [37]
and JoMoLD [6], we aim to remove the modality-specific
noisy label to improve the parsing performance. As a novel
framework for label denoising in AVVP, RLLD differs from
MA and JoMoLD in that we employ reinforcement learning
to integrate label denoising with AVVP into a unified learn-
ing framework. This approach allows for joint optimization
of denoising policy and AV VP task-specific objective.

3.2. The Label Denoising Network

We formulate the label denoising as a sequential
decision-making process. Specifically, we develop a deep
label denoising network that predicts probabilities for audio
and visual tracks and determines which event label to re-
move from each modality based on the predicted probability
distributions. We present a joint framework for training the
label denoising network by using reinforcement learning.

Figure 1 visually illustrates how RLLD identifies noisy
labels. A reinforcement learning agent is employed to map
actions a; from the state s; to remove the event labels for
each modality. We argue that the original event labels play
a crucial role in identifying noisy labels. Therefore, the re-
inforcement learning state s; is defined as a combination
of features and original noisy label representation, which is
denoted as follows:
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where f! and f! are audio and visual features extracted
from pre-trained models. 7 represents the index of the video.
After providing the audio and visual track states for a given
video, following the approach of HAN [31], at each time
step ¢, self-attention and cross-attention mechanisms are
utilized to learn the audio and visual hidden state represen-

tations, respectively. This process is formalized as follows:
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where d is the dimension of the audio and visual state. The
fully connected (F'C) layer, followed by the sigmoid func-
tion, is responsible for predicting the probability pt for each
modality. Based on this probability, a modality-removal ac-
tion a! is sampled:
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where o represents the sigmoid activate function, a!,, ., €

{0,1}¢ and @ ,_,.; € {0,1}° sampled from Bernoulli dis-
tribution indicate whether the corresponding index event la-
bel is removing or not. Therefore, the revised label for each
modality is obtained by:
g(iz = a’fzudio © yfm (5)
1,712; = a'luisual © yllﬂ
where © indicates element-wise multiplication. §’ and ¢/,
are the event labels for audio and visual tracks after remov-
ing noisy labels.

3.3. The Task Network

During training, RLLD will receive a reward R(S) that
evaluates the quality of the denoising policy, and the objec-
tive of RLLD is to maximize the expected rewards over time
by removing the noisy labels for each modality. In general,
a high-quality label space is expected to obtain better per-
formance in AVVP task. To this end, we propose a novel
reward mechanism that directly feedback from the valida-
tion of the AVVP task.

We use the HAN as the basic task network with pa-
rameters . We assume that the audio and visual snip-
pets from temporal aggregated features are denoted as
(! dior Ftivuar - The aggregated features are predicted
from self-attention and cross-attention networks similar to

ot % 7
audio — Saudio + gSa(Saudim Saudio) + gca(saudim Svisual)v

o i , i 4
visual = Svisual T gsa(svisuala Smsual) =+ gca(svisual7 Saudw),



Eq.(2). Different from the label denoising network, the in-
put of the task network only includes audio and visual fea-
tures extracted from pre-trained models. The label repre-
sentation is omitted in the task network. Subsequently, the
attentive MMIL pooling is employed to predict video-level
event probabilities. We denote the union of ¢} and ¢’ as the
ground-truth of the video-level label.

g =19, (6)

Therefore, the binary cross-entropy loss C E(-) is optimized
to train the video-level prediction model.

Lyideo = — Z y lOg (N

where p is the predicted video-level event labels. Unlike
the HAN approach, which employs label smoothing to mit-
igate modality bias, we utilize the outcomes from the label
denoising network as the ground truth for both audio and vi-
sual modalities. The learning of audio and visual modalities
is guided by the following loss function:

Law Z Jalcllog(Palc

where the ¢, and g, are predicted audio and visual event
labels from attentive MMIL pooling network.

Recognizing that validation accuracy serves as a direct

indicator of the quality of the label denoising, we design a
soft inter-reward to guide the learning of the label denoising
policy at each step. The soft inter-reward is computed using
two components:
Kullback-Leibler Divergence-based Reward (R;): This
component measures the divergence between the soft labels
and the revised labels, encouraging the denoising policy to
produce labels that are closer to the soft labels.

+Zyv Jlog(pu[c])), (8)

(J) m in(j)
R1 = €exp

soft

Cosine Similarity-based Reward (R;): This component
calculates the cosine similarity between the soft labels and
the revised labels, providing a measure of how well the re-
vised labels align with the soft labels in direction.

(3) 4in
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Ry = - -
S (CRVOSN ()

The soft inter-reward R, is then a weighted sum of Rq
and R»

(10)

Rinter = a1 Ry + a2 Ra, (11)
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where ov; and ai are hyperparameters that control the rela-
tive importance of the two components. And [, : is the soft
label from the original labels by a smoothing operation. I;
indicates the revised labels at every time-step. The R, ter
gives an immediate reward after the each denoising action
and provides a direction for the denoising policy learning.
In addition, a validation-based reward is carefully designed
to directly guides the label denoising for the improvement
of AVVP.

Rterminal - A(Saa Svy Aq, av) (12)

where A(-) represents the validation result on validation
dataset V. It is obtained from the parsing result. In our
setting, the R:c,minas €quals the Segment-level @ Type. The
final reward is combined by the soft inter-reward R;,, ¢ and
the terminal reward Ricrminal-

R(S) = Ricrminal + Rinter; (13)

Since R is non-differentiable, we use policy gradient, de-
scribed in the following section, to update the label denois-
ing network. By utilizing the proposed framework, we suc-
cessfully integrate label denoising and AVVP into a unified
training paradigm. The outcomes of label denoising can
be directly utilized to train the AVVP model, while the re-
sults of AVVP serve as direct guidance for learning label
denoising strategies. This joint training approach enables
complementary learning between the two components.

3.4. Training with Policy Gradient

The objective of label denoising for AVVP is to learn
a policy function my with parameters # by maximizing the
expected rewards:

J(0) = Ep, (a1.5)[R(S)], (14)

where a1,y denotes the probability distributions over pos-
sible actions for each modality, and R(S) is computed by
Eq.(9). 7y is defined by our proposed RLLD.

Due to the fact that rewards can only be obtained af-
(& training video parsing verification based on denoising
model results, there is a problem with delayed rewards.
Therefore, the REINFORCE algorithm [36] is introduced
to compute the derivate of the object J (), w.r.f the param-
eters 0 as:

N
S) Y Vologmg(aslhi)], (15)
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where a; corresponds to actions a and a’

corresponds to the hidden state representation hi

vzsual

audio

hlmsual Therefore, the Eq.(11) can be denoted as follows:
VQJ(Q) = EPG (a}L:Na 11)N ZV@ZOQTI‘Q Qg5 1)‘ha7 1))]
(16)



Algorithm 1 RLLD algorithm

Input: The video sequential {A;,V;}._;, and the corre-
sponding original category labels y € {0,1}“, max epoch
Tmax
Parameter: The denoising networks parameters 6, the task
network parameters W
Output: Network parameters 6 and W for denoising and
task modules
1: Lett =0.
2: while not convergent or t < T}, do
3:  Generate action a’,, 4, and a’,. .
network;
4:  Removing the noisy labels according to Eq.(5) and
get the inter-reward according to Eq.(9);
5:  Train the AVVP network using the Eq.(8) to obtain
W.

by the denoising

W=W + OKVWLa,U-
6:  Validate the AVVP model to obtain the reward R(.S)
according to Eq.(11).
7. Evaluate the gradients of the denoising network by
Eq.(15),
0=0-+nVyJ(6).
8 t=t+1
9: end while
10: return The denoising model and the AVVP model.

Since Eq.(12) involves the expectation over high-
dimensional action, which is hard to compute directly, a
Monte Carlo approximation for the above quantity is:

N
1 A,
VoJ(0) ~ < Valogre(ay, atlhi, h)R(S),  (17)
=1

where N is the step length of one episode. Finally, we sum-
marize our proposed RLLD approach for label denoising in
AVVP in Algorithm 1.

3.5. Discussion

As a novel framework for AVVP, aimed at eliminating
noisy labels in audio and visual modalities, RLLD stands
out from previous methods. We initially integrate label de-
noising and AVVP into a unified framework. We employ
reinforcement learning to explore effective label denoising
strategies and leverage the feedback from AVVP to guide
the learning of these strategies. Ultimately, there remains
a crucial question regarding the motivation behind our pro-
posed RLLD.

Why do we utilize reinforcement learning to learn the
label denoising policy for AVVP? The primary reason is
that the objective of label denoising in AVVP is to en-
hance video parsing performance. Reinforcement learning
emphasizes goal-directed learning through interaction more

than other machine learning paradigms [30]. Therefore, the
improvement in parsing accuracy can be directly aligned
with the goal (reward) in reinforcement learning. Secondly,
in practical scenarios, we often lack knowledge about which
labels are noisy in audio and visual modalities. The inher-
ent characteristic of reinforcement learning is exploratory
learning. Therefore, we employ reinforcement learning and
design a soft inter-reward to discover strategies for auto-
matically identifying noise labels specific to each modality.
Finally, the label denoising module generates the denoising
policy, and the validation results from the AVVP module
guide the learning of the denoising policy. This architec-
ture seamlessly integrates the denoising module and AVVP
module into a joint learning framework, significantly sim-
plifying modality-specific label denoising for AVVP.

4. Experiments

To evaluate the performance of RLLD for AVVP, we
conduct comprehensive experiments. In this section, we
present the details of experiment. All experiments are
conducted using the PyTorch framework on two NVIDIA
GeForce RTX 4090 GPUs under Pytorch platform.

4.1. Experimental Settings

Dataset and metrics. The Look, Listen, and Pars-
ing (LLP) dataset [31] is utilized to evaluate our proposed
method. This dataset is a weakly supervised audio-visual
event dataset containing 11,849 videos across 25 categories.
Diverse event labels are collected to annotate each video, in-
cluding human speaking, baby crying, and car running, etc.
Notably, over 7,000 videos contain multiple event labels.
The LLP dataset partitions the entire dataset into training,
validation, and testing subsets. The validation and testing
subsets include both audio and visual events. The validation
subset comprises 649 videos, while the testing dataset com-
prises 1,200 videos. In line with previous studies [3 1, 6, 40],
we employ segment-level and event-level F-scores for all
modalities as evaluation metrics. The mloU threshold is
set to 0.5 for computing event-level F-scores. The over-
all performance across all events is computed by consid-
ering the results of all audio and visual events, denoted as
Event@ Audio-Visual. Averaging the metrics for audio, vi-
sual, and audio-visual results provides the Type@ Audio-
Visual performance measure.

Implementation Details. Drawing parallels with prior
works in AVVP, we utilize pre-trained ResNet512 [13] and
3D ResNet [33] to extract visual features, while pre-trained
VGGish [14] is employed for audio feature extraction. The
learning rate for the label denoising model is set to /e-4.
The hyper-parameters of o; and aq are 0.6 and 0.4. The
hyper-parameters of the task model follow the JoMoLD
configuration. To address the state transitions issue in the
label denoising module, we randomly sample 128 samples



as a batch and 1/4 of the samples are overlapped in the next
state. For the audio-specific denoising branch, we utilize
the mean F-score (*0.1) of segment-level under the audio
type on the validation dataset as feedback to guide audio-
specific label denoising. Similarly, the mean F-score (*0.1)
of event-level under the visual type on the validation dataset
is used to guide visual-specific label denoising for the visual
branch. In instances where the sampled action removes all
labels, we maintain the labels unchanged, providing a feed-
back reward of -1. We utilize Adam to optimize both the
denoising and task models, ensuring their optimal perfor-
mance.

Comparison Methods. In this study, we compare our
proposed RLLD model with for state-of-the-art label de-
noising methods for AVVP: JoMoLD [6], MA [37] and
with the enhanced contrastive learning (CL) loss. These
methods aim to address modality-specific noise labels. The
HAN utilizes label smoothing to address modality-specific
challenges. JoMoLD and MA collaboratively exchange au-
dio and visual modalities to identify noise labels. Addi-
tionally, we select weakly-supervised video parsing MM-
Paramid [40], HAN [31] and AVSDN [21] as baselines for
comparison. To further demonstrate the efficacy of our ap-
proach, we compare it with several state-of-the-art audio-
visual event parsing methods: HAN with Co-teaching+
[41] and JoCoR [35] strategies, MGN [25], DHHN [18],
CVCMS [22], CPSP [43], and poiBin [27]. The HAN
utilizes label smoothing to address modality-specific chal-
lenges. JoMoLD and MA collaboratively exchange audio
and visual modalities to identify noise labels. In our model,
after removing modality-specific noise labels, the visual and
audio-specific labels are directly utilized as ground truth for
training the AVVP model. What needs to be pointed out
is that our proposed module is a label denoising method.
To validate the effectiveness of our method, we also con-
ducted experiments by integrating our proposed label de-
noising method into two state-of-the-art (SOTA) methods,
VALOR [42] and CPSP [43]. These two SOTA models
were selected as the task network. We employed the de-
noising setting to train the models, demonstrating that our
proposed label denoising method can further enhance the
performance of the SOTA AVVP models.

4.2. Results

Table 2 presents the F-score results (%) for audio-visual
video parsing in comparison with the state-of-the-art meth-
ods. In each table, the best performance is highlighted
in boldface. As can be observed from the prediction re-
sults, our proposed RLLD method outperforms the base-
line methods on F-score evaluation metrics. Specifically,
RLLD significantly outperforms AVSDN and AVE on audio
event type, achieving 61.5% under segment level and 53.4%
under event-level. From the results, it is noteworthy that

Audio Visual I Type Event

Figure 2. Segment-level results Figure 3. Segment-level results
of VALOR and RLLD+VALOR. of CPSP and RLLD+CPSP.

Figure 4. Event-level results of Figure 5. Event-level results of
VALOR and RLLD+VALOR. CPSP and RLLD+CPSP.

our approach performs marginally better than the state-of-
the-art DHHN [ 18] on visual (64.6% vs 58.3% and 60.1%
vs 55.1%) and on audio (61.6% vs 61.3% and 54.9% vs
54.0%). Our method outperforms HAN with two enhanced
strategies (60.7% vs 57.7% and 53.4% vs 50.3%) on audio-
visual event type. MA and JoMoLD are two label denoising
methods designed to address the AVVP task. The perfor-
mance of our method is also superior to the most compara-
ble methods under the same setting (w/o contrastive learn-
ing (CL) loss). Based on the results, we can conclude that
our method achieves overall state-of-the-art performance.
The superior performance of our proposed RLLD can
be attributed to two primary reasons. Firstly, we formu-
late the problem of label denoising as an agent exploration
decision-making process. This approach allows the agent
to automatically learn the optimal policy for removing noise
labels, rather than relying on direct comparison between au-
dio and visual modalities. Secondly, we directly utilize the
validation results as rewards to guide the learning of the la-
bel denoising policy. This design ensures that the proposed
RLLD is directly optimized for enhancing parsing perfor-
mance. The results clearly demonstrate that leveraging vali-
dation results is more effective in guiding the reinforcement
learning agent to learn the optimal label denoising policy,
ultimately leading to superior video parsing results.

4.3. Enhance the State-of-the-art Model

Our proposed method is a label denoising technique that
can further enhance any AVVP models. To demonstrate the
capabilities of our label denoising approach, we integrated
it into two state-of-the-art (SOTA) models: VALOR [42]
and CPSP [43].

For the 'RLLD+VALOR’ setting, we maintain the
pseudo-label extraction process from the pre-trained large



Methods Segment-level Event-level
A v AV Type Event | A A% AV Type Event
AVSDN 47.8 520 371 457 508 | 341 463 265 356 377
HAN 60.1 529 489 540 554 |513 489 430 477 48.0
MM-Paramid 609 544 50.0 551 576 |527 518 444 499 505
HAN+Co-teaching+ | 594 56.7 520 560 563 | 50.7 539 466 504 48.7
HAN+JoCoR 61.0 582 531 574 577 | 528 547 467 514 503
MGN 60.8 554 504 555 572 | 511 524 444 493 49.1
CVCMS 59.2 599 534 575 581 | 513 555 462 51.0 497
DHHN 61.3 583 529 575 581 |540 551 473 515 515
MA 59.8 575 526 56.6 566 |521 574 458 508 494
JoMoLD 60.6 622 560 59.6 586 |53.1 589 494 538 514
poiBin 63.1 635 577 614 606 | 541 603 515 552 523
MA+CL 603 60.0 551 589 579 |536 564 490 53.0 50.6
JoMoLD+CL 61.3 638 572 60.8 599 |539 599 496 545 525
RLLD (ours) 61.6 64.6 582 615 607 | 549 601 506 552 534
RLLD+CL (ours) | 63.4 65.1 58.7 624 619 | 558 612 512 561 54.0
CPSP 585 578 526 563 558 | 51.6 540 465 507 499
CPSP + ours 60.1 59.0 547 579 572 |531 55.6 479 522 513
VALOR 61.8 659 584 620 615 |554 62,6 522 567 542
VALOR + ours 62.2 667 593 627 624 | 557 631 537 575 549

Table 1. Audio-visual video parsing F-score results (%) in comparison and the enhancing results with the state-of-the-art methods on the

testing set of LLP.

Methods ‘

Segment-level

‘ Event-level

| A V. AV Type Event| A V AV Type Event

RLLD w/o initialized labels | 61.2 63.4 57.0 60.5 583 | 53.8 584 489 537 518
RLLD w/o soft inter-reward | 61.8 642 57.5 61.1 60.1 | 546 593 501 546 532
Full Setting (RLLD+CL) | 634 65.1 587 624 619 |558 612 512 561 54.0

Table 2. Ablation results of the proposed modules on the LLP testing set.

model, eliminate the ’label elaboration’ section in VALOR,
and then, following Seq_LE [12], select the top-k labels as
relevant based on their probability values, ensuring that the
sum of the top-k probabilities does not exceed 0.5. In this
configuration, RLLD replaces the ’label elaboration’ sec-
tion in VALOR. For the 'RLLD+CPSP’ setting, we retain
the PSP and PSA models from CPSP and utilize the denois-
ing results of RLLD to train CPSP during the classification
stage. The quantitative analysis results are shown in the last
two parts of Table 1, and the visualization results are shown
in Figure 2-5. We can conclude that our proposed label de-
noising method effectively enhances the performance of the
existing AVVP models.

4.4. Ablation Study

The state representation of our proposed model incor-
porates both features and initialized labels. To assess the
impact of each component within this representation, we
conducted a rigorous ablation study by defining variations
of RLLD. Specifically, we eliminated the initialized labels
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in the RLLD variant *w/o initialized labels’. We conducted
this ablation study on the LLP dataset, evaluating perfor-
mance using the F-score metric. The results, summarized
in Table 2, reveal that the ablated versions exhibit inferior
performance compared to the complete RLLD. The ablation
study highlights the crucial role of the components within
the state representation.

Additionally, to evaluate the impact of the soft inter-
reward, we conducted an ablation study that excluded it,
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focusing only on the terminal reward. The results of this
experiment are also presented in Table 2. We find that re-
moving the soft inter-reward led to a relatively significant
decrease in experimental performance. Therefore, we can
draw the conclusion that the soft inter-reward contributes
significantly to enhancing the label denoising performance.

4.5. Convergence Analysis

To further demonstrate the convergence of our proposed
RLLD, we present convergence curves on the LLP dataset
under various metrics. Specifically, we calculate the F-score
for the past 100 episodes between the predicted results and
the ground truth of the validation dataset. To expedite the
training process and reduce computational costs, we ran-
domly select one-third of the training set as a subset for
one-epoch model training.

To obtain a representative convergence curve, we ran-
domly initialize the model five times. The solid line rep-
resents the mean of these five experiments (0.1 smoothing),
while the shaded area represents the corresponding standard
deviation. The length of each episode is set to 32. The train-
ing process are shown in Figure 6-11. These figures reveal
that the F-score for segment/Event audio metrics gradually
increases with an increasing number of training episodes.
For example, in the one-epoch validation feedback setting,
the F-score of Segment-level @audio increases from 18.87
to 19.93. These convergence curves collectively demon-
strate the convergence of our proposed method.

4.6. Limitation Discussion

Since there is no prior knowledge available to determine
which labels are noise labels, a significant number of steps

are required to explore and identify a strategy for noise la-
bel recognition. Consequently, the proposed RLLD may
incur a longer training duration to achieve optimal perfor-
mance. It is worth noting that the high time complexity as-
sociated with reinforcement learning remains an open prob-
lem. Therefore, further investigations are necessary to ad-
dress this issue and enhance the efficiency of RLLD.

5. Conclusion

In this paper, we introduce a novel label denoising
method for AVVP. We formulate the label denoising task
as a sequential decision-making process and introduce a
validation task to steer the learning of the denoising pol-
icy. Our approach bridges the gap between label denoising
and AV VP, providing a unified framework that directly ad-
dresses parsing enhancements in AVVP. We evaluate our
proposed method on LLP datasets and showcase its ef-
fectiveness. An ablation study further verifies the signif-
icance of initialized labels and the meticulously designed
soft inter-reward in the state space. Furthermore, we con-
duct experiments to demonstrate that our proposed label de-
noising method can further bolster AVVP models. Future
work will concentrate on exploring enhanced reward mech-
anisms to improve policy learning for label denoising.
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