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Abstract

Trademark retrieval is a frequently used task in in-
tellectual property protection. Utilizing efficient trade-
mark retrieval methods can improve retrieval efficiency,
reduce manual review costs, and effectively prevent
trademark infringement. While the diversity and com-
plexity of trademark, as well as the scarcity of labeled
data, challenge existing retrieval methods, we propose
a revised trademark retrieval system based on self-
supervised learning.Our method revises MoCoV2 self-
supervised learning framework by introducing a hard
sample selection strategy to enhance the model’s perfor-
mance and its capacity of feature representation. We
also integrate attention mechanisms and multi-stage fea-
ture fusion to improve the model’s ability to capture sig-
nificant visual elements in trademark and multi-scale
features. We conducted evaluation and comparison ex-
periments on the METU dataset. The experimental
results indicate that our method achieves better per-
formance on the metrics of NAR (Normalized Average
Rank) and MAP@ 100 (Mean Average Precision at 100)
compared to the state-of-the-art method, proving the ef-
fectiveness of the proposed trademark retrieval method.

Keywords: Trademark Retrieval, Self-supervised
Learning, Feature fusion, Intellectual property protection

1. Introduction

In contemporary economic and business activities, pro-
tecting trademarks from similar confusion infringement has
become increasingly important. When trademark holders
want to register new trademarks and protect their brand in-

terests, applicants need to submit the trademark to the patent
office for registration review. The patent office will examine
whether the new trademark has textual and graphical simi-
larities or semantic confusion with registered trademarks in
the database.

According to the 2023 report data from the World In-
tellectual Property Organization (WIPO)1, a total of 15.5
million trademark applications were submitted globally in
2022, with an annual increase. To address this massive
volume of trademark applications and registrations, the
human-involved application reviewing process is not effi-
cient enough. Therefore, a Large-Scale Trademark Re-
trieval (LSTR) system for similar trademark searches can
benefit both reviewers and applicants. For reviewers, it can
quickly eliminate similar or confusing trademarks, reducing
workload and increasing review speed. For applicants, it
reminds potential duplicate trademarks before submission,
lowering the cost of potential disqualified applications and
overwhelming revisions.

The development of LSTR systems can be summarized
into three stages. (1) Manual category labeling stage.
Early LSTR systems were based on category label pat-
terns, namely the Vienna Classification System2, where re-
searchers decomposed trademarks into several categories
and subgroups based on their graphic elements, and cat-
egory labels were assigned to each graphic element, en-
abling retrieval through searching for relevant label codes.
(2) CBIR stage based on hand-crafted features. It mea-
sures similarity based on images’ content rather than meta-
data that manual labeling uses, which is prior to manual cat-
egory labeling methods as a more efficient way. (3) CBIR

1Source: https://www.wipo.int/edocs/pubdocs/en/wipo-pub-941-2023-
en-world-intellectual-property-indicators-2023.pdf

2Source: https://www.wipo.int/classifications/vienna/en/
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stage based on deep learning features. With deep learn-
ing features, it have been proven to have advantages in ac-
curacy and extracting high-level semantic information [36]
than hand-crafted features, thus being widely used in recent
work.

CBIR methods based on deep features mainly rely on
supervised metric learning patterns, which requires large-
scale datasets with positive and negative sample annotations
to support supervised training. However, there is currently
a lack of large-scale labeled datasets in the field of trade-
marks. This has led to the phenomenon that most work in
trademark retrieval relies on pre-trained models from gen-
eral domains, where potential to improve retrieval perfor-
mance is limited.

Recent studies [46, 7, 16] indicate that self-supervised
learning methods can extract effective invariant features
from large-scale unlabeled data, facilitating the transfer
of existing general-domain models to downstream tasks.
Based on this understanding, it is feasible to use exist-
ing large amounts of unlabeled trademark data for self-
supervised training instead of supervised training, which
makes it possible to train components with trainable param-
eters for enhancing the representation capability of trade-
mark retrieval models.

In this paper, we propose a trademark retrieval method
based on self-supervised contrastive learning. This method
is an improvement on the MoCoV2 contrastive learning
framework, introducing a hard negative sample selection
strategy to accelerate convergence, balance the number
of positive and negative samples, and prevent the model
from converging to trivial solution. In addition, to en-
hance model’s representation capability, We also introduce
a lightweight attention mechanism and multi-scale feature
fusion method in the framework encoder. To prove that the
proposed method is valid, we conduct comparative experi-
ments on the METU trademark dataset.

The remaining part of this paper is orgnized as follows.
Section 2 discusses the related literature in trademark re-
trival area and self-supervised learning algorithms that we
mainly use. In Section 3, we propose a A large-scale trade-
mark retrieval framework. In Section 4, we measure the
proposed method in two datasets and show the results of
evaluation metrics. Finally, we conclude our work in Sec-
tion 5.

2. Related Work

In this section, we review the related literatures on exist-
ing trademark retrieval methods and self-supervised learn-
ing methods, where we propose some revisions to improve
the models’ performance.

2.1. Trademark retrieval methods

Early LSTR systems based on Manual category label-
ing relied on predefined graphic element code systems. In
this pattern, domain experts were responsible for identify-
ing distinctive graphic elements in trademark images and
mapping them to code labels in the predefined classification
standard, achieving retrieval results by searching for images
corresponding to the code labels. However, this trademark
retrieval pattern still relied on professionals for manual ex-
traction, and the increasing complexity of trademark de-
signs adds difficulty for the classification coding system to
describe elements such as color, texture features, and artistic
styles. Therefore, subsequent LSTR systems gradually re-
placed the classification coding system with content-based
image retrieval (CBIR) to achieve more efficient and adap-
tive retrieval solutions.

CBIR methods achieves retrieval based on the content of
the image itself rather than external information. Its con-
cept is to process the image through algorithms to obtain
distinctive descriptors, measure the differences between de-
scriptors to determine the similarity between images, and
then achieve retrieval based on similarity ranking. CBIR
methods based on manually designed features mainly rely
on global features formed by low-level image features such
as texture, color, and shape, as well as local descriptors
formed by geometric edge key points as image descrip-
tors. Examples include global features composed of circu-
larity, aspect ratio[12], gradient histogram[11], color edge
gradient histogram[31], and complex designed descriptors
such as shape context descriptor[34], SIFT[28], Fourier
descriptor[19], and local self-similarity factor[6]. With
the rise of deep learning, these manually designed feature
extraction methods have gradually been replaced by deep
learning methods, as the latter show greater advantages in
terms of accuracy and high-level semantic information [36].

Most trademark retrieval work in CBIR based on deep
learning features uses pre-trained models. For example, Ce-
mal Aker et al. [1] attempted to use output features from the
fully connected layer of pre-trained models for trademark
retrieval, demonstrating significantly better retrieval per-
formance compared to hand-crafted features. Subsequent
works [26, 40] proved the effectiveness of using mainstream
backbone networks, i.e., VGG [37] and ResNet [17], com-
bined with deep learning feature aggregation patterns. Tur-
sun et al. [40] employed various widely-used aggregation
methods for deep features, such as SPoC[2], CRoW[23],
and R-MAC[38], and attempted to use attention mecha-
nisms to suppress the focus on text elements within trade-
marks to achieve better retrieval results. Lan et al. [26]
tried using local binary patterns to aggregate feature maps
from intermediate convolutional layers of pre-trained net-
works, further improving retrieval performance, but at the
cost of introducing excessively high aggregation costs, lack-



ing scalability.
Recently, some studies have used supervised learning to

fine-tune general domain models to improve performance.
Perez et al. [30] attempted to fine-tune pre-trained models
for task transfer by optimizing classification loss functions.
For this purpose, they constructed a large visual trademark
database and a large semantic trademark database. By train-
ing two VGG branch networks to learn visual and seman-
tic features separately and then fusing them, they achieved
better results than single-branch networks. Lan et al. [25]
also built a trademark dataset containing 647 categories and
used the triplet loss function [10] from metric learning for
fine-tuning. However, these studies not only have not open-
sourced their training sets, but also essentially treat the
trademark retrieval task as a closed-set classification prob-
lem with many samples and few categories, rather than an
open-set retrieval problem with few samples and many cate-
gories (few-shot problem). Therefore, it is difficult for sub-
sequent work to extend based on these studies.

With the development of self-supervised learning tech-
niques, recent research has begun to explore using self-
supervised learning frameworks that do not require man-
ually labeled data to fine-tune pre-trained models, in order
to fully utilize effective information in existing unlabeled
datasets. As an important method of self-supervised learn-
ing, contrastive learning has demonstrated superior perfor-
mance in multiple domains by learning to distinguish be-
tween similar and dissimilar sample pairs to obtain effec-
tive feature representations. Cao et al. [4] first introduced
the self-supervised learning instance discrimination frame-
work to trademark retrieval, constructing positive and neg-
ative sample pairs to fine-tune models using existing large-
scale unlabeled data, learning discriminative feature repre-
sentations.

2.2. Self-supervised learning methods

Self-supervised learning, as a method between unsuper-
vised learning and supervised learning [32], is applicable
to scenarios with unstructured and unlabeled data. Unlike
unsupervised learning, which extracts useful information
from the inherent structure of data, self-supervised learn-
ing attempts to generate pseudo-labels or supervisory sig-
nals from data through pretext tasks, guiding the model to
learn essential feature representations of the data. These
feature representations often capture key attributes of the
data and remain relatively stable under various transforma-
tions or perturbations. Self-supervised learning is typically
categorized into three modes based on the source of super-
visory signals: context-based, contrastive learning-based,
and generative model-based[15]. Since contrastive learn-
ing is conceptually similar to metric learning methods com-
monly used in image retrieval, this work primarily refer-
ences contrastive-based self-supervised learning methods.

As the dominant paradigm in self-supervised learning,
contrastive learning has achieved extensive development in
the field of computer vision in recent years. Early self-
supervised methods based on contrastive learning were in-
spired by instance discrimination tasks. Z Wu et al. [46]
treated each image instance as a category for unlabeled clas-
sification task data, constructed a feature pool called Mem-
ory Bank to store encoded features of all instance images,
obtained different views through data augmentation to con-
struct positive sample pairs, while features of randomly se-
lected images from other categories were used to form neg-
ative sample pairs, thus creating contrastive samples. They
trained the model to extract image features and classifica-
tion capabilities by maximizing the similarity between pos-
itive samples while minimizing the similarity with negative
samples through the contrastive learning framework’s loss
function NCELoss. Subsequently, He Kaiming et al. [16]
proposed the MoCo architecture for self-supervised learn-
ing using a contrastive momentum encoder, referencing the
ideas from this work. The MoCo architecture replaced the
Memory Bank structure with a dictionary queue structure,
viewing contrastive learning as a dictionary query task. It
utilized a momentum encoder to dynamically update the
dictionary during training, making more effective use of a
large number of negative samples and improving training
efficiency. Chen et al. [7] later proposed a new architec-
ture called SimCLR. Unlike MoCo’s approach of updating
the dictionary with a momentum encoder, this architecture
adopted an end-to-end training method, directly using data
from the training mini-batch as negative sample candidates,
eliminating additional data structures during training. Ad-
ditionally, SimCLR improved data augmentation strategies
and introduced a projection head structure to enhance fea-
ture separability, significantly improving the model’s classi-
fication performance. This structure was widely adopted in
subsequent works, becoming one of the foundations of self-
supervised architectures. In their subsequent SimCLRV2
work, they also revealed the effectiveness of combining
self-supervised learning with a small amount of labeled data
in semi-supervised learning.

In addition to the aforementioned works that directly uti-
lize positive and negative samples for contrastive learning,
there are also some efforts that attempt to use other con-
trastive information to achieve optimization purposes. For
example, the SwAV proposed by Caron et al. [5] introduces
clustering priors into self-supervised learning, using cluster
centers as objects for comparison, leveraging the contrastive
information formed between different clusters. The BYOL
proposed by Grill et al. [14] and the SimSiam proposed
by Chen et al. [9] are based on the idea of self-distillation,
focusing on the self-contrastive information formed by the
consistency between different views or augmented samples
of the same sample. The Barlow Twins proposed by Zbon-



tar et al. [48] and its improved work VICReg [3] are based
on the idea of feature decorrelation, achieving implicit con-
trast by maximizing the independence between different di-
mensions.

3. Methodology

In this chapter, we will provide a detailed introduction to
our proposed large-scale trademark retrieval method based
on self-supervised learning.

Our method uses self-supervised learning to learn es-
sential feature representations from a large-scale unlabeled
trademark dataset to obtain a trained encoder for similar-
ity retrieval of trademark images. We construct positive
and negative sample pairs from the dataset through a self-
supervised learning framework, learning their contrastive
information to train the feature representation capability
of the encoder network. This method is based on revised
MoCoV2[8] self-supervised learning framework for several
reasons. (1) The contrastive learning paradigm is more ap-
plicable for the objective of distinguish between similar and
dissimilar samples [46] and avoids learning overly simple
or meaningless feature representations. (2) MoCoV2 intro-
duces a dynamic dictionary queue mechanism that can store
a large number of negative samples, allowing training with
smaller batch sizes, which is extremely important when
hardware capacity is limited. (3) The dictionary queue is
conducive to applying hard negative sample mining meth-
ods, leaving room for further improving the efficiency of
feature learning and the model’s discriminative ability.

As for business values, the proposed method can also
accelerate examination speed, accuracy, and consistency,
helping rights holders better protect their intellectual prop-
erty. It fully utilizes existing unlabeled trademark data, re-
ducing time consumption while improving retrieval accu-
racy, significantly enhancing examination efficiency. There-
fore, it can accelerate examination speed, accuracy, and
consistency, helping rights holders better protect their in-
tellectual property.

The self-supervised learning framework structure, train-
ing process, and evaluation process used in this paper’s
method will firstly be introduce in Section 3.1. Subse-
quently, we will focus on three key improvements: Section
3.2 discusses data augmentation strategies, Section 3.3 ex-
plores the design of loss functions and regularization terms,
and Section 3.4 introduces methods for hard negative sam-
ples selection. Finally, in Section 3.5, we will elaborate on
the design details of the encoder network used in the self-
supervised framework.

3.1. Overview of Self-supervised Learning Architecture

The proposed method in this paper uses MoCoV2 as the
self-supervised learning framework. As shown in Figure 1,
MoCoV2 treats the contrastive learning problem as a dic-

tionary query problem. The core idea is to use the input
image as a query and compare it with keys composed of
other samples to learn good feature representations.

Framework Components. The framework primarily
consists of components such as an encoder, momentum
encoder, queue dictionary, hard negative sample selec-
tion method, projection head, and contrastive loss func-
tion. Among these, the encoder fq (also known as the
query encoder) and the momentum encoder fk (also known
as the key encoder) share the same network architec-
ture, both capable of mapping input trademark images into
low-dimensional feature representations. However, these
two encoders differ significantly in their parameter update
strategies: the query encoder uses standard backpropaga-
tion, directly updating parameters based on the gradient of
the contrastive loss. In contrast, the key encoder adopts a
momentum update mechanism, with its parameter updates
as Formula 1,

θk ← mθk + (1−m)θq (1)

where θk and θq represent the parameters of the momen-
tum encoder and encoder respectively, m ∈ [0, 1) is the
momentum coefficient, which determines the rate at which
the momentum encoder parameters follow the encoder up-
dates. This momentum encoder with slowly updating pa-
rameters, combined with a continuously updated dictionary
queue, ensures the maintenance of a stable and consistent
negative sample pool. This allows the encoder to continu-
ously extract contrastive information from the most recently
generated negative samples, thereby continuously optimiz-
ing its feature representation capability.

Training Process. We use unlabeled trademark images
from the METU dataset(see Section 4.1) for training. Each
batch of images undergoes two different data augmentations
and is input into the encoder and momentum encoder re-
spectively. The anchor sample (also called Query) output
by the encoder and the positive sample (also called Posi-
tive Key) output by the momentum encoder form a positive
sample pair, representing different views of the same trade-
mark. Meanwhile, we select negative samples (also called
Negative Keys) from the dictionary queue through a hard
negative selection strategy, forming negative sample pairs
with the anchor samples, representing differences between
different trademarks. These positive and negative sample
pairs are input into the contrastive loss function to calculate
the loss value, guiding the model to learn to distinguish be-
tween similar and dissimilar trademarks. After each train-
ing step, the positive samples of the current batch are stored
in the dictionary queue as candidates for negative samples
in subsequent batches, while updating the dictionary con-
tent to ensure the timeliness of negative sample features.
Through this process, the model gradually learns to extract
essential features of trademarks and accurately distinguish



Encoder

Trainable Neural Network

Projection
Head

Momentum
Encoder

Momentum
Projection
Head

Data Augment B

Data Augment A

Trademark Batch Images

Dictionary Queue

Enqueue

Hard Negative
Sample

Selection

Minimize
Contrastive

Learning Loss

anchor samples

positive samples

negative samples

Figure 1: This work is based on an overview of the self-supervised learning framework. The framework includes an encoder,
a momentum encoder, a projection head, a dictionary queue, a hard sample selection method, and the InfoNCE loss function.
Training data is augmented to obtain different views of the same instance, which are input into the encoder and momentum
encoder to obtain anchor samples and positive samples, forming positive sample pairs. Anchor samples and other batch
samples from the dictionary queue selected through hard negative sample selection form negative sample pairs. Feature
representation is learned through the InfoNCE loss function, and samples from each training batch are stored in the dictionary
queue for negative sample selection in subsequent batches.

similarities, thereby improving the accuracy and efficiency
of trademark retrieval.

Evaluation Process. After training is completed, we use
the encoder in the framework to map trademarks into fixed-
length feature vectors. These feature vectors reflect the key
elements in the trademark images, and the degree of differ-
ence between these feature vectors can reflect the similar-
ity between the original trademark images. We encode all
trademarks into feature vectors and store them in a feature
pool. When retrieving trademarks, we measure the differ-
ence between the feature vector of the query trademark and
the features in the pool according to the specified metric
method, and sort them in ascending order of difference. We
then select the top N as the most similar images to achieve
the purpose of trademark retrieval.

3.2. Data Augmentation Strategy

We adopted the data augmentation strategy from the Mo-
CoV2 work and made targeted adjustments based on the
characteristics of trademark confusion cases. Given that a
significant proportion of trademark similarities stem from
rotational changes in graphics, we introduced a new aug-
mentation method on top of the original strategy: a ran-
dom rotation of -90 to 90 degrees with a probability of 0.15.
This improvement aims to enhance the model’s robustness
to rotational changes, thereby better identifying such similar
cases. Additionally, since the images in the METU dataset
have been pre-processed and cropped, and the information
within the retained area is crucial for determining trademark

similarity, we adjusted the random cropping strategy. We
increased the minimum scale of the random cropping range
relative to the original image from 0.2 to 0.5 to ensure more
key information is retained. Through these targeted mod-
ifications, our data augmentation strategy not only retains
the advantages of MoCoV2 but also better aligns with the
specific requirements of the trademark recognition task.

3.3. Loss Function and Regularization Term

MoCoV2 uses InfoNCE loss as the contrastive loss func-
tion, which is based on Noise Contrastive Estimation and
the principle of mutual information maximization. Its pur-
pose is to maximize the similarity between positive samples
while minimizing the similarity between negative samples,
thereby training the encoder’s feature extraction capability.
The formula is as Equation 2,

LNCE = − log
exp(q · k+/τ)∑K
i=0 exp(q · ki/τ)

(2)

where q represents the query feature, k+ represents the pos-
itive sample feature, ki represents the negative sample fea-
ture, τ is the temperature hyperparameter, and K is the
number of negative samples.

To further enhance the training effect, we introduced the
CO2 regularization term[45] and the KoLeo regularization
term[35].

CO2 Regularization Term. The CO2 regularization
term is a consistency loss designed for contrastive learn-
ing, aiming to address the ”class collision” problem—where



traditional methods tend to treat all negative samples as
equally dissimilar, while in reality, some of these samples
may have similar semantic content. The core idea of CO2
is to encourage consistent similarity distributions between
query samples and positive samples with respect to nega-
tive samples.

Specifically, CO2 introduces a bidirectional consistency
loss to constrain the following two aspects: the similarity
distribution between anchor samples and negative samples,
and the similarity distribution between positive samples and
negative samples. This bidirectional constraint ensures that
the model can more comprehensively understand the re-
lationships between samples during the learning process,
thereby improving the quality and discriminative ability of
feature representations. The mathematical expression of the
CO2 regularization term is as Equation 3.

Lcon =
1

2
(KL(P ||Q) + KL(Q||P )) (3)

In this expression, KL(·) is the symmetric Kullback-
Leibler (KL) divergence, P and Q represent the similar-
ity distributions of positive samples and query samples with
negative samples, respectively, defined as Equation 4.

P (i) =
exp(p · ni/τcon)∑
k exp(p · nk/τcon)

Q(i) =
exp(q · ni/τcon)∑
k exp(q · nk/τcon)

(4)

Here, p is the positive sample, q is the query sample, ni
is the i-th negative sample, and τcon is the temperature pa-
rameter. By introducing this regularization term, we expect
the model to learn more robust and generalized visual rep-
resentations.

KoLeo regularization term. The purpose of the KoLeo
regularization term is to promote uniform distribution of
features in a batch within the spherical space, which is
considered beneficial for subsequent quantization steps and
improves the performance of similarity search in high-
dimensional data. It is based on the Kozachenko-Leonenko
differential entropy estimator, with Equation 5,

LKoLeo = − 1

n

n∑
i=1

log(ρn,i) (5)

where ρn,i is the distance from the i-th sample to its nearest
neighbor within a batch.

To balance the impact of the loss function and the reg-
ularization term on the learning objective, we set weight
parameters λa and λb for these two regularization terms, as
shown in Equation 6,

L = LNCE + λa × Lcon + λb × LKoLeo (6)

where the selected value of λa is 0.02, and the value of λb
is 0.05.

3.4. Hard Negative Sample Selection

According to Robinson et al. [33], using too many easy
negative samples with low similarity to the query sample in
the contrastive learning process can easily lead to degener-
ate solutions, resulting in model performance degradation.
On the other hand, using hard samples with high similar-
ity to the query sample for contrastive learning can not only
reduce the possibility of degenerate solutions but also ac-
celerate training and make the model converge more easily.
Therefore, we introduced a hard negative sample selection
method to the dictionary queue to filter out hard negative
samples from the negative sample pool and exclude the in-
fluence of easy negative samples.

Specifically, inspired by the method proposed by Zhu et
al. [51], we use an online negative sample selection method
to evaluate the similarity between query samples and nega-
tive samples in the dictionary queue during training. Un-
like the L2 distance used in their work, we believe that
using cosine similarity to measure the similarity between
samples better aligns with the sensitivity to vector direction
in CBIR, and offers better computational efficiency when
dealing with high-dimensional feature vectors, making it
suitable for large-scale trademark datasets. When select-
ing negative samples, we calculate the cosine similarity be-
tween the anchor sample and negative samples, excluding
negative samples with similarity below a specified threshold
and retaining only the remaining negative samples for sub-
sequent optimization. In our experiments, we set the thresh-
old to 0.4. As shown in the ablation experiment results on
the bottom side of Figure 6, this simple online hard negative
sample selection method significantly improved the model’s
performance.

3.5. Encoders

The encoder is primarily consist of the feature extrac-
tion network (extractor) and the feature fusion network, as
shown in Figure 2.

Feature Extraction Network

The feature extraction network is used to extract key fea-
tures from trademark images, typically built on pre-trained
off-the-shelf networks. To facilitate fair comparison with
previous work, we made improvements on the ResNet50
backbone to fully leverage the effects of self-supervised
learning. Starting from trademark similarity confusion
cases, we believe that the basis for most similarity judg-
ments lies in the fine-grained feature elements in images,
such as subtle differences in graphic shape details and tex-
ture colors. This means that the feature vectors extracted
by the encoder need to reflect these fine-grained feature el-
ements. For the feature extractor, it should be able to focus
on the most distinctive features while suppressing the im-
pact of noise. Although traditional convolutional neural net-
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Figure 2: The architecture of encoders. The blocks in color
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works perform well in image classification tasks, they may
have limitations in handling such fine-grained visual differ-
ences. To address this, we introduce two attention modules
into the original network architecture: the ECA (Efficient
Channel Attention) Module and the CA (Coordinate Atten-
tion) Module.

ECA Module. In trademark retrieval tasks, the specific
color schemes and texture patterns contained in images are
key elements for determining similarity. We believe that
this crucial information is distributed across different chan-
nels of the feature map. To effectively capture and utilize
this information, we introduce a channel attention mecha-
nism to integrate cross-channel information and adjust the
importance of each channel, thereby highlighting key fea-
ture elements in trademark images.

Among the various channel attention methods, we chose
the ECA (Efficient Channel Attention) module proposed by
Wang et al. [44] to improve our backbone network. ECA is
a lightweight channel attention mechanism that, compared
to the classic channel attention network SENet, avoids di-
mensionality reduction, significantly reduces computational
complexity while maintaining the same performance, and
can adaptively adjust the kernel size of the field of view.
Its structure is shown in Figure 3. After the feature map
input, it first undergoes Global Average Pooling (GAP) to
capture global information of the entire feature map. Then,
the resulting 1× 1 scale feature is input into a 1D convolu-
tional layer to model the interdependencies between chan-
nels. The output of the convolution is then input into a Sig-
moid activation function to normalize the output between 0
and 1, thus obtaining channel weights. The channel weights
are multiplied channel-wise with the original input feature
map, and finally, the enhanced feature map is output.

Input Feature Map

GAP

1D Conv

Sigmoid

Channel-wise
Multiplication

Output Feature Map

Figure 3: ECA module.

The cross-channel information interaction range of ECA
is constrained by the convolution kernel size in 1D convo-
lution layer. According to the findings of related work on
grouped convolution [21, 47, 49], under the premise of a
fixed number of groups, high-dimensional channels tend to
benefit from larger convolution receptive fields, while low-
dimensional channels are more suitable for smaller recep-
tive fields. This observation inspired ECA to construct a
function mapping from the number of channel features to
the convolution kernel size, with the specific formula being
Equation 7,

k = ψ(C) =

∣∣∣∣ log2(C)γ
+
b

γ

∣∣∣∣
odd

(7)

where k is the size of the convolution kernel, C is the num-
ber of feature channels, γ and b are parameters set to 2 and 1
respectively, and |t|odd represents the nearest odd number to
t. In our experiments, we added the ECA module after each
Stage of the ResNet50 backbone, and calculated the size of
the 1D convolution kernel according to the output channel
number of each Stage to enhance the network’s perception
of color and texture. We believe that in the lower Stages, the
ECA module assists in enhancing basic texture and edge in-
formation of the image; while in the higher Stages, the ECA
module focuses on capturing complex shape and semantic
information.

CA Module. We also considered the degree of informa-
tion expression in different spatial positions of trademark
features and introduced Coordinate Attention (CA) from
Hou et al. [18] at the end of the backbone network. The
CA module focuses on capturing long-range spatial depen-



dencies and position information in feature maps, which
effectively complements the ECA module that mainly fo-
cuses on inter-channel relationships. In the trademark re-
trieval task, this complementarity manifests as: the ECA
module enhances the model’s perception of specific visual
elements in trademarks (such as colors, textures), while the
CA module helps the model understand the spatial arrange-
ment and global structure of these elements within the entire
trademark. The CA module performs spatial feature model-
ing along the horizontal and vertical directions of the image
to generate position-sensitive attention maps. Specifically,
given an input feature map X ∈ RC×H×W , the CA mod-
ule first generates feature descriptors zh and zw for the two
directions through pooling operations along the horizontal
and vertical directions as Equation 8.

zh = Poolh(X) ∈ RC×H×1

zw = Poolw(X) ∈ RC×1×W
(8)

these descriptors representing the feature distribution in
horizontal and vertical directions are processed through a
series of convolutions and activation operations to obtain
attention weights ah and aw for horizontal and vertical di-
rections as Equation 9.

ah = σ(f([zh; zw])) ∈ RC×H×1

aw = σ(g([zh; zw])) ∈ RC×1×W
(9)

Here, f and g are 1D convolution mapping functions, σ
represents the Sigmoid activation function, and [·; ·] denotes
feature concatenation. Finally, the output Y of the CA mod-
ule is obtained by multiplying the original feature map with
the generated attention weights as Equation 10.

Y = X · ah · aw (10)

As shown in the ablation experiment table on the right
side of Figure 4.4, by incorporating these two attention
mechanisms, the model’s retrieval evaluation metric perfor-
mance has significantly improved, while the overall com-
putational overhead has not increased substantially. This
demonstrates the effectiveness of improving the model
through lightweight attention mechanisms.

Feature Fusion Network

Considering that trademark design typically includes
multi-scale and multi-level visual elements, ranging from
simple local shape textures to advanced global semantic in-
formation, we believe that a single-level feature representa-
tion is insufficient to comprehensively capture the key ele-
ments of trademarks. Therefore, we constructed a feature
fusion network that receives output features from ECA at
various stages and the CA module at the end of the back-
bone network to integrate information from different scales

and abstraction levels, forming an effective feature vector.
Our feature fusion network is consist of AWFF and LAFF.

Softmax Weights
Sum

1×1
Conv Block

Upsample Upsample

Merged Feature

1×1
Conv Block

1×1
Conv Block

Figure 4: AWFF module structure.

Adaptive Weighted Feature Fusion (AWFF) Block.
We introduce a module called AWFF for preliminary fu-
sion of features from different levels. The core idea is
to adaptively fuse multi-scale features through learnable
weight parameters. As shown in Figure 4, given features
f1, f2, f3 from stages, we use the large-scale feature map
f1 from the lowest layer as a reference and upsample the
other two feature maps to align their scales. Then, we in-
put these three feature maps into a 1D convolutional layer
to adjust their channel numbers, followed by batch normal-
ization and ReLU activation functions, obtaining f ′1, f

′
2, f

′
3

respectively. For feature fusion, considering computational
complexity, we do not use self-attention or cross-attention
mechanisms with numerous parameters. Instead, we use
three learnable parameters normalized by Softmax as fea-
ture attention weights for weighted fusion of the processed
features, as shown in Equation 11,

O = h(p1) ∗ f ′1 + h(p2) ∗ f ′2 + h(p3) ∗ f ′3 (11)

where pi is a learnable parameter, h(·) is the Softmax func-
tion, and f ′1, f

′
2, f

′
3 are the features of the three inputs af-

ter upsampling, 1D convolution, batch normalization, and
activation function processing. In our experiments, we in-
put the output features of the four stages of the feature ex-
traction network into this module in groups of three adja-
cent features in sequence, setting the output feature channel
numbers to 256, 512, and 1024. AWFF adaptively adjusts
the importance of each feature map, and the ablation ex-
periment results in the table show that AWFF significantly



improves the performance of various metrics with only a
small cost.
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...
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Figure 5: LAFF module structure.

Lightweight Attention Feature Fusion (LAFF) Block.
We use the LAFF module proposed by Hu et al. [20] to
fuse the feature branches preliminarily fused by AWFF into
the final feature vector. Compared to the commonly used
multi-head self-attention (MHSA), LAFF is not only sim-
pler and has fewer parameters, but also demonstrates better
fusion effects when facing features with high heterogeneity.
Its structure is shown in Figure 5. Given the input 1D fea-
tures {f1, f2, ..., fk}, where fi ∈ R1×di , they are adjusted
through a linear layer to dimensions of 1 × d, where d is
the specified number of hidden layer neurons. Then, the
tanh activation function is used to map the feature range
to [-1, 1] and add nonlinear expression. These features
are concatenated to form a k × d dimensional feature in-
put to a d × 1 linear layer, and a k × 1 weight vector is
generated through Softmax. Finally, this weight vector is
element-wise multiplied with the concatenated features to
obtain the final fused feature. In our experiments, we obtain
one-dimensional features by applying average pooling with
a target scale of 1 to the output features of AWFF, and in-
put them into the LAFF module with d = 512 hidden layer
neurons to fuse and obtain the final vector. Ablation exper-
iments show that the LAFF module significantly improves
evaluation metrics, proving its effectiveness.

4. Experimental Results

This chapter provides a detailed description of the exper-
imental evaluation process for our proposed method. We
designed a series of comprehensive experiments to validate
the effectiveness and superiority of our approach. In Sec-
tion 4.1, we introduce the datasets and evaluation metrics
used, providing a foundation for interpreting subsequent ex-
perimental results. Section 4.2 elaborates on the network
parameter settings and training conditions, ensuring the re-
producibility of the experiments. In Section 4.3, we present
the experimental results of our proposed method on evalu-
ation metrics and conduct a comparative analysis with ex-
isting state-of-the-art methods to highlight the advantages
of our approach. To gain an in-depth understanding of the
contributions of each component in our proposed method,
Section 4.4 presents detailed ablation experiments. Section
4.5 visually demonstrates the practical performance of our
method through qualitative analysis.

4.1. Evaluation on Datasets

Dataset. Our work utilized two datasets, namely CNT
(China Trademark) and METUv2.

CNT (China Trademark) is a trademark dataset we con-
structed that includes similarity information annotations. It
is used to implement pre-training of the encoder to stabi-
lize the subsequent self-supervised training process. We
use web crawlers to collect 80,000 trademark review docu-
ments with a total of 252,000 images from the China Trade-
mark website. We first filtered out trademark image pairs
cited in documents judged as similar from these review doc-
uments, then removed invalid trademarks that were dam-
aged or lacked similar trademark citations. Next, we elim-
inated duplicate trademarks by calculating file hash values
and merged their similar trademark citation images. Finally,
we manually filtered out trademarks containing only text
elements from these trademark images and cropped the re-
maining trademarks to remove excess white edges and high-
light the main content. Ultimately, we obtained 14,715 valid
trademark data, which were categorized into 3,734 similar-
ity sets, each represented by a numerical code. The corre-
spondence between images and sets is recorded in a table.
It is worth noting that pre-training on CNT has minimal im-
pact on the final evaluation metrics.

We use METUv2 dataset for subsequent self-supervised
training and retrieval effect evaluation. METUv2 dataset
was constructed by Tursun et al. [42], which has 923,343
trademarks. The dataset is consist of 922,926 unlabeled im-
ages and 417 images with category labels as the query set.
The unlabeled dataset is used for self-supervised training,
while the labeled query set is categorized into 35 groups
based on similarity. In each group of the query set, there are
10 to 14 images, which are similar to each other based on
domain experts’ opinions. The query set is used to evaluate



the retrieval model’s performance.
Evaluation Metrics. We adopted the same evaluation

metrics as in Tursun’s work [42], namely mAP@k (mean
Average Precision at k) and NAR (Normalized Average
Rank). mAP effectively combines the precision and recall
of the retrieval system, and its formula is shown as Equation
12,

mAP@k =
1

|Q|
∑
q∈Q

AP@k(q) (12)

where Q is the size of the query set, AP@k is the Average
Precision@k for each query q.
AP@k is shown as Equation 13,

AP@k(q) =

k∑
i=1

P (i)× rel(i)

min(m, k)
(13)

wherein P (i) represents the precision at the i-th position
(Precision at i), equal to the number of relevant images in
the top i results divided by i. In this formula, rel(i) is a
binary function that equals 1 if the item at rank i is relevant,
and 0 otherwise. This helps to only count the precision for
relevant items. The parameter k represents the number of
top results considered in the evaluation.

NAR represents the average ranking of the retrieved im-
age among all images, used to evaluate the overall ranking
quality of the model, shown as Equation 14,

NAR =
1

N ·Nrel

(
Nrel∑
i=1

Ri −
Nrel(Nrel + 1)

2

)
(14)

where N represents the size of the entire dataset, Nrel is the
number of relevant images with the same label as the image
to be retrieved, and Ri is the similarity ranking of these
relevant images. Regarding the significance of evaluation
metrics, we generally consider that the higher the value of
mAP@k, the better the retrieval performance of the model’s
top k results, and the smaller the value of NAR, the better
the model’s overall data retrieval performance.

4.2. Training-Evaluation Protocol

The training process of the proposed method is consist of
two phases in chronological order: the encoder pre-training
phase and the self-supervised training phase.

Pre-training phase. In this phase, we fine-tune the
model using the CNT dataset and employ CosFaceLoss[43]
for training. For parameters, we scale the image size to
160×160, set the learning rate to 4e-4, total learning epochs
to 40, and batch size to 64.

Self-supervised Training Phase. In this phase, we use
the METUv2 dataset for self-supervised learning on the
MoCoV2 framework, employing the InfoNCE loss function

with regularization term for training. For parameters, we
similarly scale the images to 160 × 160, set the learning
rate to 2.5e-4, and configure a total of 30 learning epochs
with a batch size of 256. The MoCoV2 dictionary queue
length is set to 65536, and the output feature dimension of
the Projection Head is set to 128.

Throughout the training process, we employ the low-cost
CAME[29] as the optimizer. The learning rate scheduling
strategy combines warm-up and cosine annealing as pro-
posed by Loshchilov et al. [27] Specifically, during the
initial 5 epochs of training, the learning rate gradually in-
creases to the set initial value, a process known as warm-
up. In the subsequent training phase, the learning rate grad-
ually decreases following the shape of a cosine function, a
process known cosine annealing. This strategy allows the
model to maintain stability in the early stages of training
and gradually fine-tune in the later stages to achieve optimal
results. Notably, during the self-supervised training phase,
we enable the restart strategy: every 10 epochs constitute
one cosine cycle, and at the beginning of each new cycle,
the learning rate is reset to 0.9 times that of the previous
cycle. Due to hardware limitations, we adopt BF16 mixed-
precision training, which allows us to maximize the number
of images processed per batch while ensuring training qual-
ity.

Evaluation Phase. To apply the trained models on new
samples, following the proposal in [7], we set the batch size
to 1 and remove the Projection Head, which is unnecessary
for the evaluation phase, using only the output of the last
layer of the encoder as the trademark feature vector. We en-
able PCA whitening as a post-processing step for evaluation
data to reduce redundancy between channels, using 20,000
randomly sampled images from METUv2 to learn PCA, se-
lecting 256 principal components to retain. Faiss was used
to calculate and sort the distances of similar feature vectors
based on the FlatIP index. Details of our evaluation results
are presented in Table 1 and Figure 6.

4.3. Comparative Analysis

We compare our proposed method based on self-
supervised learning and hard sample selection with recent
state-of-the-art trademark retrieval methods on the METU
trademark dataset, as shown in Table 1. Inspired by the
work of [41], we categorize these methods into four types:
handcrafted features, fine-tuning pre-trained deep features,
pre-training single-pass, and self-supervised learning. Our
method belongs to the last category and achieves state-of-
the-art results in NAR and MAP@100. Additionally, our
method maintains a relatively low feature dimension of 256,
which is consistent with previous SOTA methods.



Method DIM ↓ NAR ↓ MAP@100 ↑
hand-crafted features

Feng et al. [13] 6,224 0.083 -
Tursun et al. [39] 10,000 0.062 -

fine-tuned off-the-shelf deep features

Perez et al. (vis) [30] 4,096 0.066 -
Perez et al. (con) [30] 4,096 0.063 -
Perez et al. (vis, con) [30] 4,096 0.047 -
Yavuz et al. (Smooth-AP Loss, S.Color) 512 0.040 -

pre-trained single pass [50, 24]

SPoC [2, 40] 256 0.120 18.7
CRoW [23, 40] 256 0.140 19.8
R-MAC [38] 256 0.072 24.8
MAC [38, 40] 512 0.120 21.5
Jimenez [22, 40] 256 0.093 21.0
CAM MAC [40] 256 0.064 22.3
ATR MAC [40] 512 0.056 24.9
ATR R-MAC [40] 256 0.063 25.7
ATR CAM MAC [40] 512 0.040 25.1
MR-R-SMAC w/UAR [41] 256 0.028 31.0

self-supervised learning

Cao et al. [4] 128 0.051 -
Ours 256 0.025 37.4

Table 1: Our method compared to related work.

4.4. Ablation Study

To gain a deeper understanding of the importance and
contribution of each component in our proposed method,
we conducted a series of ablation experiments. These ex-
periments aimed to decompose the components used in
the method, set up different component combination cases,
and sequentially evaluate the impact of each component on
overall performance to validate our design choices. We
performed all ablation experiments on METUv2, using the
same training and testing protocols as in the main experi-
ments to maintain consistency. Evaluation metrics included
Normalized Average Rank (NAR) and Mean Average Pre-
cision at 100 (MAP@100).

We divide the proposed method into the following com-
ponents: Self-Supervised Learning (SSL), Hard Negative
Sample Selection (HNSS), Regularization Terms (Reg),
Efficient Channel Attention (ECA), Coordinate Atten-
tion (CA), Adaptive Weighted Feature Fusion (AWFF),
LightWeight Atentional Feature Fusion (LAFF), and PCA
Whitening (pcaW). We observe performance changes by
progressively adding these components. Figure 6 shows the
detailed results of the ablation experiments.

From the experimental results, we can clearly see the
contribution of each component to performance. From the
experimental results, we can clearly see the contribution of
each component to performance.

To begin with, using only self-supervised learning (SSL)
as the baseline model, we achieved a MAP@100 of 29.4
and a NAR of 0.069. After introducing hard negative
sample selection (HNSS) method, the performance signif-
icantly improved, which indicates that emphasizing chal-
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Case Components NAR ↓ MAP@100 ↑
SSL HNSS Reg ECA CA AWFF LAFF pcaW

1 ✓ 0.069 29.4
2 ✓ ✓ 0.059 32.1
3 ✓ ✓ ✓ 0.053 33.6
4 ✓ ✓ ✓ ✓ 0.047 34.1
5 ✓ ✓ ✓ ✓ ✓ 0.051 35.6
6 ✓ ✓ ✓ ✓ ✓ ✓ 0.046 36.5
7 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.042 37.4
8 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.025 37.4

Figure 6: Ablation experiments for various components of
the method proposed in this paper. The case ID is cor-
respondent between the scatter plot and the table. In the
plot, the combination of lower NAR (right) and higher
MAP@100 (upper) means better performance.

lenging samples can bring substantial improvements to the
effectiveness of self-supervised learning. With the addition
of regularization (Reg), the model’s generalization ability
was enhanced, reflecting the important role of feature con-
sistency and distribution uniformity in contrastive learning
tasks.

Furthermore, the improvement by introducing efficient
channel attention (ECA) mechanism proves the significance
of channel attention on enhancing trademark image feature
extraction. The coordinate attention (CA) caused a slight
increase in NAR but brought a significant improvement to
MAP@100, indicating the important impact of spatial at-
tention on trademark retrieval effectiveness. AWFF and
LAFF further improved performance, highlighting their ad-
vantages in feature fusion.

Finally, using PCA whitening (pcaW) significantly im-
proved NAR performance without reducing MAP@100
performance, which means the critical role of PCA whiten-
ing in removing feature redundancy to improve dimensional
effectiveness.

4.5. Qualitative Results

To intuitively demonstrate the effectiveness of our pro-
posed method, we selected three typical query samples and



Table 2: Retrieval effect diagram of sample query images from the METU dataset. The leftmost column shows the sample
query images, and the right side displays the rank and similarity of images of the same category as the query retrieved by the
method in this paper.

Query Same Category Samples

Rank 1 2 3 5 8 11 18 34 89 201
Sim 0.997 0.864 0.777 0.755 0.741 0.719 0.716 0.695 0.666 0.631

Rank 1 2 3 4 6 9 13 44 82 184
Sim 0.972 0.883 0.844 0.772 0.682 0.678 0.675 0.660 0.636 0.620

Rank 1 2 4 7 42 57 231 655 1102 1586
Sim 0.928 0.770 0.747 0.717 0.658 0.642 0.534 0.505 0.489 0.453

Table 3: Query sample compare with category-inconsistent
images

Query Category-inconsistent Images

Rank 3 34 40

presented the retrieval results obtained using our method, as
shown in Table 2. In the table, the leftmost column shows
three trademark query samples from the METU query set,
while the right side displays 10 related samples of the same
category retrieved from the dataset, along with their sim-
ilarity rankings and normalized cosine similarities relative
to the query samples.

From the results, we can observe several important infor-
mations: These related samples of the same category as the
query samples are ranked high and are relatively concen-
trated within the top 100 rankings, which proves the broad
applicability of our method in trademark retrieval for dif-
ferent elements. Secondly, the retrieval results in the second
row indicate that our method is insensitive to changes in text
content. This means that our method can selectively iden-
tify and focus on key element areas while suppressing text
content with minor contributions [40]. In addition, as shown
in the Table 3, even when the retrieval results in the third
row are relatively less satisfactory, the category-inconsistent
images ranked relatively high still exhibit significant visual

similarity to the query samples. This phenomenon is partic-
ularly evident in the retrieval results of the third row, fully
proving that our model can effectively capture the core vi-
sual features of trademarks.

These qualitative results strongly demonstrate the effec-
tiveness and practicality of the method proposed in this pa-
per. Our method not only accurately identifies similar trade-
marks but also exhibits the ability to handle complex vi-
sual features, providing a powerful solution for trademark
retrieval and similarity analysis tasks.

5. Conclusion

This paper proposes a large-scale trademark retrieval
method using self-supervised learning to address the lack
of annotated training data. By leveraging self-supervised
contrastive learning on unannotated trademark data, our ap-
proach enables the encoder to learn essential feature repre-
sentations and improve retrieval performance.

Our key contribution is an improved MoCoV2 frame-
work with a hard negative sample selection strategy, which
boosts model representability and mitigates degenerate so-
lutions. We further optimize the encoder by integrat-
ing lightweight attention mechanisms (ECA, CA) and
multi-scale feature fusion techniques (AWFF, LAFF), en-
abling better focus on cross-channel and spatial informa-
tion. Experimental results on the METUv2 dataset demon-
strate state-of-the-art performance, with NAR of 0.025 and
mAP@100 of 37.4. Ablation studies validate the effective-
ness of each component.

Our method benefits intellectual property offices by im-
proving trademark application processing efficiency and ac-



curacy, while helping applicants better understand existing
trademarks to reduce rejection risks. It also supports market
regulation by identifying potential infringement.

Despite the significant progress, there are still potential
for future improvement. Future work is expected to proceed
in three aspects as follows.

(1) Feature extraction network is expected to have
futher improvements, mainly by using more powerful back-
bone networks such as Vision Transformer and Efficient-
NetV2, and applying model compression and knowledge
distillation techniques to reduce the number of model pa-
rameters and computational complexity. This will help fur-
ther enhance the model’s performance and efficiency, mak-
ing it more suitable for large-scale trademark retrieval tasks.
(2) Feature fusion techniques still has potential to be re-
vised. Although the current AWFF and LAFF modules
have achieved good results, there is still room for optimiza-
tion. We will explore more advanced feature fusion meth-
ods, such as dynamic feature fusion or attention-guided fu-
sion mechanisms, to better integrate multi-scale and multi-
level feature information. (3) Ensembling our method
with other modalities, such as text descriptions or trade-
mark metadata, to achieve a more comprehensive and ro-
bust trademark retrieval method may be useful. Multimodal
fusion will bring additional semantic information to trade-
mark retrieval, helping address cases that are difficult to dis-
tinguish based solely on visual features.
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