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Abstract

The depth estimation of foggy images has always been
a major challenge in the research field. The common
depth estimation methods use supervised training to es-
timate the depth of foggy images, but their effectiveness
is often limited by the domain adaptation characteris-
tics of supervised training. Here, we propose an unsu-
pervised domain separation depth estimation algorithm
for foggy images. This algorithm adopts an unsuper-
vised approach and designs a domain separation frame-
work for foggy and clear images to perform depth es-
timation on foggy images. It utilizes the characteristic
that depth information can be used for both dehazing
and hazing, incorporating a self-depth domain conver-
sion module that constructs a symmetric training frame-
work. Domain separation separates the information of
the image itself in the feature space dimension, breaking
it down into two parts: exclusive domain information
(color, lighting, fog degree, etc.) and common domain
information (depth information). The experimental re-
sults show that our designed network can achieve state-
of-the-art results on the NYUv2 dataset and SUN RGB-
D dataset, which is superior to existing advanced depth
estimation algorithms. Furthermore, the algorithm has
strong robustness and can accurately estimate the corre-
sponding depth maps for both non-foggy and foggy im-
ages.

Keywords: monocular depth estimation foggy image
domain separation unsupervised learning domain conver-
sion.

1. Introduction

Monocular depth estimation is an important research
subject in the field of computer vision, which is of great
significance in stereo matching [39], scene understanding
[5], 3D reconstruction [29], etc. It can mine and provide
depth information and spatial position relationship informa-
tion of images. Monocular depth estimation opens the pos-
sibility of mapping images from two-dimensional space to
three-dimensional space, being able to explore the relative
relationships between objects and perform numerical mea-
surements while understanding the hierarchy, structure, and
layout of the scene. In the field of image dehazing, monocu-
lar depth estimation can also serve as auxiliary information
to guide image restoration [21].

However, monocular depth estimation itself is an ill-
posed problem, as for an RGB-formatted scene image, it
corresponds to countless depth space mapping relationships
that conform to visual perception. There are infinite ways in
which three-dimensional space can generate the same pro-
jection in two-dimensional space. The inherent nature of
this problem adds great difficulty and cost to monocular
depth estimation. A large number of existing work cen-
ters on paired scene image-depth map datasets. The depth
estimation of such methods largely depends on the qual-
ity of the dataset [6]. When the dataset itself can provide
relatively accurate depth, an elaborately designed network
structure and algorithm can usually estimate a satisfactory
depth map. When the quality of the ground truth depth
map itself is poor, with a large amount of noise and inac-
curate edge information, relevant algorithms usually can-
not solve this problem well. Meanwhile, collecting paired
RGB scene images and their corresponding depth maps is a
time-consuming and laborious task. The publicly available
datasets are limited, and the cost of creating such a dataset



is huge. In this situation, unsupervised monocular depth es-
timation methods have become a major pillar in the field of
depth estimation.

A large part of existing unsupervised methods are mod-
els constructed based on consistency constraints on stereo
image pairs [11, 12, 1, 33, 32, 44]. These methods rely on
continuous video frame images for modeling and training
of networks, as depth estimation requires geometric con-
straints using consistency information. This method heav-
ily relies on the dataset, and in some cases where only one
single scene image is provided, this method will naturally
fail. Meanwhile, this method estimates depth maps with in-
accuracies. In addition to self-supervised methods based on
disparity maps, many existing networks implement unsu-
pervised training by redesigning network architectures, in-
cluding utilizing multi-scale or multi-level network struc-
tures, cascaded network models, multiple decoders, and
other structures [34, 18, 45, 40, 28]. Essentially, these meth-
ods increase the complexity and number of parameters of
the model to achieve better depth estimation fitting results.
Such networks often have high training costs and weak gen-
eralization ability. In addition, in recent years, there have
been works using Transformers and diffusion models for
monocular depth estimation [47, 35, 26], but these network
models often have high requirements for training resources
such as GPUs, making it difficult to conduct research under
limited costs.

In the light of the issues in the above methods, we pro-
pose an innovative unsupervised monocular depth estima-
tion algorithm for foggy images with domain separation and
self-depth domain conversion. This algorithm adopts an un-
supervised approach to design domain separation for paired
foggy and non-foggy images, extracting their common do-
main information, namely depth, to estimate the depth map.
Exclusive domain features, such as lighting, texture, color,
and degree of fog are extracted from the image itself and
are combined with common domain information to obtain
complete image information for reconstruction. The do-
main separation of images uses two encoding and decoding
networks to extract common and exclusive information for
each foggy/non-foggy image, relying on orthogonality loss
to ensure complementary features. At the same time, for
clear images without fog, a blurring operation is performed
before sending them into the exclusive domain information
extraction network, which increases the difficulty of net-
work learning while losing some information, allowing the
model to discover more robust features and pay more atten-
tion to the extraction of detailed information when learning
depth. Networks for extracting common information share
weights and impose consistency loss constraints on the re-
sults of two images. After obtaining the depth information,
the original foggy and clear images use the estimated depth
maps respectively, combined with the atmospheric scatter-

ing model, to carry out the self-depth domain conversion,
and the corresponding fogless and foggy maps are acquired
to implement the corresponding loss calculations, which
indirectly constrains the depth estimation effect and com-
pletes the whole training process of the network.

* An unsupervised monocular depth estimation method
for foggy images has been proposed. It can perform
good monocular depth estimation on both foggy and
non-foggy images.

* A targeted domain separation and self-depth domain
conversion framework was designed to decompose the
features of images into common and exclusive do-
mains to extract depth information, and to use the self-
estimated depth for domain conversion of input paired
foggy and non-foggy images. In addition, blurring is
introduced to enable the network to mine more details
when extracting deep information, and to learn more
robust features for reconstruction.

» The effectiveness was validated on the NYUv2 and
SUN RGB-D datasets, achieving the state-of-the-art
experimental results.

2. Related Work

This part mainly summarizes the related research work
in the monocular depth estimation area, centering on the
unsupervised methods.

The most common unsupervised monocular depth esti-
mation methods are based on the stereo pair disparity im-
ages, which imposes geometric constraint on the model.
Godard et al. [I1] utilized epipolar geometry constraints
and disparity consistency loss for generating improved
depth estimations unsupervisedly. In another work by Go-
dard [12], several adjustments are proposed for large im-
provements when training with stereo pairs, including mini-
mum reprojection loss, auto-masking loss and a multi-scale
sampling method. Filippo et al. [1] utilized GAN [13] to
tackle unsupervised depth estimation through warping im-
ages with depth maps generated to fool the discriminator.
Poggi et al. [33] trained one CNN to predict the left and
right stereo pair disparity images accompanying a central
image to do unsupervised monocular depth estimation in a
trinocular way. In another work by Poggi [32], a pyramid
architecture with multi-level features extracted is designed
to refine the ultimate depth map with up-sampling. Zhan et
al. [44] proposed the usage of stereo sequences from both
spatial and temporal aspects for learning depth and visual
odometry simultaneously.

Some researchers cope with this problem using the se-
mantic segmentation information as an aid when estimating
depth. Chen et al. [5] delt with this problem by transform-
ing the input image into a scene representation and extract-
ing depth estimation and semantic segmentation at the same



time with their alignment ensured. Li et al. [5] extracted the
semantic priors of objects using a semantic segmentation
network for being fused with the original image to learn
depth, which enhances structure perception.

Apart from this, some approaches are proposed based
on a new design of the network architecture. Pilzer et al.
[31] utilized a design named cycle-inconsistency within the
refinement of the depth map. To be specific, it includes esti-
mating a disparity map of a frame for recovery of the oppo-
site view one, backward as well. The inconsistency of the
two frames is exploited for refining a final depth map. Ren
et al. [34] incorporated a depth basis decoder with multiple
coefficient modules as a co-teaching ensemble for learning
depth from diverse sources. Zhao et al. [47] first applied
the ViT (Vision Transformer) to the self-supervised monoc-
ular depth estimation and combined it with convolutions to
reason locally and globally. In Hui’s work [18], monocu-
lar depth estimation and complete 3D motion prediction are
jointly trained together to recurrently refine the estimated
result with encoder and decoder features fused iteratively.
Zhang et al.[45] proposed a multi-scale structure that down-
sampled the estimated depth map and implemented image
synthesis at various resolutions and used a structural sim-
ilarity pyramid loss to improve the locality of photometric
error. Wang et al. [40] proposed a cascaded depth estima-
tion network towards the ill-posed regions in estimation and
designed corresponding feature extraction networks and a
pose estimation network using attention mechanism. Armin
et al. [28] extracted image features from an auto-encoder
and utilized multi-scale graph convolutional networks to do
depth estimation self-supervisedly. Saxena et al. [35] ap-
plied the denoising diffusion model to the monocular depth
estimation with infilling and step-unrolled denoising dif-
fusion training and achieved well effectiveness. Lin et al.
[26] utilized the Transformer and convolutional neural net-
work to model long-range dependencies and local correla-
tions simultaneously when extracting hybrid image features
for depth estimation. Besides, a bowknot-type fuser aimed
at aligning features and bridging local and global semantic
representations is devised. Guo et al. [14] finetuned an op-
tical flow estimation network to supervise monocular depth
estimation with optical flow and multi-scale feature maps
generated for loss calculating.

Finally, there exist novel methods dealing with this prob-
lem from other aspects. Zhao et al. [46] used one im-
age transfer-based framework with domain adaptation for
highly complex scenes. They adapted the day-time training
to night-time training and raised one image adaptation ap-
proach to improve the performance of model after adapted.
Zhu et al.[49] substituted a flow distillation loss for the typ-
ically used photometric loss and used a prior flow-based
mask to eliminate noise in training loss. Shao et al.[36] took
monocular depth estimation as a classification-regression

problem where bin centers are used to estimate depth and
put forward an elastic target bin adjusting flexibly according
to the depth uncertainty. Gasperini et al. [9] focused on the
depth estimation under challenging conditions and designed
a framework trained with a mixture of good weather im-
ages and translated adverse weather images. Sun et al.[24]
introduced pseudo-depth from external pretrained monoc-
ular depth estimation network and designed corresponding
modules to enhance self-supervised training. Zhen et al.[25]
proposed a sparse depth densification method by unsuper-
vised image segmentation combined with sparse depth and
further corrected it by estimating the potential error. Han et
al. [15] used the image activity measure to segment image
features, which boosts the perception of network and de-
signed depth consistency loss to give more accurate estima-
tion in weak-texture regions. In addition, recently Piccinelli
et al. [30] explored estimating metric 3D points solely from
an input image using a pseudo-spherical output representa-
tion, achieving accurate monocular metric depth estimation.

3. Methodology
3.1. Network architecture

The overall network workflow is mainly divided into two
parts, namely the domain separation part and the self-depth
domain conversion part. Its structure is shown in Fig 1.

3.1.1 Domain Separation

The domain separation part refers to [27], which mainly in-
volves orthogonal decomposition of the input image in the
feature space to obtain exclusive features — exclusive do-
main, and common features — common domain.

Exclusive domain contains the exclusive information of
an image, including texture, color, lighting, degree of fog,
and other information. The information extracted from this
domain for foggy and non-foggy images is different, repre-
senting the unique style and intuitive representation of two
images in the same scene under different natural lighting en-
vironments. The common domain refers to the information
shared by both foggy and non-foggy images for the same
scene. In our research topic, it is evident that this part of
information is the depth information of the scene.

For the depth information of the common domain, we
can use it to estimate the depth map of the image. Combin-
ing the information of the common domain and the exclu-
sive domain, after decoding with the decoder, we can use
it to recover the image and obtain the reconstructed images
of the original foggy and non-foggy input images, respec-
tively. This design of reconstruction is the main cornerstone
of our unsupervised framework, as we separate the exclu-
sive and common features of the input and use their com-
bination to restore the input, which avoids the requirement
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Figure 1. Architecture of our network. The solid line represents the actual data flow of the network, and the dotted line represents
the connection between calculated losses. The green section indicates weight sharing, where the networks use the same weight and
perform gradient backpropagation. ‘Hazing’ and ‘Dehazing’ represent the fogging and defogging modules that perform domain conversion,

respectively.

for ground-truth depth. Due to the fact that the common do-
main encoder-decoder always processes shared depth infor-
mation from both foggy and non-foggy images, these two
encoder-decoders (green part in Figure 1) share the same
weight.

3.1.2 Self-Depth Domain Conversion

The self-depth domain conversion part is aimed at the in-
herent characteristics of non-foggy/foggy images, using the
depth map obtained by itself to add/remove fog on the im-
age, thereby achieving cross-domain conversion of the im-
age and further optimizing the depth. The main design route
is to use the atmospheric scattering model [20] and its es-
timated depth map to add fog to the clear image, thereby
achieving cross-domain conversion from fog-free to foggy,
and calculating losses with foggy images. Similarly, using
a foggy image and its estimated depth map, the image can
be dehazed to achieve cross-domain conversion from foggy
to non-foggy. Due to this process, the image uses its own
information to estimate its depth map and participates in the
conversion without introducing external information. At the
same time, it utilizes the inverse process of hazing and de-
hazing, so it is called self-depth domain conversion, which

improves the effectiveness of unsupervised learning.

3.1.3 Gaussian Blurring

Before sending paired foggy and non-foggy images into the
network, we apply a slight Gaussian blurring (with a stan-
dard deviation = 2) blurring to clear images when extracting
exclusive domain features, distorting some of the image’s
detailed information for two reasons. Firstly, according to
[19], it has been verified that adding deblurring operations
to the Masked Autoencoder (MAE) [16] can help the net-
work better recover the detailed information in images. Tak-
ing inspiration from this, we also used blurring operation
on the clear image /¢ before our domain separation. The
blurred clear image I}, was fed into the exclusive domain
feature extraction network (the common domain feature ex-
traction network is still fed in the clear image I that was not
blurred), and the final reconstruction result was calculated
based on the reconstruction loss of the original clear image
that was not blurred. This intuitively increased the difficulty
of learning the exclusive domain feature extraction network,
allowing it to learn more robust features and expose the
common domain feature extraction network to more origi-
nal information, enabling the network to learn more detailed



information. The second is to consider the characteristics of
our paired data. The original task of the network was to dis-
cover common depth information from non-degraded clear
images without fog and degraded images with fog. This
encoder-decoder network shares weights, while the network
itself is relatively laborious in obtaining accurate depth in-
formation from foggy images. The network tends to learn
not that fine depths. Under the convergence effect of weight
sharing, this will result in the depth estimation of the de-
tails in the face of non-foggy clear images being smoothed
out, and the depth mapping relationship corresponding to
the original details is difficult to learn. When extracting
exclusive domain features from clear images suffers from
information loss, the network will rely more on the com-
mon domain to excavate the original information lost due to
blurring during reconstruction. In this way, the learning of
these details will be naturally incorporated into the learning
process of shared depth information. This compensates for
the problem of missing depth details and inaccurate estima-
tion caused by the damage of scene information in foggy
images themselves.

The network used in the entire architecture is based on an
encoder-decoder structure, with the encoder using ResNet-
18 [17] and the decoder using a custom multi-layer CNN
network, as referenced in Monodeth2 [12]. We named the
network FODS-Net (FOg Domain Separation Net), indi-
cating that our network is a depth estimation network de-
signed with domain separation for foggy images.

3.2. Atmospheric scattering and depth-transmittance
model

The hazing and dehazing modules in the self-depth do-
main conversion section use a mutually inverse solution
process based on the atmospheric scattering model [20].
Clear images and depth maps can be used to add fog to im-
ages, while foggy images and depth maps can be used to
remove fog from images. The formula for the atmospheric
scattering model is as follows:

I(x) = J(z) - tz) + Al — t(x)), (1)

where I(x) represents degraded foggy images, J(x) rep-
resents clean non-foggy images, A represents global atmo-
spheric light, and ¢(x) represents the transmittance of un-
scattered light reaching the camera.

By using this formula, we can perform hazing on clean
non-foggy images to obtain a foggy image. According to
the atmospheric scattering model, in order to add fog to an
image, we need to obtain two key parameters in the model
— global atmospheric light A and transmittance ¢(z).

Based on the characteristics of the NYUv2 dataset we
used, the paired foggy and non-foggy images we used were
synthesized using the [2] paper. Among them, the global
atmospheric light A remains consistent with the definition

Hazing

1(x) = J(0)t(x) + A(1 — £(x))

d(x)

Jo ="t

Dehazing

+A4

Figure 2. Self-depth domain conversion module. The clear image
is represented as J(x), the foggy image is represented as I(x), and
d(x) is the depth map, which has a fixed non-linear relationship
with the transmittance t(x). A represents global atmospheric light.

of [2], which is [1, 1, 1]. The transmittance ¢(x) has a non-
linear relationship with the depth d(x) of the image as fol-
lows:

t(z) = e i@ )

where [ is the atmospheric scattering coefficient. Based
on comprehensive experiments, we found that the fog map
is most consistent with the synthetic fog map provided in
paper [2] when 3 is 1.75.

By solving the inverse process of this formula, we can
obtain the corresponding non-foggy image from the foggy
image. The formula is as follows:

J(x) = ——— + A. 3

Similarly, under the condition of global atmospheric
light A = [1,1,1], we use image depth d(x) to solve the
transmittance ¢(x). Here, based on multiple experiments,
we select 5 as 1.73, which can achieve the best defogging
effect.

After we complete the hazing/dehazing work on the im-
age, we can calculate losses for the obtained foggy/non-
foggy images corresponding to the original foggy/clear
ones, in order to further refine and evaluate the estimation
of image depth.

3.3. Loss function

The overall loss consists of five parts, namely reconstruc-
tion 10ss L econs, similarity loss Lg;,,, orthogonality loss
Lortn, hazing 1oss Lpqzing, and dehazing 108S Lychazing-
Reconstruction loss mainly measures the loss between the
reconstructed image obtained through encoding and decod-
ing structure and the original input image. This part of the



loss includes two parts: MSE and SIMSE, and the formula
is as follows:

1 1 2
Lrecons = N Z(I;fecm - I;)Q + W(Z(Irecxc - I;))

x

b S~ 1 4 (ST 1)
| (4)

where I¢ represents the original clear input image, I,
represents the reconstructed clear image, I” represents
the original foggy input image, I" . represents the recon-
structed foggy image, x represents the pixel position in the
image, and NV represents the number of pixels in the image.

Similarity loss refers to the loss calculated based on the
similarity between the depth maps estimated for both foggy
and non-foggy images, ensuring consistency in using shared
depth features to estimate depth maps for both. The formula

is as follows:

1 :
& (D% = D), 5)

x

£sim =

where D¢ represents the depth map estimated from the clear
image, and D" represents the depth map estimated from the
foggy image.

Orthogonality loss is a loss designed to ensure that the
exclusive domain features and common domain features ob-
tained in the feature space dimension are orthogonal and
unrelated to each other during the domain separation stage.
It consists of two parts, namely, directly calculating the
orthogonality of the inner product of the feature vectors
and calculating the Gram matrix of the features, and then
stretching them into one-dimensional feature vectors to cal-
culate the inner product of the vectors as a judgment of or-
thogonality. The formula is as follows:

Lorth =V (v) - V(vE) + V(vp) - V(vg)
+V(gh) - V(ge) + Vign) - Vige), (6

where v, = C(f5). ve = C(fe). vy = C(fh). vl =
C(f8), 95 = G(f5), 9 = G(f&), gl = G(fB), and
gl = G(fk.). Within these equations, f§ presents the ex-
clusive domain feature of clear images, f¢& is the common
domain feature of clear images, f g denotes the exclusive
domain feature of foggy images, and fg is the common do-
main feature of foggy images. C/(-) represents the 1x1 con-
volution operation used for feature dimensionality reduc-
tion, G(-) represents the calculation of Gram matrix, V()
represents flattening feature vectors to one dimension, and -
represents dot product of vectors.

Hazing loss and dehazing loss are a set of co-existing
losses. The hazing loss is mainly calculated by adding
fog to the fog-free image using the atmospheric scattering

model after obtaining the depth map, and calculating the
loss on the foggy image paired with the original clear im-
age. The dehazing loss, on the other hand, is the opposite.
It is mainly calculated by using the atmospheric scattering
model to dehaze the foggy image after obtaining the depth
map, and calculating the loss with paired non-foggy images
of the foggy image. The formulas are as follows:

1

['hazi,ng = N Z(Iilonvx - I;]cl)Zv (7
1

Laechazing = 55 > Leons, =I5, )

where " represents the hazed image obtained from do-

main conversion, and IS, represents the dehazed image
obtained from domain conversion. Finally, the total loss is

expressed as:

Etotal = Alcr’econs + )\2£sim + )\3£orth + )\4£hazing
+ )\5£dehazingv (9)

4. Experiments
4.1. Datasets

We mainly used the NYUv2 dataset [37] to train our net-
work. The NYUv2 dataset is a depth dataset provided by
New York University, collected using Kinect RGB-D cam-
eras for 464 indoor scenes. The dataset contains 1449 pairs
of raw RGB images and their corresponding depth maps.
The original image has a resolution of 480x640. We used
the official 654 images with ground truth maps in the test
set.

Meanwhile, our unsupervised model training process
requires paired foggy and non-foggy images. Here, we
adopted the work of [2], which synthesized correspond-
ing foggy versions of images based on the NYUv2 dataset
and named them the D-HAZY dataset. In addition to the
NYUv2 dataset, we also used the SUN RGB-D dataset [38]
for additional quantitative analysis and evaluation of the
model’s generalization ability. The SUN RGB-D dataset is
also a dataset collected by depth cameras for indoor scenes,
with 10335 RGB-D images. We used the official 5050 im-
ages for its testing set.

4.2. Implementation details

Our experiment was run on a computer equipped with
NVIDIA RTX 4090 GPU, with a single card of 24GB
graphics memory. The optimizer uses the Adam optimizer,
with an initial learning rate set to 1e-4 and multiplied by 0.1
every 20 epochs. The program ran a total of 100 epochs.



Table 1. Quantitative comparison to state-of-the-art methods on the NYUv2 dataset (clear images).

‘ Lower is better | ‘ Higher is better 1
Method | AbsRel. SqRel. RMSE (lin) RMSE (log) | 6 5o 03
Zhao et al. [48] 0.189 - 0.686 0.079 0.701 0912 0.987
Monodepth2 [12] | 0.165 - 0.686 0.070 0.765 0.937 0.983
DCL-depth [15] 0.137 - 0.534 0.059 0.820 0.958 0.990
DORN [8] 0.115 - 0.509 0.051 0.828 0.965 0.992
VNL [42] 0.108 - 0.416 0.048 0.875 0976 0.994
BTS [22] 0.110 0.066 0.392 0.047 0.885 0.978 0.994
PWA [23] 0.105 - 0.374 0.045 0.892 0985 0.997
TransDepth [41] 0.106 - 0.365 0.045 0.900 0.983 0.996
AdaBins [3] 0.103 - 0.364 0.044 0.903 0.984 0.997
NeWCRFs [43] 0.095 0.045 0.334 0.041 0.922 0.992 0.998
IEBins [36] 0.087 0.040 0.314 0.038 0.936  0.992 0.998
Ours | 0.085 0.040 0.311 0.037 | 0928 0991 0.998

Table 2. Quantitative comparison to state-of-the-art methods on the NYUv2 dataset (foggy images).

‘ Lower is better | ‘ Higher is better 1
Method | AbsRel. SqRel. RMSE (lin) RMSE (log) | & 5o 3
BTS [22] 5.689 16.734 2.592 0.943 0244 0441 0.596
Zhao et al. [48] 5.546 17.184 2.580 0.908 0264 0476 0.634
VNL [42] 2.260 4.532 2.056 0.721 0.306 0.567 0.740
AdaBins [3] 2.964 5.418 1.861 0.775 0.343  0.588 0.747
TransDepth [41] | 2.600 4.410 1.639 0.683 0394 0.641 0.783
NeWCRFs [43] 1.129 1.344 1.830 0.644 0.317 0.588 0.764
IEBins [36] 1.680 1.945 1.455 0.575 0431 0.689 0.831
Ours | 0.666  0.356 0.751 0438 | 0.728 0.885 0.925

The encoders are all ResNet-18 (He K et al., 2022) with the
same structure. The image was resized to 512 x 512 before
being sent to the network.

4.3. Quantitative analysis

We conducted quantitative analysis experiments on the
NYUv2 dataset and the SUN RGB-D dataset. The quanti-
tative indicators used in the experiment are commonly used
in the industry, mainly including: the absolute relative error
(Abs Rel.) index, squared relative error (Sq Rel.) index,
linear root mean squared error (RMSE (lin)) index, log root
mean squared error (RMSE (log)) index, and the thresh-
old accuracy 6, (% of pixels s.t. maat(di/dl,czl/di) <
1.25",n = {1,2,3}, where d; denotes the ground truth
depth at pixel ¢, d; denotes the predicted depth at pixel .
The maximum scene depth is limited to 10 m.

From Table 1, Table 2 and Table 3, it can be seen that our
method achieved the best overall performance among multi-
ple advanced methods on the NYUv2 dataset. Specifically,
Table 3 demonstrates the quantitative results of mainstream
methods after fine-tuning on the NYUv2 dataset (foggy
images).For clear haze-free images, our method achieved
thse best results on 5 indicators, with the other 2 indica-

tors ranking second only to the best one, demonstrating the
best overall performance. For foggy images, our method
achieved the best results in all 7 metrics and far exceeded
other methods, surpassing the NeWCRFs [43] algorithm by
41% in Abs Rel metrics and 73.51% in Sq Rel metrics. We
also exceeded the IEBins [36] algorithm by 70.4%, 23.83%,
68.91%, 28.45%, and 11.31% in RMSE (lin), RMSE (log),
01, 92, and d3 metrics, respectively. This once again demon-
strates the additional effectiveness of our monocular depth
estimation algorithm for foggy images.

According to the results shown in table 4, our method is
significantly superior to other algorithms on the SUN RGB-
D dataset. This further demonstrates the effectiveness and
robustness of our algorithm.

4.4. Qualitative analysis

In the qualitative analysis section, we first demonstrate
the input and output images involved in the training process
of the network. The network inputs both clear images and
corresponding foggy images, and the clear images undergo
a Gaussian blurring operation when extracting exclusive do-
main features. The results in Figure 3 show that consis-
tency is ensured when extracting common domain features,
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Figure 3. Input and output involved in training on the NYUv2 dataset.
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Figure 4. Qualitative comparison on the NYUv2 dataset.

namely depth maps, for both clear and foggy images. This
demonstrates the reliability of our network’s designed struc-
ture.

We conducted a qualitative comparative analysis with
advanced methods on the NYUv2 dataset, and the results
are shown in Figure 4. From the graph, it can be seen that
our proposed method can estimate the most accurate and
detailed depth map among these methods. The dashed box
in the figure (such as the box in the first row, the bookshelf
in the second row, the wooden board in the third row, and
the decorative painting in the fourth row) shows the depth
region with distinct detail features estimated by our method
for foggy images, which can reflect more information about

the background area of the original image without losing ac-
curacy. However, the BTS [22] model, TransDepth model,
and AdaBins [41] model all suffer from inaccurate depth
estimation. Although the IEBins [36] algorithm can accu-
rately estimate the overall depth, its accuracy in depicting
details is not as good as our model. Meanwhile, for some
areas covered by fog, such as the dashed box area on the
right side of the fourth row images in Figure 4, other meth-
ods will estimate it as a smooth solid depth area, while our
method can estimate the true depth of the void area.



Table 3. Quantitative comparison of state-of-the-art methods on NYUv2 dataset (foggy images) after fine-tuning.

‘ Lower is better | ‘ Higher is better 1
Method | AbsRel. SqRel. RMSE (lin) RMSE (log) | 6 5o 03
AdaBins [3] 1.457 2.423 1.609 0.733 0.427 0.587 0.754
TransDepth [41] | 1.413 2.014 1.577 0.675 0.478 0.694 0.801
NeWCRFs [43] 0.686 0.676 1.123 0.543 0.581 0.741 0.863
IEBins [36] 0.679 0.573 0.824 0.512 0.712  0.819 0.907
Ours | 0.666  0.356 0.751 0438 | 0728 0.885 0.925

Table 4. Quantitative comparison to state-of-the-art methods on the SUN RGB-D dataset

‘ Lower is better | ‘ Higher is better 1
Method | AbsRel. RMSE (lin) RMSE (log) | 6 32 33
VNL [42] 0.183 0.541 0.082 0.696 0912 0.973
BTS [22] 0.172 0.515 0.075 0.740  0.933  0.980
AdaBins [3] 0.159 0.476 0.068 0.771 0.944 0.983
LocalBins [4] | 0.156 0.470 0.067 0.777 0.949 0.985
Ours | 0.146 0.451 0.061 | 0792 0.963 0.990

Table 5. Ablation study of the proposed FODS-Net on the NYUv2 dataset (foggy images).

‘ Lower is better | ‘ Higher is better 1
Method | AbsRel. SqRel. RMSE (lin) RMSE(log) | & 5o 53
Basic 0.804 0.487 0.861 0.523 0.575 0.782 0.889
Basic + blur 0.753 0.421 0.825 0.505 0.619 0.793 0.894
Basic + Lorth 0.721 0.395 0.801 0.482 0.641 0.811 0.905
Basic + blur + Lorth 0.695 0.373 0.779 0.466 0.673 0.840 0.917
Basic + blur + L,,¢5 + H/DH. 0.666 0.356 0.751 0.438 0.728 0.885 0.925

Table 6. Ablation study of the proposed FODS-Net on the SUN RGB-D dataset.

‘ Lower is better | ‘ Higher is better 1
Method | AbsRel. RMSE (lin) RMSE (log) | & 82 83
Basic 0.189 0.572 0.087 0.621 0.895 0.972
Basic + blur 0.181 0.524 0.084 0.667 0.907 0.975
Basic + Lorth 0.176 0.503 0.080 0.682 0919 0.977
Basic + blur + Lor¢h 0.169 0.481 0.075 0.711 0.930 0.982
Basic + blur + Lo+, + H/DH. 0.146 0.451 0.061 0.792  0.963 0.990

4.5. Ablation study

4.5.1 Common features and exclusive features

To demonstrate the effectiveness of our network’s domain
separation design, we plotted the intermediate feature maps
of common and exclusive domains extracted during the do-
main separation process in Figure 5. From the figure, it
can be seen that for the input clear and foggy images, the
common domain features focus on the relative position and
depth relationship of objects in the image. The extracted
features have clear and layered large continuous pixels (pix-
els in the same depth area are mostly the same), which is
in line with our intuitive understanding of depth. The fea-

tures extracted from the exclusive domain focus more on
the original details and scene information of the image it-
self. Although there are slight differences in the intermedi-
ate features between clear images and foggy images, they
are more inclined towards the original scene representation
of the image, such as lighting, texture, details, etc. The
above analysis verifies the effectiveness of our domain sep-
aration design.

4.5.2 Self-depth domain conversion

Figure 6 shows the results of domain conversion using net-
work’s self-estimated depth maps. For the original clear im-
ages and foggy images, we use self-depth and atmospheric



Clear Input Hazy Input

Common Features

Figure 6. Self-depth domain conversion demonstration on the NYUv2 dataset.

scattering models to calculate their corresponding hazing
and dehazing maps. From the graph, it can be seen that our
self-estimated depth map first has high accuracy and details.
The resulting dehazing and hazing maps have high consis-
tency with the original clear and foggy images, with only
slight differences. And this part of the difference mainly
comes from the inherent information loss when the image
is degraded by fog, which cannot restore the information of
the original pixel space during the dehazing process, and
does not significantly affect the performance of our net-
work.

4.5.3 Analysis of the effectiveness of modules

We mainly conducted ablation experimental analysis on the
blurring operation, dehazing and hazing losses, and orthog-
onality loss (seen in table 5 and table 6), which are rep-
resented by blur, H/DH., and L, respectively. Basic

Exclusive Features (clear) Exclus

ive Features (hazy) Depth Map

represents the basic network of FODS-Net that does not in-
clude these three parts.

(a) Blurring operation: The blurring operation applies
Gaussian blurring to the original input clear image when
extracting exclusive domain features, thereby distorting its
information to a certain extent. This allows the network
model to learn more detailed information when extracting
depth information from the common domain, making the
obtained depth map more refined. Moreover, it increases the
difficulty of learning in the image reconstruction process,
making it more robust to learn features. From the results
in Table 4 and 5, it can be seen that blurring significantly
improves the estimation of depth maps.

(b) Hazing and dehazing loss: The hazing and dehaz-
ing losses are losses constructed based on the self-depth do-
main conversion module, mainly measuring the approxima-
tion between the network’s domain conversion results of the



image using the self-estimated depth and the target domain.
This loss can indirectly reflect the quality of depth map es-
timation, as it is directly related to the results of domain
conversion. From the results in Table 4 and 5, it can be seen
that the addition of hazing and dehazing losses has a great
improvement effect on all indicators.

(c) Orthogonality loss: Orthogonality loss is mainly
used to separate the features of an image, thereby decom-
posing the image information into common and exclusive
domains, extracting common depth information as the final
estimation result. The orthogonality loss calculates the or-
thogonality between the decomposed feature vectors, ensur-
ing that the results of domain separation are complementary
rather than intersecting. From the results in Table 4 and 5, it
can be seen that the addition of orthogonality loss provides
a clear directional division in the training process, allowing
the network to better focus on extracting pure depth infor-
mation.

5. Limition

Currently, mainstream public outdoor datasets for depth
estimation research, such as KITTI [10], do not provide
paired foggy and non-foggy versions. While the Cityscapes
[7] dataset offers paired foggy and non-foggy data, the
depth information is inaccurate and suffers from pixel depth
loss, which is not generally used. Explicitly, the set of foggy
and non-foggy image pairs is the beginning point of our
framework, so we do not reveal the experimental tests under
outdoor scenes. Our model is limited under indoor scenes
and we will explore more possibilities for outdoor utiliza-
tion in the future.

6. Conclusion

This article proposes an innovative unsupervised monoc-
ular depth estimation algorithm for foggy images with do-
main separation and self-depth domain conversion. By per-
forming domain separation design on paired foggy and non-
foggy images, we extracted common domain information
(depth) and exclusive domain features (lighting, texture,
color, etc.), achieving efficient depth estimation. By uti-
lizing orthogonality loss to ensure the complementarity of
features and applying blurring operations to fog-free im-
ages to increase learning difficulty, the model’s ability to
learn detailed depth information and the robustness of fea-
ture extraction are improved. The self-depth domain con-
version part is based on the atmospheric scattering model,
combined with the self-estimated depth map to achieve the
conversion of images between foggy and non-foggy do-
mains, further optimizing the accuracy of depth estima-
tion. The experimental results show that our algorithm
performs well in the depth estimation task of foggy im-
ages, effectively improving the accuracy and stability of
depth estimation. Future work will be around further op-
timizing our network structure and loss function designs

to cope with more complex practical application scenar-
ios.

References

[1] F Aleotti, F. Tosi, M. Poggi, and S. Mattoccia. Generative
adversarial networks for unsupervised monocular depth pre-
diction. In L. Leal-Taixé and S. Roth, editors, Computer Vi-
sion - ECCV 2018 Workshops - Munich, Germany, Septem-
ber 8-14, 2018, Proceedings, Part I, volume 11129 of Lec-
ture Notes in Computer Science, pages 337-354. Springer,
2018. 2

[2] C. Ancuti, C. O. Ancuti, and C. D. Vleeschouwer. D-HAZY:
A dataset to evaluate quantitatively dehazing algorithms. In
2016 IEEE International Conference on Image Processing,
ICIP 2016, Phoenix, AZ, USA, September 25-28, 2016, pages
2226-2230. IEEE, 2016. 5, 6

[3] S.F. Bhat, I. Alhashim, and P. Wonka. Adabins: Depth es-
timation using adaptive bins. In I[EEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2021, virtual,
June 19-25, 2021, pages 4009-4018. Computer Vision Foun-
dation / IEEE, 2021. 7,9

[4] S.F. Bhat, I. Alhashim, and P. Wonka. Localbins: Improving
depth estimation by learning local distributions. In S. Avi-
dan, G. J. Brostow, M. Cissé, G. M. Farinella, and T. Hass-
ner, editors, Computer Vision - ECCV 2022 - 17th European
Conference, Tel Aviv, Israel, October 23-27, 2022, Proceed-
ings, Part I, volume 13661 of Lecture Notes in Computer
Science, pages 480—496. Springer, 2022. 9

P. Chen, A. H. Liu, Y. Liu, and Y. F. Wang. Towards scene
understanding: Unsupervised monocular depth estimation
with semantic-aware representation. In IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2019,
Long Beach, CA, USA, June 16-20, 2019, pages 2624-2632.
Computer Vision Foundation / IEEE, 2019. 1, 2, 3

M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler,
R. Benenson, U. Franke, S. Roth, and B. Schiele. The
cityscapes dataset for semantic urban scene understanding.
In 2016 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30,
2016, pages 3213-3223. IEEE Computer Society, 2016. 1
M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler,
R. Benenson, U. Franke, S. Roth, and B. Schiele. The
cityscapes dataset for semantic urban scene understanding.
In IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 3213-3223, 2016. 11

[8] H. Fu, M. Gong, C. Wang, K. Batmanghelich, and D. Tao.
Deep ordinal regression network for monocular depth esti-
mation. In 2018 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA,
June 18-22, 2018, pages 2002-2011. Computer Vision Foun-
dation / IEEE Computer Society, 2018. 7

[9] S. Gasperini, N. Morbitzer, H. Jung, N. Navab, and
F. Tombari. Robust monocular depth estimation under chal-
lenging conditions. In IEEE/CVF International Conference
on Computer Vision, ICCV 2023, Paris, France, October 1-6,
2023, pages 8143-8152. IEEE, 2023. 3

(5

—

[6

—_

[7

—



[10]

[11]

(12]

(13]

[14]

[15]

[16]

(17]

(18]

[19]

(20]

A. Geiger, P. Lenz, and R. Urtasun. Are we ready for au-
tonomous driving? the Kkitti vision benchmark suite. In
Conference on Computer Vision and Pattern Recognition
(CVPR), 2012. 11

C. Godard, O. M. Aodha, and G. J. Brostow. Unsuper-
vised monocular depth estimation with left-right consistency.
In 2017 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26,
2017, pages 6602—6611. IEEE Computer Society, 2017. 2
C. Godard, O. M. Aodha, M. Firman, and G. J. Brostow.
Digging into self-supervised monocular depth estimation. In
2019 IEEE/CVF International Conference on Computer Vi-
sion, ICCV 2019, Seoul, Korea (South), October 27 - Novem-
ber 2, 2019, pages 3827-3837. IEEE, 2019. 2, 5,7

L. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. C. Courville, and Y. Bengio.
Generative adversarial nets. In Z. Ghahramani, M. Welling,
C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors,
Advances in Neural Information Processing Systems 27: An-
nual Conference on Neural Information Processing Systems
2014, December 8-13 2014, Montreal, Quebec, Canada,
pages 2672-2680, 2014. 2

X. Guo, H. Zhao, S. Shao, X. Li, and B. Zhang. F2depth:
Self-supervised indoor monocular depth estimation via opti-
cal flow consistency and feature map synthesis. Eng. Appl.
Artif. Intell., 133:108391, 2024. 3

C. Han, C. Lv, Q. Kou, H. Jiang, and D. Cheng. Dcl-depth:
monocular depth estimation network based on iam and depth
consistency loss. Multimedia Tools and Applications, 2024.
3,7

K. He, X. Chen, S. Xie, Y. Li, P. Dollar, and R. B. Gir-
shick. Masked autoencoders are scalable vision learners.
In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, CVPR 2022, New Orleans, LA, USA, June 18-
24, 2022, pages 15979-15988. IEEE, 2022. 4

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In 2016 IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2016, Las Ve-
gas, NV, USA, June 27-30, 2016, pages 770-778. IEEE Com-
puter Society, 2016. 5

T. Hui. Rm-depth: Unsupervised learning of recurrent
monocular depth in dynamic scenes. In IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, CVPR
2022, New Orleans, LA, USA, June 18-24, 2022, pages
1665-1674. IEEE, 2022. 2, 3

Q. Kang, J. Gao, K. Li, and Q. Lao. Deblurring masked au-
toencoder is better recipe for ultrasound image recognition.
In H. Greenspan, A. Madabhushi, P. Mousavi, S. Salcudean,
J. Duncan, T. F. Syeda-Mahmood, and R. H. Taylor, edi-
tors, Medical Image Computing and Computer Assisted In-
tervention - MICCAI 2023 - 26th International Conference,
Vancouver, BC, Canada, October 8-12, 2023, Proceedings,
Part I, volume 14220 of Lecture Notes in Computer Science,
pages 352-362. Springer, 2023. 4

H. Koschmieder.  Theorie der horizontalen sichtweite.
Beitrage zur Physik der freien Atmosphdre, 12:33-55, 1924.
4,5

(21]

(22]

(23]

(24]

(25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

B. Lee, K. Lee, J. Oh, and I. S. Kweon. Cnn-based simulta-
neous dehazing and depth estimation. In 2020 IEEE Interna-
tional Conference on Robotics and Automation, ICRA 2020,
Paris, France, May 31 - August 31, 2020, pages 9722-9728.
IEEE, 2020. 1

J. H. Lee, M. Han, D. W. Ko, and I. H. Suh. From big
to small: Multi-scale local planar guidance for monocular
depth estimation. CoRR, abs/1907.10326, 2019. 7, 8,9

S. Lee, J. Lee, B. Kim, E. Yi, and J. Kim. Patch-wise at-
tention network for monocular depth estimation. In Thirty-
Fifth AAAI Conference on Artificial Intelligence, AAAI 2021,
Thirty-Third Conference on Innovative Applications of Arti-
ficial Intelligence, IAAI 2021, The Eleventh Symposium on
Educational Advances in Artificial Intelligence, EAAI 2021,
Virtual Event, February 2-9, 2021, pages 1873—-1881. AAAI
Press, 2021. 7

Z.Liang, T. Fang, Y. Hu, and Y. Wang. Sparse depth densifi-
cation for monocular depth estimation. Multim. Tools Appl.,
83(5):14821-14838, 2024. 3

Z.Liang, T. Fang, Y. Hu, and Y. Wang. Sparse depth densifi-
cation for monocular depth estimation. Multim. Tools Appl.,
83(5):14821-14838, 2024. 3

M. Lin, G. Li, and Y. Hao. Bridging local and global rep-
resentations for self-supervised monocular depth estimation.
Eng. Appl. Artif. Intell., 133:108277, 2024. 2, 3

L. Liu, X. Song, M. Wang, Y. Liu, and L. Zhang. Self-
supervised monocular depth estimation for all day images
using domain separation. In 2021 IEEE/CVF International
Conference on Computer Vision, ICCV 2021, Montreal, QC,
Canada, October 10-17, 2021, pages 12717-12726. 1EEE,
2021. 3

A. Masoumian, H. A. Rashwan, S. Abdulwahab, J. Cristiano,
M. S. Asif, and D. Puig. Gendepth: Self-supervised monoc-
ular depth estimation based on graph convolutional network.
Neurocomputing, 517:81-92, 2023. 2, 3

V. Patil, C. Sakaridis, A. Liniger, and L. V. Gool. P3depth:
Monocular depth estimation with a piecewise planarity prior.
In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, CVPR 2022, New Orleans, LA, USA, June 18-
24, 2022, pages 1600-1611. IEEE, 2022. 1

L. Piccinelli, Y. Yang, C. Sakaridis, M. Segu, S. Li, L. V.
Gool, and F. Yu. Unidepth: Universal monocular metric
depth estimation. CoRR, abs/2403.18913, 2024. 3

A. Pilzer, S. Lathuiliere, N. Sebe, and E. Ricci. Refine and
distill: Exploiting cycle-inconsistency and knowledge distil-
lation for unsupervised monocular depth estimation. In /EEE
Conference on Computer Vision and Pattern Recognition,
CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, pages
9768-9777. Computer Vision Foundation / IEEE, 2019. 3
M. Poggi, F. Aleotti, F. Tosi, and S. Mattoccia. Towards
real-time unsupervised monocular depth estimation on CPU.
In 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems, IROS 2018, Madrid, Spain, October 1-
5, 2018, pages 5848-5854. IEEE, 2018. 2

M. Poggi, F. Tosi, and S. Mattoccia. Learning monocular
depth estimation with unsupervised trinocular assumptions.
In 2018 International Conference on 3D Vision, 3DV 2018,



[34]

(35]

(36]

(37]

(38]

[39]

[40]

[41]

[42]

Verona, Italy, September 5-8, 2018, pages 324-333. IEEE
Computer Society, 2018. 2

W. Ren, L. Wang, Y. Piao, M. Zhang, H. Lu, and T. Liu.
Adaptive co-teaching for unsupervised monocular depth es-
timation. In S. Avidan, G. J. Brostow, M. Cissé, G. M.
Farinella, and T. Hassner, editors, Computer Vision - ECCV
2022 - 17th European Conference, Tel Aviv, Israel, October
23-27, 2022, Proceedings, Part I, volume 13661 of Lecture
Notes in Computer Science, pages 89—105. Springer, 2022.
2,3

S. Saxena, C. Herrmann, J. Hur, A. Kar, M. Norouzi, D. Sun,
and D. J. Fleet. The surprising effectiveness of diffusion
models for optical flow and monocular depth estimation. In
A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and
S. Levine, editors, Advances in Neural Information Process-
ing Systems 36: Annual Conference on Neural Information
Processing Systems 2023, NeurlPS 2023, New Orleans, LA,
USA, December 10 - 16, 2023, 2023. 2,3

S. Shao, Z. Pei, X. Wu, Z. Liu, W. Chen, and Z. Li. Iebins:
Iterative elastic bins for monocular depth estimation. In
A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and
S. Levine, editors, Advances in Neural Information Process-
ing Systems 36: Annual Conference on Neural Information
Processing Systems 2023, NeurIPS 2023, New Orleans, LA,
USA, December 10 - 16, 2023, 2023. 3,7, 8,9

N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor
segmentation and support inference from RGBD images.
In A. W. Fitzgibbon, S. Lazebnik, P. Perona, Y. Sato, and
C. Schmid, editors, Computer Vision - ECCV 2012 - 12th Eu-
ropean Conference on Computer Vision, Florence, Italy, Oc-
tober 7-13, 2012, Proceedings, Part V, volume 7576 of Lec-
ture Notes in Computer Science, pages 746-760. Springer,
2012. 6

S. Song, S. P. Lichtenberg, and J. Xiao. SUN RGB-D: A
RGB-D scene understanding benchmark suite. In /EEE Con-
ference on Computer Vision and Pattern Recognition, CVPR
2015, Boston, MA, USA, June 7-12, 2015, pages 567-576.
IEEE Computer Society, 2015. 6

F. Tosi, E. Aleotti, M. Poggi, and S. Mattoccia. Learn-
ing monocular depth estimation infusing traditional stereo
knowledge. In IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2019, Long Beach, CA, USA,
June 16-20, 2019, pages 9799-9809. Computer Vision Foun-
dation / IEEE, 2019. 1

X. Wang, J. Sun, H. Qin, Y. Yuan, J. Yu, Y. Su, and Z. Sun.
Accurate unsupervised monocular depth estimation for ill-
posed region. In Frontiers of Physics, 2023. 2, 3

G. Yang, H. Tang, M. Ding, N. Sebe, and E. Ricci.
Transformer-based attention networks for continuous pixel-
wise prediction. In 2021 IEEE/CVF International Con-
ference on Computer Vision, ICCV 2021, Montreal, QC,
Canada, October 10-17, 2021, pages 16249-16259. IEEE,
2021.7,8,9

W. Yin, Y. Liu, C. Shen, and Y. Yan. Enforcing geometric
constraints of virtual normal for depth prediction. In 2019
IEEE/CVF International Conference on Computer Vision,
ICCV 2019, Seoul, Korea (South), October 27 - November
2, 2019, pages 5683-5692. IEEE, 2019. 7,9

[43]

[44]

[45]

[46]

(47]

(48]

[49]

W. Yuan, X. Gu, Z. Dai, S. Zhu, and P. Tan. Neural win-
dow fully-connected crfs for monocular depth estimation.
In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, CVPR 2022, New Orleans, LA, USA, June 18-
24, 2022, pages 3906-3915. IEEE, 2022. 7,9

H. Zhan, R. Garg, C. S. Weerasekera, K. Li, H. Agarwal, and
I. D. Reid. Unsupervised learning of monocular depth es-
timation and visual odometry with deep feature reconstruc-
tion. In 2018 IEEE Conference on Computer Vision and Pat-
tern Recognition, CVPR 2018, Salt Lake City, UT, USA, June
18-22, 2018, pages 340-349. Computer Vision Foundation /
IEEE Computer Society, 2018. 2

Y. Zhang, M. Gong, J. Li, M. Zhang, F. Jiang, and H. Zhao.
Self-supervised monocular depth estimation with multiscale

perception. [EEE Trans. Image Process., 31:3251-3266,
2022. 2,3
C. Zhao, Y. Tang, and Q. Sun. Unsupervised monocular

depth estimation in highly complex environments. [EEE
Trans. Emerg. Top. Comput. Intell., 6(5):1237-1246, 2022.
3

C. Zhao, Y. Zhang, M. Poggi, F. Tosi, X. Guo, Z. Zhu,
G. Huang, Y. Tang, and S. Mattoccia. Monovit: Self-
supervised monocular depth estimation with a vision trans-
former. In International Conference on 3D Vision, 3DV
2022, Prague, Czech Republic, September 12-16, 2022,
pages 668—678. IEEE, 2022. 2, 3

W. Zhao, S. Liu, Y. Shu, and Y. Liu. Towards better gen-
eralization: Joint depth-pose learning without posenet. In
2020 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, CVPR 2020, Seattle, WA, USA, June 13-
19, 2020, pages 9148-9158. Computer Vision Foundation /
IEEE, 2020. 7

J. Zhu, L. Liu, Y. Liu, W. Li, E. Wen, and H. Zhang. Fg-
depth: Flow-guided unsupervised monocular depth estima-
tion. In IEEE International Conference on Robotics and Au-
tomation, ICRA 2023, London, UK, May 29 - June 2, 2023,
pages 4924-4930. IEEE, 2023. 3



