
DIMATrack: Dimension Aware Data Association for Multi-Object Tracking

Shu Liu1, Melikamu Liyih Sinishaw2, Luo Zheng1*

1School of Computer Science and Engineering, Central South University, China
2Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China

{sliu35, Loki369}@csu.edu.cn, melikamuliyih29@gmail.com

Abstract

Multi-Object Tracking (MOT) is crucial for real-
world applications like video surveillance, where it aims
to detect and maintain consistent identifiers for objects
across video frames. However, MOT methods often
struggle with objects that are heavily overlapped due
to occlusion or exhibit diverse poses due to non-linear
motion. In this paper, we propose a robust tracking-
by-detection method named DIMATrack. It incorpo-
rates the Kalman Filter for precise trajectory predic-
tion, and a novel Dimension Aware Intersection-over-
Union (DIMA-IoU) metric for enhanced data associa-
tion. DIMA-IoU improves upon standard IoU by in-
tegrating both height-aware and width-aware measure-
ments, improving association accuracy in complex sce-
narios and during occlusions. By integrating these com-
ponents, DIMATrack effectively leverages weak cues
that are often overlooked by conventional methods,
which rely on appearance or spatial information. Exten-
sive experiments on three benchmarks demonstrate the
superior performance of our DIMATrack, particularly
in challenging tracking environments. The code is avail-
able at https://github.com/Melikamuliyih/
DIMATrack.

Keywords: Multi-object Tracking, Tracking-by-
detection, Dimension Aware, Data Association.

1. Introduction

Multi-Object Tracking (MOT) is a long-standing chal-
lenge in computer vision, critical for various applications
such as autonomous driving, action recognition, smart el-
derly care, and human-computer interaction. It aims to de-
tect and track all specific objects frame by frame, which
plays an essential role in video understanding.

The prevailing tracking-by-detection methods [2, 37, 14,
30] divide MOT into two sub-tasks: detecting objects in
each frame and associating these detections over time. Such
approach relies heavily on spatial and appearance informa-
tion. However, these strong cues fail in complex scenarios
like high occlusion and dynamic poses, where objects heav-

ily overlap. Weak cues, such as width state, height state,
and velocity direction, can effectively mitigate ambiguous
associations when strong cues become unreliable.

Previous works [5, 22] have recognized the potential of
weak cues. However, their effectiveness is restricted to
specific object interactions. Motion information is vital in
MOT, especially for dynamic scenes, yet insufficient alone.
Intersection-over-Union (IoU) has been the primary metric
for data association. It operates on the image plane and thus
falter with dynamic target movements or occlusions. We
observe that the weak cues of height and width information
from bounding boxes, could effectively address ambiguous
associations in the above scenarios.

To advance the state-of-the-art performance in MOT, this
paper introduces DIMATrack, a simple yet powerful tracker.
It utilizes the high-performance YOLOv7 detector [27] to
capture detection boxes, and associate them with our in-
novative Dimension Aware IoU (DIMA-IoU). We consider
DIMA-IoU, the average of height-aware state and width-
aware state as potential types of weak cues. Both state prop-
erties of objects robustly handle the complexities introduced
by diverse poses and highly overlaps due to occlusion and
clustering, as they contain the depth information. A Kalman
filter complements this approach by predicting object tra-
jectories, enhancing the tracking accuracy further.

Our evaluations on three benchmarks demonstrate that
DIMATrack significantly outperforms existing methods in
all main MOT metrics (Figure 1). Its simplicity, online
operational capability, and efficiency ensure its suitability
for real-time applications. The method’s generalizability
and ease of integration make it particularly attractive for
diverse MOT scenarios, including edge device implemen-
tations. The main contributions of this work can be summa-
rized as follows:

• We propose an online tracking-by-detection method
called DIMATrack, which employs an optimized
Kalman filter state vector for enhanced box local-
ization, improving the overall tracking-by-detection
framework.

• We introduce DIMA-IoU, a simple and efficient
method that averages height-aware IoU and width-
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Figure 1. MOTA-FPS-IDF1 comparisons of various trackers on
MOT17 dataset. The horizontal and vertical axes represent FPS
(running speed) and MOTA, respectively, and the circle radius cor-
responds to IDF1. Our DIMATrack achieves 80.7% MOTA and
79.0% IDF1 with a running speed of 30 FPS, surpassing all these
trackers. More details are available in Table 1.

aware IoU to address challenges related to object over-
lap and pose diversity caused by occlusions and clus-
tering.

• We demonstrate the consistent and significant im-
provements across multiple benchmarks and represen-
tative trackers, substantiating DIMATrack’s superior
performance and adaptability.

2. Related Work

Object detection and data association stand as two piv-
otal components within the realm of multi-object tracking.
Detection tasks involve estimating the bounding boxes of
objects, while association tasks entail assigning identities
to these detected objects.

2.1. Tracking-by-Detection

The tracking-by-detection methods [2, 30, 9, 37] which
have been widely used in multi-object tracking, typically
involve a two-step process of detection and association.
Tracking-by-detection methods make a clear distinction be-
tween the detection and tracking of objects. The basic con-
cept involves localizing all objects within each frame using
an object detector, followed by associating the detected ob-
jects across frames based on features like position and ap-
pearance.

With the rapid advancements in object detection [24, 25],
an increasing number of methods are turning to more ro-
bust detectors to achieve higher tracking performance. The
one-stage object detector RetinaNet [13] has been adopted

by several methods, including [16, 20]. CenterNet [41] has
emerged as the most favored detector among many methods
[40, 38] due to its simplicity and efficiency. Additionally,
the YOLO series detectors [21, 3, 11] have gained popu-
larity among a large number of methods [37, 29, 13] for
their optimal balance of accuracy and speed. While many
of these methods directly utilize detection boxes from in-
dividual images for tracking, this approach often results in
low-score detections and missed detections, leading to sub-
par tracking performance. ByteTrack [37] addresses this
issue by associating high and low score detections at differ-
ent stages using IoU. However, it falls short when dealing
with highly overlapped objects or objects in diverse poses.

2.2. Data Association

Data association lies at the heart of multi-object tracking,
where it initially calculates the similarity between track-
lets and detection boxes, subsequently aligning them based
on their similarity. Its purpose is to match multiple targets
between frames, including assigning IDs for new measure-
ments, the creation of new tracks and the elimination of old
tracks [38, 37].

The assessment of similarity holds significant impor-
tance in determining the outcomes of object tracking pro-
cesses. Typically, detection-centric methodologies rely on
the IoU metric to gauge similarity for sequential matching.
FairMOT [38] incorporates both Mahalanobis distance and
Cosine distance to evaluate object similarity during initial
matching, subsequently employing IoU distance for sec-
ondary matching. Similarly, JDE [29] integrates appear-
ance and motion characteristics to measure similarity dur-
ing initial matching and utilizes IoU distance for subsequent
matching. SORT [2] utilizes IoU distance as the similarity
metric for the Hungarian algorithm, while DeepSort [30]
utilizes Cosine distance and IoU distance for the nearest
neighbor algorithm. ByteTrack [37] follows a two-stage
matching approach, distinguishing between high-scoring
and low-scoring boxes using IoU distance. However, Sam-
pleTrack [12] contends that none of these similarity metrics
offer an optimal representation. In multi-object tracking,
matching failures often stem from inaccuracies in predic-
tions by the Kalman filter [4], particularly as target loss
duration increases. This results in inaccuracies in motion
cues and IoU distance, leading to linear assignment errors.
To address this challenge, the average of the height aware
and width aware for tracking-by-detection paradigm intro-
duced a two-stage association strategy, featuring an inno-
vative similarity matrix that incorporates the cosine matrix
to evaluate target distances, thereby mitigating incorrect as-
signments and ensuring robust tracking.

Matching strategy various approaches exist post-
similarity computation. SORT [2] employs a one-shot
matching approach, while DeepSORT [30] introduces a cas-
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Figure 2. Overview of our proposed tracking-by-detection method — DIMATrack. It leverages the Kalman filter to predict object trajec-
tories and the DIMA-IoU for data association in both the first and second stages.

caded matching strategy, initially pairing detection boxes
with recent tracklets before considering those that were pre-
viously lost. MOTDT [6] utilizes appearance similarity
for initial matching and subsequently employs IoU similar-
ity for unmatched tracklets. QuasiDense [19] converts ap-
pearance similarity into probabilities and employs nearest
neighbor search for matching. Attention mechanisms [26]
facilitate implicit association by directly propagating boxes
between frames. Recent innovations, like those presented
in [18, 36], introduce track queries to anticipate tracked
object locations in subsequent frames, implicitly conduct-
ing matching during attention interaction. Despite advance-
ments in association methods, the quality of detection boxes
sets the upper limit for data association. Therefore, our fo-
cus is on optimizing the utilization of detection boxes across
varying confidence levels during the matching process

3. Proposed Method

In this section, we introduce main enhancements and ad-
vancements in multi-object tracking within the framework
of tracking-by-detection methods. We present a novel state-
of-the-art tracker, called DIMATrack, which incorporates
innovative techniques to enhance both accuracy and robust-
ness in object tracking. DIMATrack utilizes the Kalman fil-
ter for precise box localization and DIMA-IoU for improved
data association.

3.1. Overall Architecture of DIMATrack

The overall architecture of our tracking-by-detection
method is illustrated in Figure 2. To improve object feature
extraction, we adopt appearance extractor for a more ro-
bust baseline model [17] instead of relying solely on a high-
performance detector. We use the Kalman filter to predict
the trajectory of the object referencing the previous track-
lets. Inspired by ByteTrack [37], which retains all detection

boxes and separates them into two stages for high-score and
low-score detections, it uses conventional IoU to associate
the tracklets in both stages.

For data association, our DIMATrack incorporates the
average of height-aware and width-aware IoU metrics in
both the first and second association stages. First, we as-
sociate the high-score detection boxes with the tracklets.
However, some tracklets remain unmatched when they can-
not find an appropriate high-score detection box. This typ-
ically occurs during occlusion, instances of highly over-
lapped objects, or diverse poses, and is addressed using
DIMA-IoU. Subsequently, we associate the low-score de-
tection boxes with these unmatched tracklets to recover the
objects identified in the low-score detection boxes, while
simultaneously filtering out background using DIMA-IoU.
Additionally, we employ conventional IoU for retrieving
lost tracklets.

3.2. Kalman Filter

The discrete Kalman filter with a constant-velocity
model is commonly used for modeling object motion in
the image plane. Kalman filter [4] is a linear estimator
for dynamical systems discretized in the time domain. It
operates based on the state estimation from the previous
time step and the current measurement to estimate the state
for the new time step. It keeps track of two main vari-
ables: the posterior state estimate x and the posterior es-
timate covariance matrix P of the state. As introduced in
[29, 30], we use the state vector x as eight tuples, x =
[xc, yc, a, h, x̂c, ŷc, â, ĥ]

T , where (xc, yc) represents the 2D
coordinates of the object’s center in the image plane, h de-
notes the scale (area) of the bounding box, and a refers to its
aspect ratio. Directly estimating the bounding box’s width
and height leads to improved performance. We choose to
define the Kalman filter’s state vector as in Eq. (1) with



eight tuples and Kalman filter’s measurement vector as in
Eq. (2).

xt = [xc(t), yc(t), w(t), h(t), x̂c(t), ŷc(t), ŵ(t), ĥ(t)]
T

(1)

zt = [zxc
(t), zyc

(t), zw(t), zh(t)]
T (2)

In the context of MOT, the SORT algorithm [2] em-
ploys time-independent process noise covariance (Q) and
measurement noise covariance (R) matrices for the Kalman
Filter. However, DeepSORT [30] proposes a different
approach, suggesting that Q and R should be dynami-
cally adapted based on estimated elements (likely from the
state vector) and measurement elements. Thus, the time-
dependent process noise covariance Qt and measurement
noise covariance Rt matrices are shown in Eq. (3) and (4),
respectively.

Qt = diag
(
(σpŵt−1|t−1)

2, (σpĥt−1|t−1)
2,

(σpŵt−1|t−1)
2, (σpĥt−1|t−1)

2,

(σvŵt−1|t−1)
2, (σvĥt−1|t−1)

2,

(σpŵt−1|t−1)
2, (σpĥt−1|t−1)

2
) (3)

Rt = diag
(
(σmzw(t))

2
, (σmzh(t))

2
,

(σmzw(t))
2
, (σmzh(t))

2
) (4)

Following the settings in [30], we adopt noise factors of
σp = 0.05, σv = 0.00625, and σm = 0.05 due to our
matching frame rate of 30 FPS. It’s important to note that
we adjusted the process noise covariance matrix (Q) and
measurement noise covariance matrix (R) to account for
slight differences in our state vector (x) compared to [30].
Additionally, to prevent box shape deformation during long
predictions in case of track loss, we implemented a logic
mechanism similar to the approach presented in [37].

3.3. DIMA-IoU

Identifying temporally stable object properties is crucial
for effective multi-object tracking. The height and width
states offer valuable information that compensates for the
absence of strong discriminative cues, enhancing object dif-
ferentiation in challenging scenarios. Our method proposes
Dimension Aware IoU, which is the average of a height-
aware IoU and width-aware IoU metric to enhance associa-
tion accuracy in scenarios with highly overlapping or clus-
tered objects. Figure 3 illustrates the benefits of DIMA-IoU
in resolving object overlap during tracking. The left frame
shows the input with multiple objects overlapping, demon-
strating the challenge of distinguishing between them. In
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Figure 3. The benefits of DIMA-IoU are illustrated, where the
vertical line represents the height estimation and the horizontal
line represents the width estimation. The bounding boxes depict
the result after estimating the height and width state for the over-
lapped objects.

the middle frame, the height-aware and width-aware states
of the overlapped objects are used for tracking. This step
is crucial for distinguishing individual objects despite the
overlap. The right frame presents the final result after apply-
ing DIMA-IoU, where bounding boxes are clearly defined
around each object, accurately reflecting their dimensions
and trajectories. This sequence highlights how DIMA-IoU
demonstrates clear advantages in handling overlapping ob-
jects compared to traditional IoU methods.

Inspired by [33], Height-Aware IoU (HAIoU) informa-
tion offers valuable clues for distinguishing such objects,
where traditional appearance-based cues might be unreli-
able. This benefit stems from two key advantages: firstly,
object height often reflects depth information, making it ef-
fective in differentiating significantly overlapped objects in
datasets like DanceTrack. Secondly, height is generally less
susceptible to variations in object pose, leading to a more
robust and accurate representation of object association.

Width-Aware IoU (WAIoU) can be a valuable tool for
data association in specific contexts, It excels at capturing
horizontal alignment between bounding boxes, making it
useful when that’s a prime concern. Furthermore, it can
complement traditional IoU by providing a more nuanced
view of overlap, focusing specifically on the horizontal di-
mension. WAIoU offers a valuable metric for data asso-
ciation, particularly when horizontal alignment is a critical
factor. Width state also contributes to enhancing the asso-
ciation, especially when the object’s movement is regular.
By incorporating HAIoU alongside WAIoU, a more com-
prehensive assessment of bounding box overlap becomes
possible.

The work [33] focused solely on height-modulated IoU.
However, it faces challenges when the target object is ob-
structed by taller objects. To address this issue, we propose
DIMA-IoU. DIMA-IoU utilizes the average of height-aware
IoU and width-aware IoU to improve the tracking perfor-
mance.

We denote two bounding boxes as b1 and b2. Each box
is defined by its top-left corner coordinates (x11, y11) and



bottom-right corner coordinates (x12, y12). Areas of these
boxes are represented by A and B, respectively. Therefore,
the conventional IoU calculated as Eq. (5) and WAIoU and
HAIoU calculated as Eq. (9) and Eq. (11), respectively.

IoU =
|A ∩B|
|A ∪B|

(5)

overlapwidth = max(0, min(x12, x22)−max(x11, x21))
(6)

unionwidth = (x12− x11) + (x22−x21)−overlapwidth

(7)

IoUW =
overlapwidth

unionwidth
(8)

WAIoU = IoUW · IoU (9)

IoUH =
min(y12, y22)− max(y11, y21)

max(y12, y22)−min(y11, y21)
(10)

HAIoU = IoUH · IoU (11)

Therefore, the average of the height and width aware IoU
(DIMA-IoU) calculated as Eq. (12):

DIMA-IoU =
(HAIoU + WAIoU)

2
(12)

4. Experiments and Results

In this section, we present the experimental results on
three benchmarks to demonstrate the effectiveness of our
DIMATrack tracking method. The datasets, evaluation met-
rics, and implementation details are first introduced. The
experiments aim to serve four main purposes: 1) to com-
pare our method with the state of the art; 2) to demonstrate
the advantage of DIMA-IoU; 3) to verify the generality of
our design; 4) to provide both qualitative and quantitative
analysis.

4.1. Experimental Settings

4.1.1 Datasets

We test our DIMATrack on several MOT benchmarks, in-
cluding MOT17 [7], MOT20 [8], and DanceTrack [23].
MOT17 serves as a widely recognized standard benchmark
for multi-object tracking, primarily characterized by linear
motion patterns. MOT20 was specifically designed to as-
sess algorithms in scenarios with densely packed objects
and significant occlusions. DanceTrack presents one of the
most demanding challenges in the MOT domain, featuring

a wide array of complex, non-linear motion patterns, along
with frequent interactions and occlusions. Notably, the
detection task in DanceTrack is relatively straightforward,
making it an ideal metric for evaluating association perfor-
mance. Given the distinct characteristics of these bench-
marks, our primary focus is on comparing our method’s
performance on DanceTrack, aiming to enhance association
performance in challenging conditions with limited cues.
We leverage MOT17 and MOT20 to assess the general-
ization capability of our approach across various scenarios.
The MOT17 validation set adheres to a commonly used con-
vention, where the training set is divided into two halves for
training and validation purposes.

4.1.2 Evaluation Metrics

We employ the CLEAR metrics [1], encompassing MOTA,
FN, FP, FPS, and IDF1 [31], to comprehensively assess
various facets of tracking performance. MOTA is derived
from FP, FN, and IDs, with its calculation prioritizing de-
tection performance due to the typically larger quantities
of FP and FN compared to IDs. MOTA consolidates three
distinct error metrics: ID switches, false positives, and
false negatives - into a unified score, obtained by sum-
ming these metrics and dividing by the total number of ob-
jects across all frames. MOTA is expressed as MOTA =

1 −
∑

t (FNt+FPt+IDSt)∑
t GTt

. Where FNt false negative at frame
t, FPt is the false positive at frame t. Conversely, IDF1
evaluates identity preservation capability and emphasizes
association performance. Offering enhanced measures of
ID matching consistency over MOTA, IDF1 amalgamates
ID precision (IDP) and ID recall (IDR) into a single value
using the harmonic mean, computed as IDF1 = 2×IDP×IDR

IDP+IDR .
where IDP and IDR are defined as per the precision and re-
call definitions, respectively.

4.2. Implementation Details

We employ a YOLOv7 [27] detector with a YOLOX-X
backbone and pre-trained weights from COCO for our task.
To enhance performance, we train the model for 60 epochs
on a combined dataset consisting of MOT17, CrowdHu-
man, Cityscapes, and ETHZ. During training, images are
resized to 1440X800 pixels and the shortest side is further
adjusted between 576 and 1024 pixels for multi-scale train-
ing. Mosaic and Mixup data augmentation techniques are
also applied. The training process leverages an NVIDIA
GeForce RTX 3090Ti GPU with a batch size of 30. We uti-
lize the SGD optimizer with weight decay and momentum
for optimization. The initial learning rate is set to 1e−3 with
a warm-up period of 1 epoch, followed by a cosine anneal-
ing schedule. Training takes approximately 11 hours.

Following the evaluation method in [37], we measure the
model’s frame rate (FPS) using FP16 precision and a batch



Table 1. Comparison results on MOT17 dataset. The best results are shown in bold. The (↑) indicates the higher is better and (↓) indicates
the lower is better.

Tracker MOTA (↑) IDF1 (↑) FP (↓) FN (↓) FPS (↑)
TrackFormer [18] 74.1% 68.0% 34602 108777 -
MOTR [36] 73.4% 68.6% - - -
MOTRv2 [39] 78.6% 75.0% - - -
CenterTrack [40] 67.8% 64.7% 18498 160332 17.5
QDTrack [19] 67.8% 66.3% 26589 146643 -
FairMOT [38] 73.7% 72.3% 27507 117477 25.9
CSTrack [16] 74.9% 72.6% 23847 114303 16.4
SimpleTrack [12] 75.3% 76.3% 22317 116010 -
RelationTrack [35] 73.8% 74.7% 27999 118623 9.8
SORT [2] 33.4% 39.8% 7318 32615 -
UCMCTrack [34] 80.5% 81.1% - - -
ByteTrack [37] 80.3% 77.3% 25491 83721 29.6
GHOST [22] 78.7% 77.1% - - -
ColTrack [15] 78.8% 73.9% - - -
MeMOTR [10] 72.8% 71.5% - - -
OC-SORT [5] 78.0% 77.5% 15129 107055 -
StrongSORT++ [9] 79.6% 79.5% 27876 86205 7.1
Hybrid-SORT [33] 79.9% 78.7% - - -
DIMATrack (Ours) 80.7% 79.0% 2572 7398 31.2

size of 1 on a single GPU. The default thresholds for high
detection scores and low detection scores are set at 0.6 and
0.1, respectively, with a trajectory initialization score of 0.7,
unless specified otherwise. During the linear assignment
step, if the IoU between the detection box and the tracklet
box falls below 0.25, the matching is rejected. Lost tracklets
are retained for 30 frames in case they reappear.

4.3. Benchmark Results

We compare DIMATrack against state-of-the-art meth-
ods on MOT17, MOT20 and DanceTrack. our approach
achieves the overall superior performance to the others.
Our tracking-by-detection approach consistently outper-
forms the baseline ByteTrack [37] in all three datasets with
negligible additional computation, while maintains simple,
online and real-time characteristics.

4.3.1 MOT17

The dataset consists of 7 sequences validation set and 7 se-
quences test set. The tracking performance on MOT17 is
compared in Table 1. In particular, our DIMATrack out-
performs the previous top-performing trackers across most
metrics (80.7% MOTA, 79.0% IDF1, and 31.2 FPS) with
minimal additional computational requirements. It is note-
worthy that our method is primarily tailored to tackle the
difficulties associated with object clustering and intricate
motion patterns. Nevertheless, even when applied to the
MOT17 dataset, which represents a more general and easier

scenario of linear motion patterns, our method consistently
exhibits enhanced tracking performance.

4.3.2 MOT20

In the MOT20 validation, our method exhibits superior per-
formance, as depicted in Table 2 coupled with high infer-
ence speed. Notably, our approach outperforms state-of-
the-art methods across all metrics (77.1% MOTA, 78.2%
IDF1, and 15.3 FPS). These results underscore the effec-
tiveness, robustness, and generalization of our proposed
method in effectively capturing weak cues amidst scenarios
involving clustering, heavy occlusion, and dense objects.

4.3.3 DanceTrack

In contrast to the preceding state-of-the-art heuristic track-
ers, our tracker demonstrates notably superior performance,
boasting a 92.5% MOTA score and 79.9% IDF1 score. Im-
portantly, this achievement is attained with equivalent asso-
ciation inputs and nearly identical computational complex-
ity, as detailed in Table 3. These findings serve as com-
pelling evidence that the integration and consideration of
various weak cues, including width and height state param-
eters, offer an effective and efficient means of resolving am-
biguous and erroneous matches that might elude traditional
strong cue-based approaches.



Table 2. Comparison results on MOT20 dataset.

Tracker MOTA (↑) IDF1 (↑) FP (↓) FN (↓) FPS (↑)
TrackFormer [18] 68.6% 65.7% 20348 140373 -
FairMOT [38] 61.8% 67.3% 103440 98901 13.2
MOTRv2 [39] 76.2% 72.2% - - -
CSTrack [16] 66.6% 68.6% 25404 144358 4.5
SimpleTrack [12] 72.6% 70.2% 25515 114463 -
GSDT [28] 67.1% 67.5% 31913 135409 0.9
TransTrack [14] 65.0% 59.4% 28566 151377 7.2
TransCenter [32] 67.7% 58.9% 54967 108376 8.4
RelationTrack [35] 67.2% 70.5% 61134 104597 4.4
Hybrid-SORT [33] 76.7% 76.2% - - -
StrongSORT++ [9] 73.8% 77.0% 16632 117920 1.4
GHOST [22] 73.7% 75.2% - - -
UCMCTrack [34] 75.7% 77.4% - - -
OC-SORT [5] 75.5% 75.9% 18100 108000 -
DIMATrack (Ours) 77.1% 78.2% 49615 90245 15.3

4.3.4 Visualization Results

In addition to the above quantitative results, we visual-
ize DIMATrack tracking performance on two MOT bench-
marks, showcasing its effectiveness in real-world scenarios.
In Figure 4, the results of MOT17-02 sequence highlight
our method’s ability to accurately assign identities, even
when pedestrians cross paths. The results of MOT17-06 se-
quence illustrate our robust performance under significant
scale variations. In Figure 5, the results of two MOT20
sequences demonstrate our capability to maintain correct
identities and bounding boxes in highly crowded scenes and
fast dynamic motions. Overall, DIMATrack effectively han-
dles identity assignment and bounding boxes localization
for heavily occluded and overlapping objects, while also
performing well in scenarios with diverse poses.

4.4. Ablation Study

4.4.1 DIMA-IoU

We posit that incorporating information about the height
and width states can enhance data association. To this end,
we proposed the utilization of the average of height-aware
and width-aware IoUs as substitutes for conventional IoU.
As demonstrated in Table 4, our suggested approach of av-
eraging the height and width states yields superior bene-
fits for data association compared to employing the conven-
tional IoU, width-aware and height-aware data association
methods individually. Employing height-aware and width-
aware separately shows lower performance on the MOTA
metric but better performance on the IDF1 metric on the
MOT17 dataset compared to conventional IoU. This dis-
crepancy arises because MOTA is primarily influenced by
detection performance. However, Using DIMA-IoU, we

observe higher performance on both MOTA and IDF1 met-
rics. This is attributed to the height state undergoing rela-
tively short and continuous changes during actions such as
squatting or standing up, which can be effectively modeled
by the Kalman Filter. Conversely, the width state presents
challenges for precise estimation by the Kalman Filter dur-
ing pose changes, limb movements, or posing. However, by
leveraging the average of these states, significant improve-
ments in MOT data association are achieved.

When applying the height-aware and width-aware IoUs
individually, it could potentially impact data association.
For example, HAIoU might face challenges when the tar-
get object is occluded by objects with greater height. Sim-
ilarly, WAIoU could be affected during rapid motion, mak-
ing it difficult to obtain an accurate measurement. There-
fore, we leverage the strengths of both HAIoU and WAIoU
through their average, thus advancing the performance. As
observed in Table 4, our DIMA-IoU outperforms the indi-
vidual height-aware and width-aware IoUs.

4.4.2 Generality Across Other Trackers

We apply our DIMA-IoU to several representative tracking-
by-detection trackers, namely SORT [2], DeepSORT [30],
and ByteTrack [37]. Among these, SORT and Byte-
Track rely solely on spatial information, while DeepSORT
jointly utilizes both spatial and appearance information.
The results are presented in Table 5, where significant im-
provements can be observed on both MOT17 and MOT20
datasets across all three trackers. For instance, our design,
utilizing the average of height and width aware IoUs, im-
proves SORT’s MOTA by 23.8% and 8.2% on MOT17 and
MOT20, respectively, and it boosts DeepSORT by 1.9% and
1.2%, respectively. These results provide compelling ev-



Table 3. Comparison results on DanceTrack dataset.

Tracker MOTA (↑) IDF1 (↑) DetA (↑) AssA (↑)
MOTR [36] 79.7% 51.5% 73.5% 40.2%
FairMOT [38] 82.2% 40.8% 66.7% 23.8%
CenterTrack [40] 86.8% 35.7% 78.1% 22.6%
UCMCTrack [34] 88.9% 65.0% - 51.3%
GHOST [22] 91.3% 57.7% 81.1% 39.8%
MeMOTR [10] 89.9% 71.2% 80.5% 58.4%
ColTrack [15] 92.2% 77.3% - 66.9%
OC-SORT [5] 92.0% 54.6% 84.4% 40.4%
StrongSORT++ [9] 91.1% 55.2% 80.7% 38.8%
MOTRv2 [39] 92.1% 76.0% 83.7% 64.4
Hybrid-SORT [33] 91.8% 67.4% - -
DIMATrack (Ours) 92.5% 79.9% 84.4% 65.1%

MOT17-02

MOT17-06

Figure 4. Visualization results of DIMATrack on MOT17 dataset. Two video sequences are selected to illustrate the results of sampled
frames in chronological order. The bounding boxes and identities are marked, with the same box color representing the same identity.

idence that our insight of introducing weak cues such as
height state and width state as compensation for strong cues
is effective and generalizes well across different trackers
and scenarios. Moreover, our method can be readily ap-
plied to existing trackers in a plug-and-play and training-
free manner for enhanced performance.

5. Conclusion

In this paper, we present a novel online tracker, namely
DIMATrack, to address the inherent limitations of cur-
rent state-of-the-art MOT methods. Operating within the
tracking-by-detection paradigm, DIMATrack leverages the
Kalman Filter for robust trajectory prediction. It also intro-
duces a simple yet powerful data association metric, DIMA-
IoU, specifically designed to manage challenging scenarios
characterized by high object overlap and diverse poses. By
integrating both height and width information, DIMATrack

improves association accuracy beyond that of conventional
IoU.

Extensive experiments validate DIMATrack’s superior
generalization capability across a variety of trackers and
scenarios. Employing standard CLEAR MOT metrics,
DIMATrack not only outperforms existing state-of-the-art
trackers but also simplifies the data association process,
making it faster and more efficient. The simplicity, online
operational capability, and robust generalization potential of
DIMATrack render it an excellent solution for a wide range
of MOT applications, especially those requiring real-time
processing with limited computational resources.
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Figure 5. Visualization results of DIMATrack on MOT20 dataset

Table 4. Results of different IoUs on MOT17 validation set.

IoU type MOTA (↑) IDF1 (↑)
Conventional IoU 80.3% 77.3%
WAIoU 79.7% 77.9%
HAIoU 79.9% 78.7%
DIMA-IoU 80.7% 79.0%

Table 5. Results of applying DIMA-IoU to different tracking-by-
detection trackers on two benchmarks in MOTA metric.

Tracker DIMA-IoU MOT17 MOT20
SORT [2] - 33.4% 42.7%

✓ 57.2% 50.9%
DeepSORT [30] - 78.0% 71.8%

✓ 79.9% 73.0%
ByteTrack [37] - 80.3% 77.8%

✓ 80.7% 77.1%

Vision and Medical Image Processing in Hunan Province
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