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Abstract

Vision foundation models have exhibited exceptional
generalization capabilities across various tasks through
large-scale pretraining. In the realm of monocular
depth estimation, existing models have excelled at pre-
dicting relative depth from pinhole camera images.
However, while pinhole cameras are widely used, they
are not always ideal for scenarios requiring a broader
field of view, such as autonomous driving and surveil-
lance. Fisheye cameras, which provide nearly a 180-
degree field of view, serve as a cost-effective alternative
to LiDAR for close-range depth sensing. However, the
scarcity of publicly available fisheye image datasets for
depth estimation limits their application. In this pa-
per, we present DepthFisheye, an efficient fine-tuning
method that adapts existing depth estimation models
from pinhole to fisheye cameras. Our approach ad-
dresses both input adaptation—transitioning from pin-
hole to fisheye images—and output adaptation, trans-
forming relative depth into metric depth. We propose
the Distortion-Aware Adapter (DAA) to manage fish-
eye distortions without network forgetting and intro-
duce the ScaleFormer Head (SFH) to predict global
depth scale. Experimental results demonstrate that
DepthFisheye significantly enhances the performance of
depth estimation models on fisheye images, enabling ac-
curate depth predictions with minimal computational
cost. Our code is available at https://github.com/world-
executed/DepthFisheye.git

Keywords: Metric depth, monocular depth estimation,
fisheye camera, parameter-efficient fine-tuning, adapter

1. Introduction

Recent advancements in computer vision have seen an
increasing emphasis on vision foundation models, which
significantly enhance the generalization capabilities of base
models through large-scale training on diverse datasets. The
paradigm of pretraining and fine-tuning has proven widely
successful in both natural language processing (NLP) and
computer vision (CV), establishing a robust foundation for
a variety of downstream tasks. Vision foundation models
excel by offering a starting point with strong prior knowl-
edge, which can then be adapted to specific tasks or domains
with limited data.

For the task of monocular depth estimation, several foun-
dation models, such as MiDaS [2] and Depth Anything
[36], have demonstrated impressive generalization capabil-
ities across a variety of environments, including both in-
door and outdoor datasets. These models primarily func-
tion as relative depth estimation models, trained predomi-
nantly on images captured using pinhole cameras, the most
widely employed type of camera. However, despite their
versatility, these models are constrained by their training
data, which is heavily biased towards pinhole camera im-
ages. Fisheye and panoramic cameras, which capture a sig-
nificantly wider field of view, are largely underrepresented
in available datasets, particularly for depth estimation tasks.
This imbalance is especially pronounced in the academic
domain, where public fisheye datasets for depth estimation
are relatively scarce compared to their pinhole camera coun-
terparts.

In real-world scenarios such as autonomous driving, au-
tomated parking systems, and surveillance, fisheye cameras
offer significant advantages over pinhole cameras. Their
ability to capture a field of view nearing 180 degrees allows
them to excel in environments that require wide-angle cov-
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Figure 1. Central conception of our purposed DepthFisheye.

erage, making them ideal for situations such as close-range
monitoring or confined spaces, including garages and curb-
sides. Moreover, fisheye cameras serve as a cost-effective
alternative to LiDAR, which may not be as efficient or eco-
nomical for covering certain areas. While LiDAR scans
may not effectively cover certain objects at close range, fish-
eye cameras can offer a clear perception of nearby scenes.
These advantages raise an important question: Can existing
vision foundation models, developed primarily for pinhole
camera images, be adapted to work effectively with fisheye
cameras for depth estimation?

The central motivation of this paper is to leverage exist-
ing relative depth estimation models, pretrained on pinhole
images, and efficiently fine-tune them to perform absolute
depth estimation on images captured by fisheye cameras.
This approach has the potential to unlock the capabilities of
fisheye cameras in various applications, particularly where
field-of-view and cost considerations are paramount.

In this work, we propose DepthFisheye, a novel and ef-
ficient fine-tuning method aimed at adapting vision founda-
tion models from pinhole to fisheye cameras. To the best
of our knowledge, we are the first to work on fine-tuning
fisheye data using depth anything model. The core idea be-
hind DepthFisheye, illustrated in Fig. 1, involves the adap-
tation of both the input transitioning from pinhole to fisheye
images and the output, transforming relative depth into ab-
solute depth. To achieve this, we introduce the Distortion-
Aware Adapter (DAA), a mechanism designed to manage
the unique distortions introduced by fisheye lenses, prevent-
ing catastrophic forgetting while maintaining training ef-
ficiency. Additionally, we propose the ScaleFormer Head
(SFH), a lightweight global scale prediction module to aid
in recovering the absolute depth scale from relative depth
predictions.

Through extensive experimentation, we demonstrate the
effectiveness and efficiency of our approach across a range
of datasets and use cases. The proposed methodology not
only significantly enhances the performance of depth esti-
mation models on fisheye images but also offers a practical
solution for adapting vision foundation models to diverse
camera modalities.

Our contributions can be summarized as the following
three points:

* We propose DepthFisheye, the first work to use a rel-
ative depth foundation model to fine-tune for fisheye
cameras and metric depth estimation.

* We introduce the Distortion-Aware Adapter (DAA) to
manage fisheye-specific distortions, preventing catas-
trophic forgetting while enhancing training efficiency.

* We present the ScaleFormer Head (SFH), a lightweight
module for global scale prediction, enabling the recov-
ery of absolute depth from relative depth.

2. Related Work

2.1. Relative and Metric Depth Estimation

Relative depth estimation and metric depth estimation
are two critical approaches in depth prediction tasks. Rel-
ative depth estimation focuses on predicting the depth re-
lationship between points or regions in an image without
requiring the absolute scale of the scene.

Relative depth estimation has ability to balance the differ-
ences in depth range between indoor and outdoor scenes,
allowing the model to capture more detailed depth varia-
tions. Some approaches[36, 10, 37, 29] train on large mixed
datasets, significantly enhancing the model’s generalization
performance. Other methods[3] employ scale-invariant loss
to mitigate the effects of scale ambiguity. In the AIGC
(Al-generated content) domain, relative depth can represent
the scene structure of objects in an image[39, 40], help-
ing to preserve the spatial structure of the original image
when generating new styles. However, in downstream tasks
like autonomous driving[ 19, 26], robot control[30], and 3D
reconstruction[27], relative depth relationships are insuffi-
cient to provide adequate information.

Metric depth estimation requires precise knowledge of
how far each pixel’s corresponding real-world point is from
the camera plane, measured in meters. Metric depth esti-
mation is highly influenced by camera parameters[37, 10].
Some methods attempt to incorporate camera parameters
into the network’s decoder, while others normalize the cam-
era model directly, eliminating scale variations caused by
different focal lengths. In terms of network predictions, re-
cent approaches have transformed the depth regression into
a depth bins classification[ |, 20], making it easier for net-
works to learn. From CNNs to Transformers[3], there is
also growing interest in using diffusion models to gener-
ate depth maps[33]. Given that both relative and metric
depth estimation have their own strengths, there are now
works[4 1] leveraging relative depth estimation to enhance
absolute depth estimation or jointly estimating both relative
and absolute depth.



2.2. Pinhole and Fisheye Camera Model

The pinhole camera model and fisheye camera model
represent two widely used paradigms in computer vision for
projecting 3D points onto a 2D image plane.

The pinhole camera model, which assumes a simple pro-
jection through a small aperture, has been foundational in
many applications like structure-from-motion and 3D re-
construction due to its straightforward linear mapping be-
tween 3D world coordinates and image coordinates[5]. De-
spite its popularity, the model struggles with large field-of-
view (FoV) applications as it assumes an ideal, distortion-
free scenario[12].

The fisheye camera model, in contrast, is designed for
wide-angle lenses that capture a much broader scene, typ-
ically up to 180 degrees[12]. Fisheye cameras introduce
significant radial distortion[4], where straight lines appear
curved, but they provide a more comprehensive spatial con-
text, making them valuable in applications like autonomous
driving and panoramic imaging. Calibration methods[32,

, 13] for fisheye lenses address the non-linear distortions
through specialized projection models, such as the equidis-
tant or stereographic projection models, which more accu-
rately represent the actual image formation process of these
lenses[32, 17]. Some works focused on developing unified
camera models that handle both pinhole and fisheye lens
distortions in a single framework, facilitating more flexible
and robust calibration across different imaging setups[ 1 6].
This blending of models is particularly useful for multi-
camera systems and for applications that require both nar-
row and wide-angle views[ |4, 21], improving accuracy and
usability in practical systems. Recently, [6]proposed a
training-free[28] method that directly adds corrected offsets
to the convolutional kernels, enabling adaptation from pin-
hole cameras to fisheye cameras. However, this method has
significant limitations: it can only adapt to a single fisheye
camera model and requires the convolutional kernels to be
the ones receiving the corresponding offsets.

2.3. Parameter Efficient Fine-tuning

Parameter-efficient fine-tuning (PEFT)[8] has emerged
as a crucial technique for adapting large pre-trained mod-
els to specific tasks with minimal computational and mem-
ory overhead. Traditional fine-tuning methods require up-
dating all parameters of a model. PEFT addresses this
by updating only a small subset of parameters, leaving
the majority of the pre-trained weights frozen[25]. Tech-
niques like adapters[34], insert small trainable modules
between layers of the pre-trained network, allowing task-
specific adaptation while maintaining the bulk of the model
unchanged. Another notable method is LoRA[9, 7, 23]
(Low-Rank Adaptation), which reduces the dimensional-
ity of the trainable parameter space, significantly reducing
the number of parameters that need updating during fine-

tuning. In visual tasks, PEFT (Parameter-Efficient Fine-
Tuning) is also widely applied[35]. For example, methods
like VPT[11] and AdaptFormer[3] have introduced model
fine-tuning techniques specifically for visual tasks. Further-
more, bitfit[38], which fine-tunes only the bias terms of a
network, has also demonstrated strong performance on im-
age classification and object detection tasks while keeping
the rest of the model fixed.

3. Method

In this section, we first introduce the overall structure of
the network and the prior knowledge in Sec. 3.1. We begin
by encoding the fisheye camera, using distortion-adjusted
camera rays as the initial encoding. Sec. 3.2 explains how
spherical harmonic transformations (SHT) [42] are applied
to upscale the feature dimensions, deriving a dense fisheye
camera encoding. The Distortion-Aware Adapter (DAA) is
used to fine-tune the intermediate features in the ViT, al-
lowing the model to learn fisheye distortion information,
as discussed in Sec. 3.3. Finally, in Sec. 3.4, the Scale-
Former Head (SFH) uses learnable queries to obtain global
scale information, which is then employed to recover abso-
lute depth.

3.1. Preliminary

The relative depth estimation model, exemplified by
Depth Anything, consists of two essential components: the
image backbone and the depth head. The image backbone,
based on a Vision Transformer (ViT) architecture, extracts
image features. While the depth head, utilizing a Dense
Prediction Transformer (DPT) architecture, predicts relative
depth. Our work focuses on performing parameter-efficient
fine-tuning of the pretrained Depth Anything model to ac-
commodate image distortions and achieve metric depth es-
timation.

3.2. Dense Fisheye Camera Embedding

To enable the model to effectively capture the charac-
teristics of fisheye cameras, we utilize dense camera em-
beddings rather than simply relying on an MLP to model
the camera’s distortion parameters. Using the SynWood-
Scape dataset as an example, its fisheye camera model fol-
lows a polynomial distortion model. For each pixel (u, v) in
the image, the distortion-adjusted ray direction is computed
from the camera’s optical center to that pixel.

First, the pixels are normalized according to the Eq. |

U — Cg v —cy
Tn 7 Yn 5 ey
while (¢, ¢,) denotes the optical center and ( f;, f,) repre-
sents the horizontal and vertical focal lengths, the relation-
ship between the radial distance r and the fisheye angle 6
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Figure 2. The workflow of our proposed DepthFisheye. (a)Overall Architecture.Our method mainly consists of three components: the
Depth Anything (DA) model with a blue background, the parallel Distortion-Aware Adapter with an orange background, and the Scale-
Former Head with a yellow background. (b)Distortion-Aware Adapter. The DAA module employs low-rank factorized learnable matrices
to perform attention modeling between intermediate features and dense fisheye camera encoding. (c)ScaleFormer Head. A tiny trans-
former decoder is used to predict rectified global scale from learnable scale query.

is defined by a distortion polynomial (Eq. ??). The fisheye
angle 6 can be solved numerically. Different fisheye mod-
els can be accommodated by applying the corresponding
distortion polynomials.

By projecting the points on the image onto a 3D unit

sphere, the 3D coordinates (z,y, z) corresponding to each
pixel can be obtained through Eq. 2.
sin(0),
sin(0), 2
( )-
We utilize spherical harmonic transformations (SHT) [42]
to perform feature upscaling on the camera rays, thereby
enhancing the model’s ability to capture richer signal repre-
sentations. Each order of the spherical harmonics provides a
decomposition of the spherical signal at different frequency
levels. As the order increases, the spherical harmonic basis
functions capture finer details of the spherical surface. The
transformation is formulated as follows:

H ﬂ‘cﬁ ‘3

T
y

E. = Resize(SHT(R,)), 3)

where SHT}, denotes the spherical harmonic transforma-
tion, R. denotes the camera ray with dimensions (H, W, 3),

and F. represents the dense fisheye camera embedding. To
maintain feature scale consistency, the features must also be
resized to match the scale of the network’s features. Thus,
the dimension of E. is (L, Cg), where L corresponds to the
patch length and C'i corresponds to the order of the SHT.

3.3. Distortion-Aware Adapter

We argue that models pretrained on large-scale pinhole
datasets degrade the camera-specific visual biases, making
it challenging for the models to generalize to specific cam-
era models, such as fisheye cameras. To address this, we
propose a Distortion-Aware Adapter (DAA) to mitigate the
generalization issues of the model on fisheye camera mod-
els.

The feature extraction process of the ViT backbone typ-
ically consists of the following components. First, the
patch embedding layer encodes the 2D image I,.4, into a
sequence Xg = PatchEmbed(I,4). Subsequently, Ny
stacked Transformer blocks are employed for feature ex-
traction, formulated as X;;; = Block;(X;), where i €
{0,1,..., Ny — 1}. Our DAA module is inserted in paral-
lel into each Transformer blocks, specifically as follows:

Xi+1 = BlOCkZ(XZ) + DAAl(X“ EC) (4)



Methods ‘ AbsRel ] RMSE| Silog| 417 021 031
Domain-specific
OmniDet[ | 8] 1.0800 5.6230 - 0.0310 0.0640 0.7530
BTS[22] 0.1790 2.9980 - 0.6530 0.8450 0.9320
Adabins[ ] 0.0402 1.5547 0.0971 09793 0.9941 0.9972
Fine-tuned
DA-VIiT-S (Full) 0.0465 1.8779 0.0998 0.9600 0.9867 0.9945
DA-VIiT-S (Lora) | 0.0392 1.7047 0.0901 0.9704 0.9914 0.9966
DA-ViT-L (Full) 0.0432 1.8523 0.0944 0.9703 0.9901 0.9954
Ours-S 0.0355 1.5875 0.0850 0.9746 0.9925 0.9968
Ours-L 0.0333 1.5409 0.0804 09763 0.9931 0.9972
Table 1. Comparison with other methods in SynWoodScape dataset.
Methods ‘ AbsRel | RMSE| Silog| 417 021 037
Domain-specific
OmniDet[ 18] 0.1326 2.5471 - 0.8304 0.9287 0.9663
BTS[22] 0.1123 2.3981 - 0.8432  0.9323 0.9729
Adabins[ ] 0.1095 2.2343 0.1573  0.8869 0.9673 0.9873
Fine-tuned
DA-VIiT-S (Full) | 0.0999 2.2251 0.1561 0.8965 0.9712 0.9890
Ours-S 0.0978 2.1631 0.1540 0.9030 0.9729 0.9897
Table 2. Comparison with other methods in KITTI360 dataset.

The input to the DAA consists of the features from each

layer and the dense camera encoding E., and its output is XT

the distortion-aware transformed features. Once the DAA is Sy = Softmax( QiX; ), (6)

integrated, the weights of each block are frozen, and during e

. : . Proj(E.)"
the training phase, only the weights of the DAA are updated S, = Softmaz( Q; r\o/%( ) ) )

Each layer of the Distortion-Aware Adapter has two
learnable low-rank matrices, referred to as A; € RV*" and
B; € R™Y, where V denotes the query length and C' de-
notes the feature dimension. The other dimension of matri-
ces A; and B; is set to a small value r to enforce low-rank
constraints. The query matrix is obtained by multiplying
the two low-rank matrices (Eq. 5).

Qi = A; x B;. )

We use this query to perform attention modeling with the
image features and camera encoding, enabling the network
to learn distortion-aware features. For the output X; from
the previous Transformer block, we first compute the sim-
ilarity between X; and the query, and then apply Eq. 6 to
obtain the attention score S;.

Next, a projector is used to project the query to value ma-
trix. This value is multiplied by the corresponding attention
score to produce the final output O, formulated as Eq. 8.

Oy = Sy x Proj(Qi), (®)
Oc = Sc X P?"O](Q,) )

The dense camera embedding F¢ needs to first pass
through a projector to adjust its feature dimension, ensur-
ing it matches the query’s dimension. Using the aforemen-
tioned similarity-based modeling approach, we obtain the
output of the camera feature output O..

D; = Proj(Oy + O.). (10)

In Eq. 10, the final output of the DAA is obtained by adding
Oy and O, followed by passing through a projector initial-
ized to zero. The zero initialization ensures stability dur-



Components ‘ Performance

DAA SFH ‘ AbsRel | RMSE | Silog|
0.0465 1.8779  0.0998

v 0.0370 1.6526  0.0874

v v 0.0355 1.5875  0.0850

Table 3. Ablation study on different components.

ing adapter training. All projector layers in the Distortion-
Aware Adapter share parameters, while only the LoRA ma-
trices A; and B; are layer-specific. This benefits the fine-
tuning of features from low-level to high-level, while signif-
icantly reducing the number of parameters, thus achieving
efficient fine-tuning.

3.4. ScaleFormer Head

Our fine-tuning objectives are twofold: adapting to fish-
eye images and recovering metric depth. We propose the
ScaleFormer Head, which employs a lightweight trans-
former decoder to predict global scale information. Scale-
Former head takes Xy,, and @y, as input, denotes
the last layer of transformer block and Distortion-Aware
adapter respectively. The Q)n,,, pass through a projector,
transformed to scale query. Each query is related to a cer-
tain area of feature map, and the tiny transformer decodes
each query into its corresponding scale information.

The output is then activated using an appropriate scale
activation function, followed by global averaging to obtain
the global scale .S,,.

The choice of activation function is crucial, as it needs to
align with the output of the DPT head. Since the output of
our pre-trained model’s output is relative disparity, which is
inversely proportional to the metric depth, the final output
requires an inversion operation. Our global scale is applied
before this inversion, so sigmoid, which value range from 0
to 1, is ultimately selected as the activation function for the
scale.

4. Experiment

In the experimental section, we first introduce the
datasets used and some basic information about them in
Sec. 4.1. Then, in Sec. 4.2, we describe the experimental
setup, including the runtime environment, evaluation met-
rics, and loss functions. In Sec. 4.3, we provide quantitative
and qualitative comparisons between our method and other
approaches, demonstrating the superiority of our method.
Finally, in Sec. 4.4, we conduct ablation experiments to an-
alyze the contribution of each component of the proposed
method and compare the parameter counts.

Params(M) |
Component Ours-S  Ours-L
Backbone 22.05 304.37
DAA 1.01 5.17
DPT head 2.72 30.94
SFH 0.09 0.13
Total 25.88  340.62

Table 4. Parameter of each component in our framework.

Methods ‘ Params(M) |
Omnidet[ 18] 34.92
BTS[22] 21.16
Adabins[ 1] 78.21
Ours-S 25.88

Table 5. Parameter comparison of different method.

4.1. Dataset

The two datasets used in this work are SynWoodScape
[31] and KITTI360 [24]. SynWoodScape is a publicly avail-
able synthetic dataset, with the public version containing
2,000 images. The dataset includes four fisheye cameras
labeled FV, RV, MVL, and MVR, positioned at the front,
rear, left, and right of the vehicle, centered on the ego-
vehicle. The distortion equation for each fisheye camera in
this dataset follows a polynomial model. Since SynWood-
Scape is collected in a simulated environment, the images
exhibit stylistic differences from real-world images. How-
ever, the dataset provides dense depth ground truth, mean-
ing every pixel in the image has an associated depth value.
Due to the significant distortion of fisheye cameras com-
pared to pinhole cameras, we set the maximum depth range
to 40 meters. We randomly split the dataset into training
and validation sets with a 4:1 ratio, and all subsequent eval-
uation metrics are based on the results from the validation
set.

The other dataset used is KITTI360, which includes
both pinhole and fisheye camera images along with Li-
DAR scans. Since KITTI360 does not provide direct depth
ground truth, we project the LiDAR data onto the 2D plane
using the camera’s intrinsic and extrinsic parameters to ob-
tain distance values as depth ground truth. Only fisheye
cameras image_02 and image_03 are selected as inputs,
with a total of 50,000 training samples and 1,000 valida-
tion samples. Similarly, the depth ground truth range for
KITTI360 is limited to 40 meters. Compared to the Syn-
WoodScape dataset, the depth ground truth in KITTI360 is
much sparser, making the model more challenging to train.
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Figure 3. Visualization comparison with other methods. The first row is input RGB images, and the last row is the ground truth metric
depth.The middle three rows represent a comparison between our method and other approaches. "DA” refers to Depth Anything, which

involves full fine-tuning.

4.2. Experiments Setup

Our proposed method is implemented in PyTorch, utiliz-
ing the Adam optimizer with a learning rate of 1 x 10~°
and a multistep learning rate schedule. The model is trained
for 50,000 iterations. All experiments were conducted on
an RTX A6000 GPU. Following the setup of Depth Any-
thing, all input images are resized to 518 x 518. The net-
work produces output depth maps of the same size, which
are then rescaled to their original resolution using bilinear
interpolation. For SynWoodScape, the original resolution is
966 x 1280, and for KITTI360, it is 1400 x 1400. Finally,
disparity values are inverted to obtain the final depth output.

Evaluation metrics. In our experiments, we evaluate the
performance of the depth estimation model using several
common metrics: Abs Rel, RMSE, SilLog, and 41, d2, Js.
The Absolute Relative Difference (Abs Rel) is defined as:

N
1 X |d; — d|
Abs Rel = — —_— 11
sRe N;:l o (1)

where d; is the predicted depth, d; is the ground truth, and
N is the number of pixels. RMSE (Root Mean Squared

Error) is given by:

1 N
NZ(di —dr)?. (12)

i=1

RMSE =

SiLog (Scale-Invariant Logarithmic Error) measures the
scale-invariant error between predicted and ground truth
depths, defined as:

N
1
SiLog =N Z (log d; — log d)?
i=1

1 (& i
— (Zlogdi —1ogd;*> . (13)
i=1
Lastly, 61, d2, 03 represent the percentage of predicted pix-
els where the ratio between the predicted and ground truth

depth satisfies max (d—,%) < 0, where 6; = 1.25,

§y = 1.25% and d3 = 1.253.

Loss function. During the training phase, the model is
trained using a combination of scale-invariant log loss and
L11loss. Liotar = AsiLsitog + L1, where Ag; = 10.

4.3. Comparison

Quantitative comparison. We need to compare the pro-
posed method through experimental results to demonstrate



its effectiveness. The results are presented in Tab. 2. First,
we selected some open-source supervised[!, 22] and self-
supervised methods to train directly on the fisheye dataset,
which we refer to as domain-specific methods. For a
fair comparison, we added a supervised loss function to
OmniDet[18]. We then used a fine-tuning-based approach
for further comparison. Specifically, we compare full fine-
tuning, LoRA fine-tuning[9], and our proposed fine-tuning
method.

Last five rows in the table show results from fine-tuning
the Depth Anything pre-trained model. ”ViT-S” and "ViT-
L” represent the size of the backbone selected for the model.
The “Full” in parentheses refers to full parameter fine-
tuning. It can be observed that full parameter fine-tuning
leads to significant forgetting, making it difficult to trans-
fer from pinhole data to fisheye data. The final metrics are
worse than those of AdaBins trained from scratch. The third
row shows the results of fine-tuning the model’s backbone
using LoRA. Here, LoRA is set with » = 16, fine-tuning the
attention and linear layers in the backbone while freezing all
biases.

The last two rows of the table show the results of our
proposed method. With the DAA fine-tuning approach and
SFH global scale recovery, our method outperforms both
AdaBins and LoRA fine-tuning. It effectively avoids the
forgetting problem while leveraging the prior knowledge
from pinhole data, achieving efficient fine-tuning.
Qualitative comparison. Fig. 3 present the visual compar-
ison between different methods. Compared to the fully fine-
tuned Depth Anything model, our approach demonstrates
greater advantages in metric depth estimation tasks. Full
fine-tuning can cause the Depth Anything model’s perfor-
mance to degrade on fisheye data. In contrast, our method
effectively avoids this degradation while accurately captur-
ing fisheye distortion patterns, allowing for better depth per-
ception of objects with significant distortion near the edges.
For example, in the second row of the figure, the building
on the right side of the image has obvious distortion, and
Adabins’ prediction shows jagged edges. In the third row,
the edges of the subject in the center of the image are also
clearer.

4.4. Ablation Study

Ablation study on different component. To validate the
effectiveness of the proposed method, we conducted abla-
tion experiments on different components of the network,
analyzing the performance gains each part contributes.
From Tab. 3, we can conclude that using the Distortion-
Aware Adapter (DAA) results in an AbsRel improvement
of 0.0187 compared to the baseline. The RMSE also im-
proves by 0.31 meters. Additionally, incorporating the
ScaleFormer Head (SFH) provides further gains, especially
in the RMSE metric, as the inclusion of global scale infor-

mation is particularly beneficial for improving this metric.
Ablation study on parameter. To demonstrate the effi-
ciency of our method, Tab.4 provides a comparison of the
parameter count across different layers of the network. We
offer both small and large versions of the model. The pa-
rameter count for the DAA module is 1.01M and 5.17M
for the small and large versions, respectively, accounting
for only 4.5% and 1.6% of the total ViT backbone parame-
ters. The lightweight SFH has a parameter count of approx-
imately 0.1M, which is negligible compared to the other
components. In the end, the parts we fine-tune include the
DAA, DPT head, and SFH. For the small and large versions,
the fine-tuned parameters account for 14.6% and 10.5% of
the total parameters, respectively. We also compare our
proposed method with previous methods in terms of the
number of intermediate references. From the Tab5, we ob-
serve that our method’s small version has the second highest
number of parameters, but its performance surpasses that of
other methods. Notably, the number of parameters we need
to train is significantly smaller than those required by the
other methods.

Limitation

This work primarily focuses on adapting models from
pinhole cameras to fisheye cameras and from relative depth
to absolute depth, which may lead to a loss of the original
generalization capability across indoor and outdoor scenes
in the base model. Additionally, the proposed method in-
troduces a small amount of extra parameters, which could
impact the model’s inference latency.

5. Conclusion

In this work, we propose an efficient method for fine-
tuning a relative depth estimation model to an absolute
depth estimation model for fisheye cameras. Our method in-
troduces the Distortion-Aware Adapter (DAA) to model the
dense fisheye distortion encoding, preventing catastrophic
forgetting in the network. Additionally, we propose the
ScaleFormer Head (SFH) to predict global scale informa-
tion, enabling the model to recover absolute depth from
relative depth. Comprehensive experimental results vali-
date the effectiveness and efficiency of our approach. We
hope this work inspires further research into fisheye abso-
lute depth estimation and parameter efficient fine-tuning.
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