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Abstract

Multimodal medical image segmentation plays an im-
portant role in fields such as medical image diagno-
sis and biomedical research. Although Mamba per-
forms well in medical image feature extraction, it still
faces challenges in capturing fine boundaries in lesions.
Therefore, in this paper, a Mamba-based boundary-
guided multimodal medical image segmentation net-
work (MBGNet) is proposed. To address Mamba’s defi-
ciency in capturing boundary information, we designed
a Boundary Information Encoding Module (BIEM).
This module employs multiple boundary extraction
strategies to capture boundary information across dif-
ferent modalities and uses an external attention mech-
anism to enhance the interaction and understanding
of boundary relationships. Additionally, we designed
an Information Guidance Module (IGM) to address
information loss during boundary and content fusion.
This module uses the boundary segmentation map as
a guideline, integrating local features and global con-

text for content segmentation, effectively overcoming
information loss. Finally, experimental results on the
BraTS2019 and BraTS2020 glioma tumor datasets show
that MBGNet achieves DICE coefficients of 88.17% and
88.12%, and Hausdorff 95 distances of 5.21 and 5.08,
respectively. These results confirm the superior perfor-
mance of MBGNet in the segmentation of complex lesion
regions, providing a more accurate and reliable method
for multimodal medical image analysis.

Keywords: Multimodal medical image segmentation,
Mamba, Feature extraction, Boundary information guid-
ance.

1. Introduction

Image segmentation is pivotal in medical image analy-
sis, aiming to accurately distinguish between lesions and
background [30]. To accomplish this, multimodal medi-
cal image segmentation techniques have been developed,
providing comprehensive insights into tissue and patholog-
ical states by integrating information from diverse imaging

1



modalities. Nonetheless, the multimodal glioma medical
image segmentation used in this study faces challenges due
to inter-modal inconsistencies, such as variations in imag-
ing parameters, resolution, and contrast, which can degrade
segmentation performance [29]. The Mamba methodol-
ogy addresses these issues by employing dynamic weights
to adapt across different modalities, thus enhancing seg-
mentation accuracy [27]. Despite its efficacy with multi-
modal data, Mamba may lack sensitivity in capturing subtle
boundary details. To remedy this, integrating Mamba with
boundary information is proposed to precisely delineate the
fine boundaries of tissues and lesions, thereby improving
the accuracy and reliability of segmentation outcomes.

Currently, mainstream methods in medical image seg-
mentation primarily include those based on Convolutional
neural networks (CNNs) and Transformers [16]. CNNs ef-
fectively recognize local features through convolutional op-
erations. However, they are limited in capturing global con-
textual information, which affects the overall segmentation
performance. In contrast, Transformers have shown signifi-
cant advantages in modeling global information due to their
unique self-attention mechanism. Despite this, the high
computational complexity of self-attention poses challenges
for efficient segmentation. Recently, the Mamba approach
has garnered attention in the image domain [11]. Mamba
allows each element in a sequence to interact with pre-
viously scanned samples via a unique compressed hidden
state, effectively reducing computational complexity from
quadratic to linear [28].

Although Mamba offers significant advantages in terms
of reduced parametric and computational costs and effi-
cient extraction of image feature information, it struggles
with capturing the edge information of lesion regions due
to the inherent quality issues in multimodal medical im-
ages. This limitation prevents various segmentation mod-
els from achieving optimal performance in multimodal im-
age segmentation. Boundary information is crucial not only
for the positional localization of lesion regions but also for
determining the accuracy of image segmentation. There-
fore, ensuring the accurate extraction of edge information
while maintaining the efficient segmentation performance
of Mamba has become the central focus of this research.

In summary, this study makes the following core contri-
butions:

• In this study, we propose a Mamba-based boundary-
guided multimodal medical image segmentation net-
work, named MBGNet. This model retains the global
information modeling efficiency inherent in Mamba
while incorporating a boundary extraction module to
enhance the identification of fine boundaries. This in-
tegration significantly improves the segmentation ac-
curacy for small and complex structures in medical im-
ages.

• In this study, we construct a Boundary Information En-
coding Module (BIEM). This module extracts bound-
ary data from different modalities and facilitates in-
teraction through an external attention mechanism.
By effectively fusing multiple boundary information
sources, the BIEM enhances the accuracy and relia-
bility of boundary segmentation.

• In this study, we designed an Information Guid-
ance Module (IGM). This module utilizes a complete
boundary segmentation map as an external auxiliary
input, integrating boundary contours with lesion area
features to achieve precise segmentation of lesions.

2. Related Work

2.1. Mamba’s Application in Image Segmentation

With the introduction of Mamba into the visual domain,
an increasing number of researchers have begun to explore
its methods and applications in image segmentation. In 2D
image segmentation, Ruan et al. [21] proposed a model em-
ploying a U-shaped architecture using SSM (VM-UNet).
This model addresses challenges in long-range modeling
and computational complexity in medical image segmen-
tation by incorporating Visual State Space (VSS) blocks to
capture extensive contextual information. In 3D image seg-
mentation, Xing et al. [24] introduced a 3D medical image
segmentation model (SegMamba), which leverages Mamba
to capture long-range dependencies within full-volume fea-
tures at each scale, thereby tackling computational chal-
lenges associated with high-dimensional medical images.
Compared to transformers, Mamba exhibits lower complex-
ity, prompting researchers to explore more lightweight seg-
mentation models. For instance, Liao et al. [14] proposed
a lightweight medical image segmentation model (LightM-
UNet) aimed at addressing computational resource limi-
tations of existing UNet models in mobile healthcare ap-
plications. In the domain of multimodal image segmen-
tation, Mamba has also demonstrated exceptional perfor-
mance. Wan et al. [23] introduced a network for multimodal
semantic segmentation (Sigma), which employs a Siamese
encoder and an innovative Mamba fusion mechanism to ef-
ficiently select and segment key information from different
modalities, such as RGB, thermal imaging, and depth in-
formation, enhancing the model’s robustness and reliability
under adverse conditions. Given the complexity of mul-
timodal medical image data, current Mamba models have
not fully exploited their potential.Therefore, this paper pro-
poses a Mamba-based method and utilizes glioma datasets
to address the challenges of multimodal medical image seg-
mentation. This method not only selects specific feature
extraction schemes based on the characteristic differences
of multimodal glioma data but also compensates for detail
loss in image segmentation through guided segmentation.



2.2. Boundary Segmentation Techniques in Image Seg-
mentation

Boundary segmentation techniques are vital in the field
of image segmentation, particularly for tasks requiring fine-
grained segmentation. These methods aim to accurately
identify and extract boundary information of objects within
an image, overcoming challenges such as complex back-
grounds, similar regions, and blurred edges. In recent years,
extensive research has explored the application of bound-
ary segmentation techniques. For example, Gab Allah et
al. [1] proposed the Edge U-Net model, which achieves
precise segmentation of brain tumor MRI images by inte-
grating multi-scale boundary-related information and adja-
cent contextual data during the decoding phase. Similarly,
Yang et al. [25] developed a novel 3D network for au-
tomatic CT image segmentation, focusing on spatial con-
text modeling and explicit edge segmentation priors, signif-
icantly enhancing the accuracy and robustness of abdominal
organ segmentation. Bui et al. [4] introduced a multi-scale
edge-guided attention network (MEGANet) that addresses
challenges in polyp segmentation within colonoscopy im-
ages by combining classical edge detection techniques with
attention mechanisms. Chen et al. [7] proposed an edge-
enhanced semantic segmentation network, which improves
the extraction of edge information by sharing parameters
between backbone networks and employing specialized loss
functions. Despite these advancements, the aforementioned
models face limitations when addressing edge blurring in
multimodal image data. Different modalities possess dis-
tinct feature distributions and noise characteristics, poten-
tially reducing segmentation accuracy. Therefore, this pa-
per proposes the use of different edge detection operators to
separately extract boundary information from multimodal
data while employing an external attention mechanism for
fusion. This method clarifies the complementarity between
the interior and boundary of lesions, enhancing segmenta-
tion performance.

3. Method

3.1. Preliminaries for Mamba

3.1.1 State Space Models

State Space Models (SSMs) are employed for sequence-to-
sequence modeling and are characterized by their dynamic
properties, which remain constant over time [12]. Due to
their linear complexity, SSMs can implicitly map sequences
to a latent state space, effectively capturing the inherent dy-
namics of the system. Formally, an SSM is defined by the
following equations:

h′(t) = Ah(t) +Bx(t) (1)

y(t) = Ch(t) (2)

Here, x(t), h(t), and y(t) represent the input, hidden
state, and output, respectively, while h′(t) denotes the time
derivative of h(t). A is the state matrix, and B and C are
projection parameters.

Models based on SSMs are typically continuous-time
models and require discretization when integrated into deep
learning algorithms [19]. SSMs achieve this by introducing
a time scale parameter ∆ and employing the Zero-Order
Hold (ZOH) rule to transform A and B into discrete param-
eters A and B. The equations are as follows:

A = e∆A (3)

B = ∆A−1(e∆A − I) ·∆B (4)

C̄ = C (5)

ht = Aht−1 +Bxt (6)

yt = C̄ht (7)

Finally, the model computes the output y through global
convolution operations within a structured convolution ker-
nel K:

K = (CB,CAB,CA2B, . . . ,CAL−1B) (8)

y = K⊗ yt (9)

3.1.2 2D Selective Scan Mechanism

To address the incompatibility between the original one-
dimensional input sequence in SSMs and the two-
dimensional data in the visual domain, researchers have in-
troduced the 2D Selective Scan (SS2D) mechanism [18].
Figure 1 illustrates the functioning of SS2D. SS2D con-
structs four independent sequences by scanning image
patches in the 2D visual data across four different direc-
tions. This four-directional scanning approach ensures that
each element in the feature map can incorporate information
from all other positions in every direction. Subsequently,
each feature sequence is processed using the Selective Scan-
ning State Space Model (S6) [8]. Finally, the processed fea-
ture sequences are aggregated to reconstruct the 2D feature
map.

3.2. Overview of the Model Architecture

Figure 2 illustrates the architecture of the proposed
model. To extract boundary and content information, we
divided the four modalities of glioma MRI data (FLAIR,
T1ce, T1, and T2) into two groups: one consisting of
FLAIR and T1ce, and the other including all four modal-
ities, as shown in the orange and blue boxes on the left side
of Figure 2. For boundary information extraction, we priori-
tized the FLAIR and T1ce modalities because these modal-
ities more clearly depict the boundary contours of the le-
sion areas. For content information extraction, multimodal



Figure 1. Overview of the 2D Selective Scan mechanism.

Figure 2. Overview of the MBGNet Model Framework.

image data can compensate for the lack of rich features in
single-modality images. Therefore, all four modalities were
used as input data for content segmentation.

In the proposed architecture, the model operates in two
stages. The first stage involves the extraction of boundary
information. Initially, the data is fed into the Boundary In-
formation Encoding Module (BIEM), after which the im-
age dimensions are restored through the decoder. Subse-
quently, the output is compared with the boundary labels to
train an efficient Boundary Information Extraction Network
(BIEN). Through iterative training, this network is progres-
sively optimized to effectively extract the boundaries of
smaller and more challenging segmentation content, ulti-
mately generating a boundary segmentation map that can
serve as a guiding map, as illustrated in Output1 of Figure 2.
Once the boundary information accurately reflects the con-
tours of the lesion areas, the model proceeds to the second
stage: boundary-guided content segmentation. In this stage,
the parameters of the BIEN remain unchanged. Based on
the existing boundary segmentation results, the Mamba en-
coding module is utilized to extract content information,
which is then fed into the Information Guidance Module
(IGM) to achieve boundary-guided content segmentation.
The segmentation result is shown as Output2 in Figure 2.

The flow of this stage follows the numerical order illustrated
in Figure 2.

Figure 3. Overview of the 2D Selective Scan mechanism.

As illustrated in Figure 2, both the Mamba encoding
module and the Mamba decoding module utilize the Visual
State Space (VSS) as the backbone for feature extraction.
The internal structure of the VSS module is depicted in Fig-
ure 3. Initially, the input data is processed through an initial
linear embedding layer and subsequently split into two sep-
arate information streams. One information stream passes
through a deep convolution layer, followed by an activa-
tion function, and then enters the SS2D module. The output
from the SS2D module undergoes layer normalization and
is then combined with the output from the other information
stream. The merged output constitutes the final result of the
VSS block.



Figure 4. Overview of the External Attention Mechanism.

Figure 5. Overview of the Boundary Extraction Module.

3.3. Boundary Information Encoding Module

In multimodal medical image segmentation, bound-
ary information segmentation faces numerous challenges.
Firstly, the contrast differences across various modality im-
ages may lead to blurred boundaries, complicating accurate
identification. Additionally, imaging noise and artifacts can
interfere with boundary information extraction, thereby in-
creasing segmentation uncertainty. Collectively, these is-
sues limit the accuracy and reliability of segmentation. To
address these challenges, we propose a BIEM designed to
extract boundary information from medical images. This
module consists of a Boundary Extraction Module and an
External Attention Mechanism, as illustrated in Figures 4
and 5, respectively.

The internal structure of the Boundary Extraction Mod-
ule is illustrated in Figure 4. The model employs both Sobel
and Canny edge detection operators to perform edge detec-
tion on the images. The Sobel operator calculates the gra-
dient of the image intensity to effectively identify coarse
contours of the edges, while the Canny operator, with its
multi-stage processing, provides more precise edge detec-
tion results. By combining the strengths of both operators,
we can capture richer and more accurate edge information.

In implementing the external attention mechanism, this
study draws inspiration from the work of Ruan et al.
[22, 9, 10]. Their research implicitly considers potential as-
sociations between different samples to capture global fea-
tures within the dataset, thereby enhancing both the qual-
ity of feature representations and the model’s generaliza-
tion ability. This concept aligns closely with the objective
of enhancing inter-modal interactions in multimodal image
processing. Thus, we extend this approach to the field of
multimodal medical image processing, aiming to improve
model performance and robustness by strengthening inter-
modal interactions.

As shown in Figure 5, the data from the two modalities,
X1 and X2, are fed into two separate branches as inputs.
Both X1 and X2 belong to RC×H×W. First, the boundary
extraction module processes these inputs, yielding bound-
ary features that integrate information from different modal-
ities. Subsequently, convolution operations reshape the in-
puts into X ∈ RC×HW. The memory unit M1 then expands
the feature map to X ∈ R4C×HW, followed by memory unit
M2 restoring it to X ∈ RC×HW.

X ′
1 = M2(M1(Conv(Sobel(X1)))) (10)

X ′
2 = M2(M1(Conv(Sobel(X2)))) (11)

In this context, Conv denotes a 1×1 convolution, and the
memory units M1 and M2 share parameters. These units
are designed to map input features to a higher-dimensional
space, facilitating the learning of global feature represen-
tations. The shared parameters allow the external atten-
tion mechanism to compute and apply correlations between
images, achieving bidirectional enhancement and fusion of



Figure 6. Overview of the Information Guidance Module.

features, thereby improving the model’s performance in
processing multimodal information. After these operations,
the feature map is restored to the original image dimensions
and is connected with the original image through residual
connections. Finally, convolution operations are applied to
fuse the concatenated information.

X ′′
1 = X1 + Conv(X ′

1) (12)

X ′′
2 = X2 + Conv(X ′

2) (13)

Output = Conv(Concat(X ′
1, X

′
2)) (14)

In this manner, the BIEM effectively integrates features
from diverse information sources, thereby enhancing the
model’s capacity to understand and analyze boundary in-
formation.

3.4. Information Guidance Module

In multimodal medical image processing, content seg-
mentation often suffers from decreased accuracy due to the
complex shapes of target regions and blurred boundary in-
formation, which consequently impacts diagnostic preci-
sion. Therefore, effectively utilizing boundary information
is crucial for improving segmentation accuracy and diag-
nostic reliability. Boundary information provides structural
cues that assist the model in accurately localizing target re-
gions. Based on this, we propose a boundary Information
Guidance Module (IGM).

The working principle of the IGM is illustrated in Figure
6. We collectively refer to convolution, batch normaliza-
tion, and ReLU activation as the CBR module. Initially, the
boundary map Y is processed through the CBR module to
generate Output1, which is then passed to the subsequent
Information Guidance Module:

Output1 = CBR(Y) (15)

Simultaneously, the Find Contours operation is employed
to extract contour information from the image, resulting in
a lesion region contour map Y′ composed of 0 and 1. This
contour map can be viewed as an attention map, aiding the
model in focusing on critical regions:

Y ′ = FC(Y ) (16)

Next, the contour map Y′ is element-wise multiplied with
the original image Z to produce an image Y′′, where non-
lesion regions are set to 0. This enhances the segmentation
effect of the lesion regions.

Y ′′ = Y ′ ∗ Z (17)

Then, the CBR operation is applied to this image, and the
result is added to Output1. Finally, the summed result is
element-wise multiplied with the CBR processed original
image to obtain the information-guided output Output2,
which is then fed back into the Mamba encoding module:

I = Output1 + CBR(Y ′′) (18)

I ′ = I + CBR(Z) (19)

Output2 = I ∗ I ′ (20)

Through this process, the module effectively utilizes bound-
ary information to guide the model’s focus on lesion ar-
eas, thereby enhancing the accuracy of segmentation and
responsiveness to critical regions.

3.5. Loss Function

This study incorporates two loss functions. The first,
termed Lboundary, is designed to extract boundary informa-
tion by combining binary cross-entropy with Dice loss. The
second, termed Lseg, integrates cross-entropy and Dice loss
to regularize content segmentation.



Lboundary = − 1

N

N∑
i=1

[yi log (ŷi) + (1−

yi log (1− ŷi) +

(
1− 2|y ∩ ŷ|

|y|+ |ŷ|

) (21)

Lseg = − 1

N

N∑
i=1

C∑
c=1

yi,c log(ŷi,c) +

(
1− 2|y ∩ ŷ|

|y|+ |ŷ|

)
(22)

In Lboundary, N represents the number of samples, yi de-
notes the ground truth label of the i-th sample, and ŷi is the
predicted label. Both of these values are binary, indicat-
ing whether the sample is a boundary. On the other hand,
Lseg addresses a multi-class classification problem, where C
represents the total number of categories. For the i-th sam-
ple, yi,c denotes its ground truth label for the C-th category,
while ŷi,c is the corresponding predicted label.

4. Experimental Details

4.1. Datasets and Evaluation Metrics

In this study, we utilized the BraTS 2019 and BraTS
2020 glioma tumor MRI datasets [17, 2, 3] to evaluate the
performance of our model. Each sample includes MRI im-
ages from the FLAIR, T1, T1 contrast-enhanced, and T2.
The label information covers four main regions: healthy tis-
sue, necrotic and non-enhancing tumor regions, edema re-
gions, and enhancing tumor regions. Specifically, the whole
tumor (WT) region encompasses all tumor areas, including
necrotic non-enhancing tumor, edema, and enhancing tu-
mor. Conversely, the tumor core (TC) region comprises the
necrotic parts of the non-enhancing tumor and the enhanc-
ing tumor (ET) region.

In this study, we employed the Dice Similarity Coeffi-
cient (DSC) and Hausdorff Distance 95 (HD95) to evaluate
the segmentation performance of the model on the WT, ET,
and TC regions. The DSC is used to measure the overlap be-
tween the segmentation result P1 and the ground truth T1.
The calculation formula is as follows:

DSC(P1, T1) =
2|P1 ∩ T1|
|P1|+ |T1|

(23)

Here, P1 represents the predicted segmentation result, while
T1 denotes the ground truth. The Hausdorff Distance be-
tween two surfaces, A and B, can be computed as follows:

H(A,B) = max(d(A,B), d(B,A)) (24)

The calculation formulas for d(A,B) and d(B,A) are as fol-
lows:

d(A,B) = min(||a− b||) (25)

d(B,A) = min(||b− a||) (26)

Here, d(A, B) and d(B, A) represent the one-way Hausdorff
distance from set A to set B, and from set B to set A, respec-
tively. ||X−Y|| denotes the Euclidean distance between
point sets X and Y.

4.2. Comparative Experiment

To validate the efficacy of our model, we compared
the experimental results with various mainstream medi-
cal image segmentation models, including U-Net and its
variants (U-Net[20], ResUNet++[13], TransUNet[6], Swin-
Unet[5]), as well as Mamba-based segmentation models
(VM-UNet [21], Swin-UMamba [15], LightM-UNet[14],
VM-UNET-V2[26]).

Table 1 illustrates the performance of our model on the
BraTS 2019 and 2020 datasets, while Figures 7 and 8 pro-
vide a visual representation of the segmentation results for
various models. As shown in Table 1 for the BraTS 2020
dataset, the proposed segmentation model demonstrates su-
perior performance in terms of the Dice and HD95 metrics.
Notably, the model achieves the best performance in tu-
mor regions WT, TC, and ET, with improvements of 5.29%,
0.79%, and 0.28%, respectively, over the second-best com-
petitor. This indicates that our model effectively aligns pre-
dicted results with ground-truth segmentation labels. Addi-
tionally, in terms of the HD95 metric, our model shows out-
standing performance in the three lesion regions, with im-
provements of 0.31, 0.42, and 0.32, respectively, compared
to the second-best model. This success can be attributed to
the boundary-guided segmentation approach we proposed,
which enhances the model’s focus on edge information in
lesion areas, thereby improving the HD95 metric.

Figures 7 and 8 present the comparative segmentation re-
sults of MBGNet and other segmentation models across dif-
ferent scenarios, intuitively demonstrating the performance
superiority of MBGNet. To more clearly highlight the dif-
ferences in segmentation performance, regions with sig-
nificant discrepancies are enlarged and marked with red
boxes. In Figure 7, we compare the segmentation results
of MBGNet with the traditional U-Net and its derived ver-
sions. From Sample 1 and Sample 2, it can be observed that
MBGNet exhibits high sensitivity to small lesion areas, ac-
curately capturing these regions while maintaining consis-
tency with the ground truth labels. In Sample 3 and Sample
4, MBGNet showcases its remarkable capability to analyze
the shapes and boundaries of complex lesion structures, de-
livering clear delineation of individual lesion regions while
ensuring both integrity and precision.

Figure 8 illustrates the performance comparison between
MBGNet and segmentation models based on the Mamba
architecture in other scenarios. As observed in Sample 1
and Sample 2, MBGNet demonstrates an excellent ability
to model boundary details, accurately capturing intricate



Table 1. Performance Metrics of Various Models on the BraTS 2019/2020 Dataset.

Datasets Models DICE HD95
WT TC ET Average WT TC ET Average

Unet 80.94 77.13 67.56 75.21 8.87 9.77 5.63 8.09
ResUNet++ 80.51 79.48 71.19 77.06 7.91 7.01 6.56 7.16
TransUnet 79.76 79.05 69.94 76.25 8.57 7.83 6.07 7.49
Swin-Unet 85.09 80.59 72.40 79.36 8.03 7.06 6.12 7.07

BraTS2019 VM-UNet 85.27 86.34 80.45 84.02 5.95 6.15 5.01 5.70
Swin-UMamba 85.67 86.56 80.89 84.37 5.78 5.84 4.92 5.51
LightM-UNet 83.45 85.90 79.67 82.99 5.89 6.07 5.14 5.70

VM-UNET-V2 87.89 86.78 81.23 85.30 5.76 5.93 5.08 5.59
MBGNet 90.57 89.23 84.72 88.17 5.50 5.67 4.48 5.21

Unet 81.73 77.31 68.02 75.69 8.03 9.76 5.50 7.76
ResUNet++ 81.27 80.51 71.20 77.66 8.01 7.53 6.62 7.39
TransUnet 80.13 79.76 69.94 76.61 8.42 7.64 5.91 7.32
Swin-Unet 85.19 80.74 73.01 79.65 8.00 7.09 5.94 7.01

BraTS2020 VM-UNet 82.58 88.17 81.81 84.18 5.92 6.14 4.57 5.54
Swin-UMamba 85.93 86.09 83.19 85.07 5.65 5.98 4.97 5.53
LightM-UNet 83.14 86.17 83.76 84.35 6.02 6.54 5.03 5.86

VM-UNET-V2 86.09 85.73 83.48 85.10 5.87 6.32 5.14 5.77
MBGNet 91.38 88.96 84.04 88.12 5.34 5.65 4.25 5.08

Bolding indicates the best performing model and underlining indicates the second best performing model. The same applies
to subsequent tables.

Figure 7. Visual Results of Various Segmentation Models on the BraTS2019 Dataset.

boundary features and achieving a high degree of consis-
tency with the ground truth lesion labels. In Sample 3 and
Sample 4, even in cases where certain lesion regions in the
original images are difficult to discern, MBGNet is still able
to accurately segment these areas and clearly distinguish be-
tween different lesions. This highlights its robust capability

to extract lesion features from low-quality images. These
results indicate that MBGNet exhibits strong robustness and
reliability when processing various types of lesions. Fur-
thermore, its adaptability enables it to meet the demands of
segmentation tasks in diverse and complex scenarios.



Figure 8. Visual Results of Various Segmentation Models on the BraTS2020 Dataset.

4.3. Ablation Study

To validate the efficacy of the proposed boundary-guided
segmentation approach, this section conducts detailed ab-
lation studies on each individual module. By analyzing
the performance of these modules one by one, we can as-
sess their impact on the overall model performance, thereby
gaining a deeper understanding of the advantages of the
boundary-guided segmentation method. The comparisons
in this subsection include the entire Boundary Information
Extraction Network (BIEN) from the first phase, the Bound-
ary Information Encoding Module (BIEM), and the Infor-
mation Guidance Module (IGM).

As indicated in Table 2, the model performance de-
creases on both datasets when all modules are removed, as
well as when only BIEN, BIEM, or IGM is retained. The
specific reasons are as follows: Firstly, the absence of BIEN
impairs the model’s ability to locate and distinguish com-
plex structures, diminishing its robustness against morpho-
logical variations and irregular boundaries, ultimately af-
fecting the overall segmentation quality. Secondly, the lack
of BIEM results in the loss of boundary information extrac-
tion and interaction between multi-modal boundary infor-
mation. This challenge hampers the model’s ability to iden-
tify clear segmentation boundaries and weakens the correla-
tion between different modalities. Lastly, when IGM is re-
moved, content segmentation lacks the guidance of bound-
ary information, potentially leading to the omission of sub-
tle lesion features, resulting in less precise segmentation of
the lesion areas. In summary, these modules play a cru-

cial role in the overall performance of the model, and their
absence significantly negatively impacts the segmentation
outcomes.

Figures 9 and 10 present the visualized results of ab-
lation experiments conducted on different datasets using
MBGNet. To more intuitively highlight the differences in
segmentation performance, regions with significant discrep-
ancies are enlarged and marked with red boxes. From the
comparative results shown in Figures 9 and 10, it can be
observed that when all modules are removed, the segmenta-
tion performance of the model declines significantly, barely
maintaining a rudimentary segmentation framework with
noticeably reduced accuracy. Upon the introduction of the
BIEN module, the model’s boundary capture capabilities
are substantially enhanced, enabling clear delineation of le-
sion boundaries and avoiding boundary ambiguity or confu-
sion between different lesion types. When the BIEM mod-
ule is incorporated, the model’s ability to segment poorly
expressed lesion areas in the original images is significantly
improved. This improvement is attributed to the multi-
modal interaction mechanism within the BIEM, which ef-
fectively enhances the model’s understanding and grasp of
global segmentation regions. With the addition of the IGM
module, the model further improves its segmentation per-
formance in complex regions. This improvement is due to
the guidance provided by the boundary segmentation map
within IGM, which enables the model to focus more effec-
tively on critical regions requiring segmentation while accu-
rately distinguishing between different lesion areas. Finally,



Table 2. Performance Metrics of Various Modules on the BraTS 2019/2020 Dataset.

Datasets Modules DICE HD95
BIEN BIEM IGM Mamba WT TC ET Average WT TC ET Average

× × × × 84.47 85.23 80.04 83.24 6.17 6.54 5.23 5.98
✓ × × × 86.61 86.18 83.06 85.28 5.68 5.78 4.59 5.35

BraTS2019 × ✓ × × 86.32 86.91 83.45 85.56 5.95 5.91 4.76 5.54
× × ✓ × 88.14 87.44 82.70 86.09 6.03 6.12 4.82 5.65
× × × ✓ 87.09 87.17 82.95 85.73 5.84 5.88 4.73 5.48
✓ ✓ ✓ ✓ 90.57 89.23 84.72 88.17 5.50 5.67 4.48 5.21
× × × × 85.23 86.14 80.95 84.10 6.01 6.25 5.09 5.78
✓ × × × 85.23 86.34 83.23 84.93 5.47 5.76 4.36 5.19

BraTS2020 × ✓ × × 88.67 88.59 82.45 86.57 5.58 5.89 4.57 5.34
× × ✓ × 89.98 87.78 83.67 87.14 5.62 5.93 4.72 5.42
× × × ✓ 89.81 88.16 83.42 87.13 5.53 5.87 4.40 5.26
✓ ✓ ✓ ✓ 91.38 88.96 84.04 88.12 5.34 5.65 4.25 5.08

Figure 9. The ablation study results for the modules on the BraTS2019 dataset.

Figure 10. The ablation study results for the modules on the BraTS2020 dataset.



when all modules are integrated, the model demonstrates
significant improvements in boundary information extrac-
tion, content segmentation, and regional delineation. This
indicates that the modules exhibit strong synergistic effects,
with each module contributing significantly to the overall
performance enhancement. These findings validate the ef-
fectiveness of the module designs and underscore the supe-
riority of the overall architecture.

5. Conclusion

In this study, we aim to enhance the accuracy and bound-
ary identification capability in multimodal glioma image
segmentation. To address these objectives, we focus on
two pivotal issues: the precise extraction of boundary infor-
mation and the prevention of information loss during con-
tent segmentation. Inaccurate boundary extraction can lead
to blurred segmentation boundaries, while information loss
affects the integrity of the segmented regions. To tackle
these challenges, we employed Mamba as the backbone
for feature extraction of multi-modal information and in-
tegrated a boundary extraction module to enhance the pre-
cision of boundary information. Additionally, we designed
a BIEM that fuses multiple boundary information through
an external attention mechanism, enabling the model to fo-
cus more intently on key boundary details within the im-
age. Concurrently, to combat the problem of content in-
formation loss, we developed an IGM. This module uses
the complete boundary segmentation map as a guidance
map in content segmentation and, by integrating existing
multi-modal information, effectively compensates for in-
formation that might be lost during the segmentation pro-
cess. Our approach was systematically evaluated on the
BraTS2019 and BraTS2020 datasets. The results demon-
strate that, compared to current medical image segmenta-
tion models, our method exhibits superior performance in
both boundary identification and overall segmentation ac-
curacy.

In future research, we plan to further expand the appli-
cation scope of the segmentation model MBGNet, with a
particular focus on exploring its performance and applica-
bility across various multimodal medical imaging datasets.
Specifically, we aim to investigate the potential of MBGNet
in handling more complex multimodal data scenarios, in or-
der to validate its robustness and effectiveness in different
types of medical imaging and disease diagnosis tasks.
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