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Abstract

In this paper, we present VGA, an innovative frame-
work designed for the reconstruction of vivid and high-
fidelity 3D Gaussian avatars, incorporating comprehen-
sive body and fine-grained finger control derived from
monocular video inputs. Our contributions are twofold,
focusing on the enhancement of pose alignment pre-
cision and the refinement of 3D Gaussian representa-
tion. First, we introduce a pose refinement methodol-
ogy that augments the accuracy of hand and foot poses
through the utilization of normal maps and silhouette
alignment, thereby facilitating accurate shape and ap-
pearance modeling. Second, we tackle the challenges of
unbalanced aggregation and initialization bias inherent
in 3D Gaussian representation by proposing a surface-
guided re-initialization strategy. This approach guaran-
tees a more homogeneous distribution of 3D Gaussians,
ensuring their effective alignment with the avatar’s po-
tential surface, which in turn enhances rendering qual-
ity and stability under novel pose conditions. Extensive
experimental evaluations demonstrate that our method
achieves state-of-the-art performance in photo-realistic
novel view synthesis, offering fine-grained control over
body and finger movements. Both qualitative and quan-
titative analyses corroborate the robustness and expres-
siveness of our methodology, marking a substantial pro-
gression in the domain of 3D avatar reconstruction from
monocular video.

Keywords: 3D Gaussian, Avatar, Human Reconstruc-
tion, Monocular Video.

1. Introduction

Reconstructing drivable and photorealistic avatars from
monocular video sequences has attracted considerable at-
tention owing to its extensive potential for transformative
applications across diverse industries. This technology
holds particular promise in domains such as e-commerce
marketing (e.g., virtual try-on systems), live broadcasting,
film production, and gaming, where it facilitates the cre-
ation of highly realistic and personalized avatars. By elim-
inating the reliance on expensive multi-camera setups or
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Figure 1. Our proposed VGA framework enables the robust recon-
struction of 3D Gaussian avatars with comprehensive body and
fine-grained finger control from monocular video inputs. This ap-
proach facilitates seamless animation of novel whole-body poses,
making it highly suitable for applications in entertainment and live
broadcasting. We blurred all faces for anonymity.

labor-intensive manual digital modeling, this approach of-
fers a cost-effective and scalable solution for generating im-
mersive digital representations, thereby driving innovation
and efficiency in these fields.

Traditionally, avatar reconstruction methods have relied
on RGB-D cameras [9, 55, 56], multi-view dome acquisi-
tion systems [5, 8], or the labor-intensive process of digi-
tally modeling human subjects. However, these approaches
face challenges, including high costs in data acquisition
and production, as well as difficulties in achieving photo-
realistic rendering. The recent advent of Neural Radiance
Fields (NeRF) [33, 2] has made it possible to generate cost-
effective and high-quality 3D avatars [38, 36, 48, 15] us-
ing volume rendering techniques. By incorporating pose-
conditioned MLP (Multi-Layer Perceptron) deformation
fields, NeRF-based methods allow avatars to be controlled
according to specific poses. Despite these advances, NeRF
suffers from long training times and limited pose general-
ization, especially when dealing with significant pose de-
formations due to the implicit nature of the representation.

Recently, 3D Gaussian Splatting (3DGS) [20] has gained
significant attention due to its explicit representation, which
enables rapid convergence, real-time rendering, and high-
fidelity expressiveness. Since its inception, numerous stud-
ies [64, 57, 40, 43, 12, 39] have utilized 3DGS to generate
highly detailed 3D avatars by integrating it with parametric
human models. Despite the impressive results achieved by
3DGS, existing approaches still encounter two major limi-
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Figure 2. The illustration of the widespread phenomena of unbalanced aggregation and initialization bias within the 3D Gaussian avatar
reconstruction algorithms.

tations.
First, current 3D Gaussian avatars primarily emphasize

body control and seldom support fine-grained finger in-
teractions. This limitation largely stems from the signifi-
cant alignment errors in finger regions observed in existing
whole-body pose estimation methods [58, 28, 26], which
fail to provide accurate shape and appearance guidance for
the fingers. Second, existing 3D Gaussian avatar representa-
tions suffer from suboptimal Gaussian distributions, such as
unbalanced aggregation and initialization bias (illustrated in
Fig. 2). Specifically, unbalanced aggregation manifests as
an excessive concentration of Gaussians in high-frequency
texture regions, while texture-less areas are sparsely pop-
ulated. Simultaneously, initialization bias arises when re-
gions such as accessories or hair deviate from the initial
shape and consequently receive insufficient Gaussian allo-
cation. These issues lead to an uneven distribution that may
perform adequately in static scenarios but introduce arti-
facts when avatars are driven into novel poses. Even minor
deformations in the Gaussian distribution can significantly
compromise visual quality during pose manipulation.

In this paper, we introduce VGA, a novel framework de-
signed to address these challenges. To tackle the first is-
sue, we incorporate normal priors and silhouette supervi-
sion to enhance the pose alignment accuracy of fingers and
feet. For the second issue, we propose a surface-guided re-
initialization mechanism that iteratively redistributes Gaus-
sians near the explicit surface, ensuring a balanced and ac-
curate Gaussian distribution. As a result, our method en-
ables the reconstruction of avatars with both body and fine-
grained finger control from monocular video inputs, as il-
lustrated in Fig. 1. The key contributions of this paper are
as follows:

• We present VGA, a novel framework for reconstruct-
ing 3D Gaussian avatars directly from monocular
video. This approach advances beyond existing meth-
ods by eliminating the reliance on detailed annota-
tions and demonstrating superior performance in re-
constructing avatars across a diverse range of settings.

• We propose a pose refinement technique for avatar re-

construction, which significantly enhances the align-
ment accuracy of both body and finger poses, along-
side a surface-guided Gaussian re-initialization mech-
anism that effectively mitigates issues of unbalanced
aggregation and initialization bias.

• Extensive experiments have been conducted to validate
the efficacy of our proposed method, demonstrating its
capability to reconstruct avatars with both body and
fine-grained finger control.

2. Related Work

2.1. Human Avatar Reconstruction

The task of reconstructing avatar models with accurate
shapes and realistic appearances has been a long-standing
focus in computer vision and graphics research. Early ap-
proaches primarily utilized RGB-D sensors [14, 34, 9, 55,
56, 5, 4] to capture the 3D shape of the target subject.
These methods typically involved manually binding the re-
constructed surface to a predefined skeleton to create an
avatar model. However, the high cost of scanning equip-
ment and the labor-intensive process of manual skin binding
have hindered the widespread adoption of these techniques.

The advent of parametric human models such as
SMPL [30] and SMPL-X [35] offered a more cost-effective
solution for avatar reconstruction. These models allow for
the creation of avatars using only RGB images, eliminat-
ing the need for expensive scan data. Many works [19, 22,
23, 29, 58, 28, 26, 63] have focused on estimating shape
and pose parameters from images to drive parametric hu-
man body models, supporting both novel view rendering
and novel pose generation. However, these methods tend
to focus primarily on basic body shapes, often lacking fine
user-specific details such as clothing and accessories.

More recently, a new wave of avatar reconstruction
methods has emerged, taking parametric human body mod-
els as priors and enhancing them with additional details
through techniques such as vertex offsets [31, 49], signed
distance fields (SDF) [46, 42, 44, 61, 10, 51, 50], neural ra-
diance fields (NeRF) [24, 38, 36, 48, 15], and 3D Gaussian
points [64, 57, 40, 43, 12, 39, 18, 27]. These approaches



significantly improve the avatars realism by capturing user-
specific details, such as clothing and facial features, result-
ing in more expressive and lifelike reconstructions.

Despite these advancements, the quality of these recon-
structions is highly dependent on the accuracy of the es-
timated poses. Current end-to-end pose estimation meth-
ods [19, 22, 23, 29, 58, 28, 26, 63] excel in estimating body
poses, but often struggle with finer details, such as finger
and foot alignment. This limitation has led to avatar re-
construction methods [24, 38, 36, 64, 57, 40] that primarily
support body-controllable avatars, while finer-grained con-
trols, such as finger movements, remain challenging.

In contrast, our method introduces a pose refinement
technique that utilizes predicted surface normals and silhou-
ette cues to guide the reconstruction process. This signifi-
cantly mitigates misalignment issues, particularly in the fin-
ger and foot regions, enabling the creation of highly expres-
sive avatars with controllable body and finger movements
from monocular videos. By addressing these limitations,
our approach advances the field of avatar reconstruction, fa-
cilitating the generation of detailed and expressive avatars
from simple video inputs.

2.2. Human Avatar Representation

The choice of human avatar representation plays a cru-
cial role in determining both the fidelity and usability
of reconstructed avatars. Historically, mesh-based ap-
proaches [30, 35, 31, 49, 13, 11] and point-cloud-based
methods [32] have been widely favored for their simplic-
ity and ease of use. However, these representations often
lead to avatars that lack high-frequency geometric and tex-
ture details, limiting their realism.

The introduction of Neural Radiance Fields (NeRF) [33]
has inspired a new wave of research due to the capabil-
ity of photorealistic renderings. NeRF-based representa-
tions [24, 38, 36, 48, 15, 17] have achieved groundbreak-
ing rendering quality in novel view synthesis. However,
these methods typically require extended training times,
often taking hours, and their rendering speed is far from
real-time, limiting practical usability in interactive appli-
cations. Recently, there has been growing interest in 3D
Gaussian Splatting (3DGS) [20], which offers a compelling
balance between real-time rendering performance and pho-
torealistic quality. This has sparked rapid progress in the
field of 3D Gaussian-based avatar reconstruction [64, 57,
40, 43, 12, 39, 18, 27, 60], making it an active research
topic. While 3DGS-based methods effectively leverage the
power of Gaussians representation for avatar construction,
they also inherit certain limitations, such as unbalanced ag-
gregation and initialization bias, which can lead to notice-
able artifacts during novel pose driving.

Our work builds on the strengths of the 3D Gaussian
representation for avatar reconstruction but introduces a

surface-guided Gaussian re-initialization mechanism to ad-
dress these limitations. By mitigating unbalanced distribu-
tion and initialization bias, our approach enhances the driv-
ing ability and expressiveness of reconstructed avatars, re-
sulting in higher-quality performance during pose manipu-
lation.

3. Preliminary

3DGS [20] utilizes explicit 3D Gaussian as the funda-
mental rendering primitives. A 3D Gaussian is defined
mathematically as the function G(x), which can be ex-
pressed as:

G(x) = exp

(
−1

2
(x− µ)⊺Σ−1(x− µ)

)
, (1)

where µ represents the spatial mean, and Σ is the covari-
ance matrix. Each Gaussian is also associated with an opac-
ity η and a view-dependent color c, parameterized as spher-
ical harmonic coefficients f .

During rendering, the 3D Gaussians are projected onto
the view plane via splatting. The 2D projection of each
Gaussian is computed by transforming its 3D mean using
the projection matrix, while the 2D covariance matrix is ap-
proximated as:

Σ′ = JgWgΣW⊤
g J⊤

g , (2)

where Wg denotes the viewing transformation, and Jg is
the Jacobian of the affine approximation of the perspective
projection applied to the Gaussian.

To compute the final pixel color, alpha-blending is per-
formed on the projected 2D Gaussians, layered sequentially
from front to back. The pixel color C is given by:

C =
∑
i∈N

Tiαici, where Ti =

i∏
j=1

(1− αj). (3)

In this process, the opacity αi for each Gaussian is com-
puted by multiplying η (the opacity of the Gaussian) with
its contribution based on the 2D covariance Σ′ and the pixel
coordinates in image space. The covariance matrix Σ is pa-
rameterized using a unit quaternion q and a 3D scaling vec-
tor s, which ensures that the optimization process maintains
a meaningful interpretation of the Gaussian’s shape and ori-
entation.

SMPL-X [35] is an extension of the original SMPL body
model [30], designed to capture more detailed and expres-
sive human deformations. SMPL-X extends the joint set of
SMPL to include the face, fingers, and toes, enabling a more
accurate representation of intricate body movements.

The SMPL-X model is defined by the function
M(θ, β, ψ) : R|θ|×|β|×|ψ| −→ R3N, where the parameters
are: θ ∈ R3K : Pose parameters (with K representing the
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Figure 3. This framework constructs a body and finger controllable Gaussian avatar from a monocular video. It includes a pose refinement
module to provide more accurate body and finger pose results to guide the correct shape and appearance reconstruction. The 3D Gaussian
avatar is driven by a whole-body skeleton and obtains a more uniform and accurate Gaussian distribution through a surface-guided reini-
tialization mechanism. The avatar can adapt to new poses from videos or generated pose sequences.

number of body joints), β ∈ R|β|: Shape parameters for the
face and hands, ψ ∈ R|ψ|: Facial expression parameters.
The function M(β, θ, ψ) is defined as:

M(β, θ, ψ) =W (Tp(β, θ, ψ),J (β), θ,W) , (4)

where Tp(β, θ, ψ) represents the human body mesh in a
canonical pose, J (β) is a regression matrix predicting joint
locations, W is the function responsible for applying pose-
dependent transformations, W denotes the precomputed
skinning weights. For further details, refer to [35].

4. Proposed Method

We illustrate the avatar reconstruction pipeline in Fig. 3,
which consists of three main components: (1) a body and
finger drivable Gaussian avatar representation (Sec. 4.1),
(2) pose refinement for improved whole-body pose accu-
racy and reconstruction quality (Sec. 4.2), and (3) surface-
guided Gaussian re-initialization to enhance the rationality
of Gaussian distribution (Sec. 4.3).

4.1. The 3D Gaussian Avatars Representation

We represent 3D Gaussian avatar model using two key
components, denoted as {G,B}. The first component, G,
is a collection of 3D Gaussian that captures the shape and
appearance characteristics of the target subject. The sec-
ond component, B, is a skeleton model that enables avatar
manipulation.

The Gaussian G are initialized in the canonical pose
space (i.e., T-pose) by utilizing the vertices of the SMPL-
X model. To facilitate deformations and pose variations,
we use the SMPL-X skeleton structure [35], which consists
of K = 55 joints. These joints are divided as follows: 22
joints control the body pose, 15 joints for each hand (left
and right), and 3 joints for the head. Pose transformations
are applied using the joint hierarchy, and for each pose θ,
we compute the pose transformation matrix T (θ) of each
joint.

For Gaussian, the pose transformation A is computed
based on the nearest P = 4 joints using the following equa-
tion:

A(θ) =

P∑
p=1

Wp(µ)T (θ), (5)

where Wp(µ) is the skinning weight of the Gaussian µ,
obtained by referencing the skinning of the nearest vertex in
the SMPL-X model. The deformation of a Gaussian from
the canonical pose to the target pose θ is expressed as:

µθ = Arot(θ)µ
′ +At, Rθ = Arot(θ)R, (6)

where Arot(θ) is the rotation component, and At is the trans-
lation component. The rotation matrix Rθ of the Gaussian
is calculated based on its quaternion q. To handle non-rigid
local deformations, such as dynamic wrinkles in clothing,
we introduce an adjusted Gaussian position µ′. This adjust-
ment incorporates a pose-conditioned residual added to the



original Gaussian position, expressed as:

µ′ = µ+ MLP(θ). (7)

4.2. Pose Refinement for Avatar Reconstruction

Creating a high-quality 3D Gaussian avatar relies heavily
on the precision of pose estimation from input images. Ac-
curate pose is essential for properly aligning the 3D Gaus-
sian avatar with the subject in images. However, current
whole-body pose estimation methods [58, 28, 26] struggle
to consistently align finger and foot areas, limiting exist-
ing 3D Gaussian-based avatar methods [64, 57, 40, 43] to
body-controllable reconstructions without fine-grained fin-
ger control. To address this limitation, we propose a two-
stage method that improves the whole-body pose accuracy.

In the first stage, we obtain an initial pose estimation by
applying an off-the-shelf whole-body pose estimation net-
work, E [58], to the input video sequences I . This process
yields the SMPL-X pose parameters θ, shape parameters β
and camera parameters Π, providing a coarse whole-body
pose estimation:

θstage1,Π = E(I). (8)

However, these initial poses often exhibit noticeable mis-
alignment, particularly in the finger regions, as shown in
Fig. 11.

In the second stage, we refine the pose estimation by in-
corporating constraints from normal maps and silhouettes,
aiming to improve the alignment of the SMPL-X model
with the subject in the images. The key insights are twofold:
(1) normal maps effectively guide the alignment of the en-
tire body, particularly the fingers and feet, and (2) silhou-
ettes provide boundary conditions that ensure accurate po-
sitioning of the fingers and feet based on the observed image
data.

Here, it is worth mentioning that we did not use 2D key
points because the mainstream 2D keypoint detector [52]
will have obvious estimation errors when fingers interact, as
shown in Fig. 15, which deteriorates the final pose results.

For a given input image, we use the Segment Any-
thing Model (SAM) [21] to obtain the subject’s mask,
which serves as the predicted silhouette Spred, and we use
ICON [51] to predict the normal map N pred. We define the
following loss function to optimize the pose:

Lpose =
∣∣∣N −N

pred
∣∣∣︸ ︷︷ ︸

Lnormal

+λ1

∣∣∣S − S
pred

∣∣∣︸ ︷︷ ︸
Lsilhouette

+λ2

K∑
i=1

ωi

(
θi − θ

stage1
i

)
︸ ︷︷ ︸

Lregular

, (9)

where λ1 and λ2 are weights for the different loss terms.
In our experiments, we empirically set λ1 = 5.0 and λ2 =
0.5.

The loss function consists of three terms: The first term
Lnormal enforces consistency between the normal map N

rendered from the SMPL-X model using the current pose
parameters θ and the predicted normal map N pred from the
image. The second term Lsilhouette ensures the alignment be-
tween the rendered silhouette S and the predicted silhouette
Spred of the subject. The third term Lregular regularizes the
pose θ to remain close to the initial estimation θstage1, with a
weighting mechanism ωi applied to each joint based on its
distance from the root joint, giving lower weights to joints
further away.

4.3. Surface-Guided Gaussian Re-Initialization

To address the issues of unbalanced aggregation and ini-
tialization bias that degrade the performance of 3D Gaus-
sian avatars, we introduce a surface-guided Gaussian re-
initialization method. The problem of unbalanced aggrega-
tion arises due to the cloning and splitting operations in 3D
Gaussian Splatting (3DGS), which tend to over-propagate
Gaussian in high-frequency texture areas, leading to local
clustering. Additionally, the initialization of 3D Gaussian
is prone to bias, which further exacerbates artifacts in the
avatar model.

Existing 3D Gaussian avatar methods typically initialize
Gaussian using the SMPL model [30, 35]. While this ap-
proach works well for subjects with tight clothing, it faces
challenges when dealing with subjects wearing loose gar-
ments or with long hair. In this case, a limited number of
Gaussian are propagated outside the body to describe these
extra-body features. When faced with deformation, these
sparse Gaussian will suffer from noticeable blurring and ar-
tifacts in the rendered result.

Our key insight is to impose additional constraints on
the Gaussian, ensuring they are uniformly distributed near
the surface of the subject. To achieve this, we propose
a surface-guided Gaussian re-initialization method (illus-
trated in Fig. 4). This method consists of three iterative op-
erations: Meshing, Resampling, and Re-Gaussian. These
three steps are applied iteratively 2-3 times to gradually
guide the Gaussian avatar toward the real surface of the hu-
man body.

Meshing. We perform spherical shell surface recon-
struction [6] to generate the surface mesh of the avatar, us-
ing the outermost Gaussian to represent the surface of the
subject.

Resampling. To refine the mesh, we apply Laplacian
smoothing, introducing surface smoothness as a prior. Fol-
lowing this, we perform curvature-based uniform sampling
on the mesh, generating new Gaussian that are evenly dis-
tributed.

Re-Gaussian. For each resampled new Gaussian, we
identify its K-nearest raw Gaussian and inherit their opac-
ity η and spherical harmonic coefficients f . The rotation
R and scaling s attributes are reinitialized based on the re-
constructed surface normal vectors and average vertex dis-
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Figure 4. The surface-guided re-initialization mechanism uses the three operations of Meshing, Resampling, and Re-Gaussian to redistribute
unevenly Gaussian points near the real surface, thereby enhancing the stability of the avatar in novel poses.

Figure 5. Rendered frames of our reconstructed Gaussian avatar
from novel views.
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Figure 6. Multiple reconstructed avatars demonstrate pose-driven
movements using videos.

tances to avoid falling into local minima.
By applying this surface-guided re-initialization, the it-

eratively updated Gaussian is progressively aligned with the
surface of the human body, leading to a more accurate and
artifact-free reconstruction.

4.4. Differentiable Rendering Loss Function

We use the SMPL-X skeleton transformation (as out-
lined in Eq. 5 and Eq. 6) to drive the Gaussian avatar from
the canonical pose space to the image pose space, optimiz-
ing it via differentiable rendering. Given the rendered im-
ageC and the input image I , we compute the following loss
terms: reconstruction loss Lrecon, perceptual loss Lperceptual,
and residual regularization Lresidual. The total loss function
is defined as:

Lrender = |C − I|︸ ︷︷ ︸
Lrecon

+λ3 |VGG(C)− VGG(I)|︸ ︷︷ ︸
Lperceptual

+λ4 |MLP(θ)|︸ ︷︷ ︸
Lresidual

, (10)

where λ3 and λ4 are weights for the perceptual and residual
regularization terms, respectively. In our experiments, they

Table 1. Quantitative comparison on the ZJU-MoCap [38] dataset.
LPIPS∗ = 103 × LPIPS. Pink highlights the best, and orange high-
lights the second best.

Methods PSNR↑ SSIM↑ LPIPS∗↓ Training time
HumanNeRF [48] 30.66 0.9690 33.38 ∼ 10 h
AS [37] 30.38 0.9750 37.23 ∼ 10 h
AN [36] 29.77 0.9652 46.89 ∼ 10 h
Neural Body [38] 29.03 0.9641 42.47 ∼ 10 h
DVA [41] 29.45 0.9564 37.74 ∼ 1.5 h
NHP [24] 28.25 0.9551 64.77 ∼ 1 h tuning
PixelNeRF [54] 24.71 0.8920 121.86 ∼ 1 h tuning
Instant-NVR [7] 31.01 0.9710 38.45 ∼ 5 min
Instant-Avatar [16] 29.73 0.9384 68.41 ∼ 3 min
GauHuman [12] 31.34 0.9650 30.51 ∼ 1 min
GART [25] 32.22 0.9771 29.21 ∼ 2.5 min
Ours 32.45 0.9773 26.94 ∼ 1 min

are empirically set λ3 = 0.1 and λ4 = 0.5.
The reconstruction loss Lrecon ensures that the rendered

image C is consistent with the input image I . The per-
ceptual loss Lperceptual enforces consistency between the en-
coded features of C and I , which helps to capture high-
frequency appearance details. Here, VGG(∗) represents
the high-dimensional image features extracted using a pre-
trained VGG network [45]. The residual regularization term
Lresidual regularizes the pose-conditioned residual to remain
close to small values, preventing excessive interference with
the Gaussian avatar.

This combination of losses allows for effective optimiza-
tion of the avatar to match the input image both visually and
in terms of detailed feature representation.

5. Experiments

5.1. Setup and Datasets

Our approach is based on the PyTorch framework and
utilizes the Adam optimizer. The model is optimized for
3, 000 steps, with the learning rate for the Gaussian’s posi-
tion, rotation, scale, opacity, and spherical harmonic coeffi-
cient all set similarly to [25]. The experiment is conducted
on an NVIDIA A100 GPU, with pose refinement requiring
10 seconds per frame.

People-Snapshot [1] is a monocular video dataset,
which contains 8 subjects wearing various clothing and per-
forming self-rotation motions in front of a fixed camera,
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Figure 7. Qualitative comparison on the ZJU-MoCap [38] dataset.

maintaining an A-pose during the recording.
ZJU-MoCap [38] is a multi-view dataset that includes

dynamic videos of 6 subjects captured by over 20 simulta-
neous cameras.

ZJU-MoCap and People-Snapshot lack diversity in fin-
ger pose, therefore, we introduce the VGA-Snapshot
dataset.

VGA-Snapshot dataset is intended for evaluating body
and finger reconstruction from monocular videos. It in-
cludes self-rotation videos and carefully designed finger
movement videos of 7 subjects. Each data frame provides
4K resolution RGB images, precise masks, and correspond-
ing refined SMPL-X pose parameters. Additionally, our
subjects exhibit challenging features such as shawl-length
hair, which are absent in current public datasets. More de-
tails are presented in the supplementary materials.

5.2. Baselines and Evaluation Metrics

According to the differences in avatar representation,
baseline methods can be categorized into NeRF-based and
3D Gaussian-based approaches. NeRF-based methods such
as HumanNeRF [48], AS [37], AN [36], Neural Body [38],
DVA [41], NHP [24], PixelNeRF [54], Instant-NVR [7],
and Instant-Avatar [16] employ different variations of the
NeRF representation for avatar reconstruction. Human-
NeRF, AS, AN, Neural Body, and DVA utilize a naive NeRF
representation combined with locally encoded human body
features. NHP and PixelNeRF use a generalizable NeRF
representation, reducing training time through finetuning.
Instant-NVR and Instant-Avatar enable NeRF representa-

tion for minute-level training and real-time rendering using
grid hashing. Gaussian-based methods, including GauHu-
man [12] and GART [25], represent the current state-of-the-
art approaches for Gaussian avatar reconstruction.

For quantitative evaluation, we use three metrics: Peak
Signal-to-Noise Ratio (PSNR), Structural Similarity Index
Measure (SSIM), and Learned Perceptual Image Patch Sim-
ilarity (LPIPS) [59]. PSNR is used to evaluate pixel-level
errors between avatar-rendered images and ground-truth
images. SSIM is employed to assess structure-level errors,
while LPIPS evaluates perceptual errors.

5.3. Qualitative Experiments

Three qualitative experiments are conducted to demon-
strate the effectiveness of our proposed method as follows.

First, we showcase the capability of our method to ren-
der reconstructed avatars from various novel viewpoints, as
shown in Fig. 5. This demonstrates the ability to recon-
struct complete and visually accurate avatar models from
monocular videos, capturing photorealistic effects from dif-
ferent viewpoints. Additionally, we utilize a video captured
in natural settings to estimate its SMPL-X pose as a driving
sequence, enabling whole-body pose control and motion re-
production for the avatar, as depicted in Fig. 6. Our recon-
structed avatar maintains fidelity in details and accurately
represents finger movements when driven to unseen poses,
highlighting the strong generalization ability.

Second, we evaluate our method against multiple base-
line methods on the ZJU-MoCap and People-Snapshot [1]
dataset, as shown in Fig. 7 and Fig. 8. Compared to AS [37],
NB [38], NHP [24], PixelNeRF [54], and Instant-NVR [7],
our method demonstrates superior accuracy in capturing
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Figure 8. Qualitative evaluation on the People-Snapshot [1] dataset, comparing our method with multiple baseline approaches.

Table 2. Quantitative comparison on the People-Snapshot [1] dataset.

Methods
male-3-casual male-4-casual female-4-casual

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

3D-GS [20] 26.60 0.9393 0.0820 24.54 0.9469 0.0880 25.74 0.9364 0.0750
Neural Body [38] 24.94 0.9428 0.0326 24.71 0.9469 0.0423 24.37 0.9451 0.0382
Anim-NeRF [3] 12.39 0.7929 0.3393 13.10 0.7705 0.3460 12.31 0.8089 0.3344
Instant-Avatar [16] 29.65 0.9730 0.0192 27.97 0.9649 0.0346 28.92 0.9692 0.0180
GART [25] 30.40 0.9769 0.0377 27.57 0.9657 0.0607 29.23 0.9721 0.0378
Ours 30.82 0.9808 0.0199 27.62 0.9742 0.0351 29.27 0.9743 0.0213

Blurry Hand

GT GARTOurs

Wrong 
Shape

Missing 
Details

GT GARTOurs

Figure 9. Comparison of results between ours and GART [25] on
VGA-Snapshot dataset.

3D Gaussian Avatar with Body Skeleton 3D Gaussian Avatar with Whole-Body Skeleton

GT Image with Body Skeleton (SMPL) with Whole-Body Skeleton (SMPL-X)

Figure 10. Ablation study investigating the impact of the body or
whole-body skeleton. Top: 3D Gaussian avatar visualization; Bot-
tom: Zoom-in rendered images.

shape and appearance from novel views. Compared to
HumanNeRF [48] in Fig. 7, our method achieves a vi-
sually comparable performance with significantly reduced
time consumption. Compared to GART [25] and Instant-
Avatar [16] in Fig. 8, our method captures more details.
These results highlight our method’s advantages in realism

Input Image w/o Pose Refinement w/ Pose Refinement w/ Pose Refinement

w/o Pose Refinement

Figure 11. The qualitative ablation study evaluating the effective-
ness of the pose refinement in improving pose accuracy.

w/
 Pose RefinementInput Image

w/o 
Pose Refinement

w/
 Pose RefinementInput Image

w/o 
Pose Refinement

Figure 12. The qualitative ablation study evaluating the effective-
ness of the pose refinement in improving avatar accuracy.

and efficiency.
Third, we compare our approach with GART [25] on the

VGA-Snapshot dataset, as depicted in Fig. 9. GART [25],
which uses SMPL as the skeleton without finger pose guid-
ance, shows incorrect shapes and blurred finger. In contrast,
our method incorporates the SMPL-X skeleton and incorpo-



Input Image 3D Gaussian Avatar w/o Surface-guided Re-Initialization 3D Gaussian Avatar w Surface-guided Re-Initialization

Figure 13. Ablation study on the utilization of the surface-guided re-initialization.

Table 3. Quantitative comparison between ours and GART [25] on
VGA-Snapshot.

Methods PSNR↑ SSIM↑ LPIPS∗↓

GART [25] 31.61 0.9907 38.52
Ours 32.36 0.9912 27.24

Table 4. Quantitative ablation study on main technical compo-
nents.

Methods PSNR↑ SSIM↑ LPIPS∗↓

w/o Pose Refinement 26.76 0.978 51.20
w/o Finger Skeleton 28.79 0.982 34.45
w/o Surface-guided Re-Initialization 30.48 0.989 35.30
Ours (Full) 32.22 0.989 31.80

Table 5. A quantitative study evaluating the effectiveness of the
pose refinement module in improving pose accuracy, conducted
on the 3DPW[47] dataset.

Methods PVE↓ MPJPE↓

w/o Pose Refinement 91.3 78.0
w/ Pose Refinement (Ours) 90.6 77.3

rates finger guidance, enabling whole-body pose control for
the avatar and providing more precise details.

5.4. Quantitative Results

In Tabel 1 and Tabel 2, we compare our method with
baseline methods on the ZJU-MoCap and Peopel-Snapshot
datasets. Our method notably outperforms various NeRF-
based methods, is on par with GART [25] in terms of PSNR
and SSIM, and significantly outperforms in LPIPS. These
results align with qualitative observations. Given the ab-
sence of finger pose changes in the above two datasets,
we compare our method with GART [25] on the VGA-
Snapshot dataset. The comparative results are detailed in
Table 3. These results indicate that our method outper-
forms GART [25] across all metrics, consistent with the
qualitative assessment. These observations indicate that our
method attains superior avatar reconstruction performance.

5.5. Ablation Study

This section examines the influence of key technical
components, namely the whole-body skeleton, pose refine-
ment, and surface-guided re-initialization.

Fig. 10 illustrates the effect of incorporating whole-body
skeleton on the reconstructed avatar. Without the whole-
body skeleton (body skeleton), Gaussian struggles to cap-
ture the finger shape accurately, leading to blurred images.

For the pose refinement, Fig. 11 illustrates its impact
on whole-body pose accuracy, and Fig. 12 demonstrates its
influence on the final avatar results. The comparison pri-
marily focuses on the avatar results obtained through solely
one-stage pose estimation. The findings reveal that rely-
ing solely on the existing whole-body pose estimation (w/o
pose refinement) fails to completely align the subject’s pose
in the image, particularly in finger region. This inadequacy
leads to significant artifacts in the learned avatar. However,
with increased pose refinement, the avatar acquires more
accurate pose guidance, effectively mitigating this issue.

Fig. 13 illustrates the impact of employing surface-
guided re-initialization. Without surface-guided re-
initialization, Gaussian are only sparsely allocated in the
external areas of the naked body (such as hair), making
the avatar susceptible to noticeable artifacts undergoing
new pose drives. Conversely, utilizing surface-guided re-
initialization effectively redistributes the avatar’s Gaussian,
ensuring a more even distribution across the real human
body surface, thus enhancing the stability of new pose re-
sults.

Table 5 investigates the pose refinement module from the
perspective of 3D pose estimation accuracy. By conducting
comparisons on the 3DPW [47] dataset using Per Vertex Er-
ror (PVE) and Mean Per Joint Position Error (MPJPE) met-
rics, it quantitatively demonstrates the effectiveness of the
pose refinement. Table 4 conducts a quantitative ablation
analysis of the main technical modules from the perspective
of avatar rendering quality. In alignment with the qualita-
tive analysis, it demonstrates that each technical component
contributes positively to the final body-finger avatar recon-
struction results.

Fig. 14 showcases the Gaussian avatar models and recon-
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Figure 14. Reconstructed Gaussian Avatar and mesh.

More Hand Pose Results Failure Case

Figure 15. More finger-driven results at new target finger poses.

Input Image DWPose 2D Key Points Normal Map

Figure 16. Comparison of DWPose [52] 2D keypoints and normal
map during pose refinement.

structed meshes, highlighting the variations in body shapes,
textures, and clothing. The results demonstrate the robust-
ness of our method in handling a wide range of body shapes
and accurately reconstructing the corresponding shapes and
appearances that align with the observed images. This high-
lights the exceptional resilience of our approach, showcas-
ing its ability to consistently produce accurate and visually
coherent reconstructions across diverse body variations.

Fig. 15 shows more finger-driven results under the new
target finger pose, which shows that our Avatar supports
fine-grained finger pose control and stronger expressive-
ness.

Fig. 16 compares the difference between using DW-
Pose [52] 2D keypoints or normal maps as supervision in
the pose refinement. The former is adopted by Instant-
Avatar [16] and AvatarReX [62]. It can be seen that 2D
keypoints are prone to misestimation in the finger region,
which will cause the optimized pose misalignment. In con-
trast, using normals as targets is more stable.

Finally, we compared the time cost of the pose refine-
ment process with ICON [51], as shown in Table 6. We
used a distributed design and improve calculation process
to achieve 10s per frame optimization and 10min of total
optimization time. However, ICON took 25s per frame to

optimize the pose and 330min of total optimization time.
Obviously, our pose optimization process has better perfor-
mance.

6. Conclusion

In this paper, we presented a method for body- and
finger-drivable 3D Gaussian avatar reconstruction from
monocular videos. Our approach incorporates pose refine-
ment to enhance the accuracy of finger and foot alignment,
enabling the avatar to better capture the subject’s shape and
appearance. Additionally, we introduced a surface-guided
Gaussian re-initialization mechanism to mitigate issues re-
lated to unbalanced aggregation and initialization bias de-
rived from Gaussian representation. We hope that this work
will contribute to more lifelike and accurate avatar recon-
structions in future developments.
Limitation. Although our method has successfully
achieved body- and finger-controllable avatar reconstruc-
tion, further increasing facial expression controllability re-
mains a challenge. Introducing learnable blendshapes may
be a feasible way. Second, our pose refinement module
relies on the accuracy and robustness of normal map esti-
mation methods. Adopting state-of-the-art techniques such
as StableNormal [53] may better address this challenge.
Third, our current Avatar reconstruction method primarily
focuses on monocular human video collected from control-
lable indoor scenes. For monocular video inputs captured
in outdoor scenes with complex lighting, self-shadows, and
dynamic backgrounds, the reconstructed Avatar may suf-
fer from artifacts. Exploring material decomposition-based
Avatar reconstruction could solve this problem. Fourth, for
extremely loose clothing, our method may fail during ani-
mation due to the lack of physics-aware modeling. Incorpo-
rating physics-based deformation models to handle clothing
dynamics is a promising direction for future research.

Potential Negative Impact. Our methods may invade pri-
vacy or be used by criminals for improper purposes. There-
fore, watermarking technology and related regulations need
to be improved to ensure that the technology can be used
safely and serve society.



Table 6. Comparison of the time cost of the pose refinement pro-
cess.

Methods Time per frame Total time

ICON [51] 25s 330min
Ours 10s 10min
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and J. Romero. Drivable 3d gaussian avatars. In 3DV, March
2025. 1, 2, 3, 5


