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Abstract

In the context of unsupervised domain adaptation
(UDA) for point cloud classification, deep classifiers
training on data from source domain (e.g. clean syn-
thetic point clouds) cannot perform well on those from
target domain (e.g. noisy real-world ones), which can
be caused by a significant domain discrepancy of point
representations. For closing domain gap, recent algo-
rithms adopt the popular self-training strategies (e.g.
self-paced self-training) but suffer from lack of imposing
structural constraints into representation learning. To
tackle this issue, we propose a novel dual-augmentation
relational learning scheme (i.e. introducing consistency
regularization on augmented samples in both observa-
tion and feature space) to incorporate low-dimensional
manifolds to encourage domain-invariant representa-
tions. Moreover, we design a novel filtering mechanism
that adaptively adjusts thresholds for each semantic cat-
egory based on confidence distributions and validates
neighborhood consistency to further mitigate feature
ambiguities. Comprehensive experiments on the widely-
used PointDA-10 dataset demonstrate that our method
achieves the state-of-the-art performance.

Keywords: Unsupervised domain adaptation point
cloud classification low-dimensional manifolds pseudo-
label refining.

1. Introduction

Point cloud classification has garnered significant atten-
tion due to its wide range of applications, including au-
tonomous driving, 3D reconstruction, and robotics. How-
ever, one of the main challenges in this field arises when

deep learning models trained on synthetic data, such as
clean point clouds from CAD models [2, 26], are applied
to noisy real-world point clouds [5]. The domain discrep-
ancy between synthetic and real-world data often leads to
significant performance degradation. This issue is par-
ticularly pronounced in unsupervised domain adaptation
(UDA) [15], where no labels are available in the target do-
main. UDA aims to bridge the domain gap by transferring
knowledge from a labeled source domain to an unlabeled
target domain.

Most existing methods [1, 7, 13, 23, 31] employ self-
supervised tasks to pretrain a model, which is then used
to generate pseudo-labels for the unlabeled target domain
samples. This is followed by a self-training process that re-
fines the model’s predictions iteratively. In this process, two
critical aspects are the generation and filtering of pseudo-
labels. However, these methods lack the imposition of
structural constraints in representation learning, which lim-
its their ability to effectively capture domain-invariant fea-
tures, thereby affecting the accuracy of pseudo-label gener-
ation. Moreover, they often overlook the optimization of the
filtering mechanism in later stages, which can cause issues
during self-training, such as failing to assign pseudo-labels
to categories with lower confidence.

To address these challenges, we propose two key innova-
tions. First, we introduce a low-dimensional manifolds con-
sistency constraint inspired by ReSSL [30], which helps re-
duce domain discrepancies by capturing the relational struc-
ture in the representation space. By comparing the similar-
ity distributions in both feature and prediction spaces be-
tween weakly and strongly augmented samples, this strat-
egy reveals the consistency constraint of low-dimensional
manifolds and promotes feature alignment, further improv-
ing the quality of the initial pseudo-labels. Furthermore, we
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adopt a dynamic growth strategy to progressively refine fea-
ture representations by aligning classification predictions
across augmented versions of the data, thereby enhanc-
ing the model’s generalization capability. Second, we de-
sign a novel pseudo-label filtering mechanism that improves
the reliability of the labels generated during self-training.
Unlike prior methods that apply a uniform high threshold
across all categories, we employ an adaptive thresholding
mechanism that adjusts based on the confidence distribu-
tions for each semantic category, ensuring pseudo-labels are
generated across all classes. To further mitigate ambiguity,
we implement neighborhood consistency validation, which
evaluates the consistency of pseudo-labels within a local
neighborhood, thereby filtering out unreliable samples and
selecting more accurate ones for self-training.

Our approach is evaluated on the widely-used PointDA-
10 [20] dataset, where it achieves state-of-the-art perfor-
mance, demonstrating its effectiveness in addressing do-
main discrepancies in point cloud classification. The key
contributions of this paper are as follows:

• We propose a dual-augmentation relational learning
scheme to incorporate low-dimensional manifolds to
encourage domain-invariant representations, thereby
improving the accuracy of pseudo-label generation.

• We design a novel filtering mechanism that improves
pseudo-label reliability through adaptive thresholds
and neighborhood consistency validation, ensuring the
effectiveness and stability of the self-training process.

• Our experimental results on a widely-recognized
benchmark demonstrate that our method achieves
state-of-the-art performance in unsupervised domain
adaptation for point cloud classification.

Source codes and pre-trained models will be released1.

2. Related Work

2.1. Deep Learning on Point Clouds

Point clouds are sets of points that effectively capture
three-dimensional spatial information in a simple and di-
rect way, making classification an essential task in point
cloud analysis. However, due to their irregular structure
and permutation invariance, traditional 2D deep learning
methods cannot be directly applied to point clouds. To ad-
dress this, several deep neural networks designed specifi-
cally for point clouds have been introduced. Qi et al. [18]
pioneered deep learning by directly processing raw point
clouds, though it lacked the ability to capture local geomet-
ric features. To overcome this limitation, Qi et al. [19] in-
tegrated both global and local geometric information in a

1https://github.com/Vencoders/PCUDA-MCC

hierarchical structure. Wang et al. [27] created a feature
space graph and continuously updates it to aggregate fea-
tures. Zhao et al. [29] introduced the Transformer architec-
ture for point cloud processing, achieving notable perfor-
mance across various benchmarks.

2.2. Unsupervised Domain Adaptation

Unsupervised domain adaptation (UDA) for 2D im-
ages has been extensively researched for many years, with
two primary strategies emerging: minimizing the domain
discrepancy proxy [6, 10, 14, 16] and adversarial train-
ing [8, 17, 21]. The first approach focuses on measur-
ing and reducing the statistical differences between do-
mains, while the second uses adversarial techniques to align
feature distributions through a minimax game at the do-
main or class level. Furthermore, pseudo-labeling tech-
niques [4, 9, 12, 24] are used to generate pseudo-labels
for target domain data, which helps refine the model and
narrow the domain gap. Motivated by advancements in
the image domain, UDA has been extended to the point
cloud field as well. For example, Qin et al. [20] were
the first to apply UDA techniques to point cloud classi-
fication, employing adversarial training to align features
across different domains. Achituve et al. [1] introduced the
deformation-reconstruction task as a self-supervised learn-
ing strategy, aimed at extracting informative representa-
tions by capturing rich local geometric details. Building on
this, Zou et al. [31] introduced a deformation localization
task and also predicted the rotation angle of mixed point
clouds. Fan et al. [7] identified both global and local pat-
terns in point clouds by predicting scaling factors and re-
constructing regions after compression. Shen et al. [23]
employed the learning of geometry-aware implicit fields as
a self-supervised method. Liang et al. [13] encoded point
clouds by predicting three different local properties. Wang
et al. [28] improved domain-invariant point cloud represen-
tations by progressively concentrating on key points based
on geometric consistency. Katageri et al. [11] leveraged
multimodal contrastive learning to improve the separation
of categories and employed optimal transport to narrow the
domain gap. Most of these methods lack structural con-
straints in representation learning, which is the focus of this
paper.

2.3. Pseudo-labels in Self-training on Point Clouds

Self-training is a method which a model learns from its
own predictions by generating pseudo-labels for unlabeled
data and using them for further training. This process en-
ables the model to adapt to new domains, progressively re-
ducing the domain gap. The success of self-training de-
pends on the accuracy of pseudo-labels, which is particu-
larly crucial in point cloud tasks. To improve its effective-
ness, various methods have been proposed. For instance,



Figure 1. The framework of our proposed method for unsupervised domain adaptation on point clouds.

Zou et al. [31] utilized a self-training approach with self-
paced learning to ensure high-quality pseudo-labels are se-
lected for each category. Fan et al. [7] introduced a vot-
ing mechanism for pseudo-label generation, effectively im-
proving their reliability. Liang et al. [13] employed an
entropy-guided self-paced learning approach, selecting tar-
get samples with low prediction probability entropy. Chen
et al. [3] introduced a quasi-balanced self-training method
that dynamically adjusted the sample ratio to maintain a
balanced proportion of pseudo-labeled samples across cat-
egories. These methods apply uniform strict criteria across
all categories, which can lead to categories with lower over-
all confidence lacking pseudo-labeled samples. To address
this issue, we adaptively set thresholds based on the charac-
teristics of each category and perform additional filtering to
select more reliable samples.

3. Method

In this section, we first introduce and formulate the prob-
lem of unsupervised domain adaptation for point clouds in
Sec. 3.1. Next, we introduce a low-dimensional manifolds
consistency constraints to better capture domain-invariant
features in 3.2. Meanwhile, we introduce a structural con-
sistency constraint that is gradually incorporated in a dy-
namic manner in Sec. 3.3. Furthermore, we present a novel

pseudo-label filtering mechanism in Sec. 3.4. Finally, the
overall loss function and training strategy are described in
Sec. 3.5.

3.1. Problem Formulation

In the task of unsupervised domain adaptation (UDA)
for point cloud classification, we are given an unlabeled
target domain Dt = {(P t

i )}
nt
i=1 with nt unlabeled sam-

ples and a labeled source domain Ds = {(P s
i , y

s
i )}

ns
i=1

with ns labeled samples, where ysi denotes the class la-
bel of the i-th source sample P s

i , and its value lies in the
shared semantic label space Y = {1, · · · , C}, which is
common to both the source and target domains. A point
cloud P ∈ RN×3 is composed of N points, where ev-
ery point is represented by three-dimensional spatial coor-
dinates, and C is the number of categories. Our goal is to
learn a domain-invariant mapping function Φ : P → Y
that accurately classifies unlabeled target samples, where
Φ = ΦCls ◦ ΦFea. The feature encoder ΦFea : R3 → RD

maps the input P to a D-dimensional feature representa-
tion, and ΦCls : RD → [0, 1]C is a classifier that maps this
feature to a probability distribution across C classes. The
framework of our method is presented in Figure 1.



3.2. Low-dimensional Manifolds Consistency Constraint

Low-dimensional manifolds consistency constraints in-
troduced through relational learning encourage the model
to capture the structural distribution of features within the
representation space. This approach aids in bridging do-
main gaps and enhances the accuracy of pseudo-labels gen-
erated for unlabeled target samples. Building on this idea,
we propose a dual-augmentation strategy that operates in
both observation and feature spaces. This strategy simu-
lates various disturbances encountered during point cloud
acquisition in the observation space while simultaneously
enriching the feature representations in the feature space.
Observation Space. In the observation space, we simulate
disturbances in point cloud collection by introducing differ-
ent types of noise: Gaussian noise, salt-and-pepper noise,
and distance attenuation noise. Gaussian noise simulates
measurement errors by introducing random variations to
each point’s coordinates. Salt-and-pepper noise randomly
selects a proportion of points and sets their coordinates
to extreme values, representing occasional extreme errors.
Distance attenuation noise reflects the decreasing accuracy
of depth sensors with distance by increasing the noise level
proportionally to the point’s distance from the sensor. Addi-
tionally, we apply common data augmentation techniques to
distinguish between weak and strong augmentations, such
as cropping and scaling.
Feature Space. Observation space augmentation primarily
focuses on transformations at the data level, while feature
space augmentation operates on the high-level features ex-
tracted by the model. Augmenting in the feature space en-
ables direct manipulation of high-dimensional feature rep-
resentations, generating more diverse features and improv-
ing the model’s adaptability to different data distributions.
After extracting features with the feature extractor, we apply
Gaussian noise within the feature space to further enhance
these representations. Unlike observation space augmenta-
tion, this directly affects high-level representations, allow-
ing the model to capture more abstract variations beyond
the data level. This enhances the model’s noise robustness,
leading to greater stability and reliability in real-world sce-
narios.

Specifically, two augmented versions, Pw
i = Augw(Pi)

and P s
i = Augs(Pi), of the input point cloud Pi are

first generated through observation space augmentation,
where Augw(·) denotes weaker augmentation methods, and
Augs(·) applies stronger augmentation techniques. Sub-
sequently, the corresponding feature embeddings are com-
puted:

zw
i = g(α · ΦFea(P

w
i ) + β), (1)

zs
i = g(α · ΦFea(P

s
i ) + β), (2)

where g(·) is a linear projection layer. The parameters
α ∼ N (1, σ1) and β ∼ N (0, σ2) are sampled from two

Gaussian distributions, with σ1 and σ2 as scalar hyper-
parameters. We first compute the similarity distribution of
weakly and strongly augmented samples relative to the sam-
ples in the memory bank:

rwi =
exp(Sim(zw

i , zk)/τ1)∑J
j=1 exp(Sim(zw

i , zj)/τ1)
, (3)

rsi =
exp(Sim(zs

i , zk)/τ2)∑J
j=1 exp(Sim(zs

i , zj)/τ2)
, (4)

where zk represents the k-th sample in the memory
bank which stores the most recent J samples, similar to
ReSSL [30], using a First-In-First-Out (FIFO) strategy. The
function Sim(·) computes the similarity between two fea-
tures. The temperature coefficients, τ1 and τ2, with τ1 < τ2,
are used to control the sharpness of the target distribution,
where a lower τ1 produces a sharper distribution. Our goal
is to enforce structural consistency between the two similar-
ity distributions using a cross-entropy loss function, defined
as follows:

Lrl = − 1

ns + nt

ns+nt∑
i=1

rwi log(rsi ). (5)

To further strengthen the structural constraints, we also
apply a consistency constraint to align the classification
predictions of weakly and strongly augmented samples,
thereby enhancing consistency among different augmented
versions. This consistency constraint also employs a cross-
entropy loss function, defined as:

Lcr = − 1

ns + nt

ns+nt∑
i=1

pw
i log(ps

i ), (6)

where pw
i and ps

i represent the classification predictions of
the weakly and strongly augmented versions of the input
sample, respectively. The two loss functions reveal the con-
sistency constraints of low-dimensional manifolds, bridging
domain gaps and enhancing the accuracy of pseudo-labels
generated for unlabeled target samples.

3.3. Structural Constraint under Dynamic Growth

In the early stages of training, the model’s performance
is suboptimal, leading to significant differences in classi-
fication predictions between the two augmentations. Di-
rectly applying structural consistency constraint at this stage
would introduce considerable noise. Therefore, we adopt a
dynamic growth strategy, gradually increasing the weight
in proportion to the current training epoch. Specifically, the
linear weight is defined as:

λl =
e

E
, (7)



Figure 2. Dynamic growth weight for structural consistency con-
straint is represented in green.

where e is the current epoch, and E is the total number
of epochs. As training progresses, the weight of structural
consistency constraint gradually increases, ensuring that the
model is not overly constrained in the early stages, allow-
ing for more stable convergence. However, we found that
despite the lower initial weight, the noise introduced at the
beginning remains high, leading to unstable training. There-
fore, we apply a power function to further reduce the weight
of consistency constraint during the early stages of train-
ing, allowing better control over its intensity and improving
training stability. Specifically, the non-linear weight is de-
fined as:

λ1
nl = (λl)

2, (8)

the weight can be significantly reduced at the beginning, ap-
proaching nearly zero, and gradually increasing as training
progresses, leading to more stable training. However, the
rapid increase of λ1

nl in the later stages of training causes
the weight to grow too quickly. To address this, we modify
the power function to ensure a more gradual increase in the
weight towards the end of training, avoiding negative im-
pacts on the model. We introduce a new non-linear weight,

λ2
nl =

√
λl. (9)

A notable aspect of λ2
nl is that it grows rapidly during the

early stages of training but slows down in the later stages.
As shown in Figure 2, we then combine λ1

nl and λ2
nl to de-

fine the final non-linear weight as:

λnl = min(λ1
nl,mλ2

nl), (10)

where m controls when the weight growth slows down, al-
lowing for more precise adjustment of the regularization
strength compared to the sigmoid function.

3.4. Dynamic Pseudo-Label Filtering for Self-Training

To improve the accuracy of pseudo-label generation, the
model also utilizes labeled samples from the source domain
for supervised learning:

Ls
cls = − 1

ns

ns∑
i=1

C∑
c=1

1[c = ysi ](log p
s
i,c), (11)

where psi,c represents the predicted probability of the c-th
class, and 1[·] is an indicator function.
Adaptive Thresholds. Self-training is a commonly used
strategy that can further reduce the domain gap by assign-
ing pseudo-labels to reliable samples selected from the un-
labeled target domain. In traditional self-training methods,
pseudo-label assignment typically relies on a uniform high
confidence threshold, where only samples with confidence
scores above this threshold receive pseudo-labels. While
this approach helps to select high-quality pseudo-labels, ap-
plying the same threshold across all classes can result in
fewer or no pseudo-labels for classes with lower overall
confidence, thereby hindering their learning. Therefore, we
propose an adaptive thresholding method that adjusts the
threshold based on the specific confidence distributions of
each category. Specifically, the average confidence of all
samples within a class is used as its threshold, allowing
classes with higher overall confidence to have higher thresh-
olds, while those with lower confidence are assigned lower
thresholds. The threshold for class c is:

θc =
1

|nc|

|nc|∑
i=1

pti,c s.t. argmax(pt
i) = c, (12)

where pti,c represents the confidence of the i-th sample in
class c, and nc represents the number of samples in that
class.

However, relying solely on the average confidence of
each class to set thresholds can introduce new challenges:
a threshold that is too low may increase noisy labels, while
one that is too high can reduce available samples, both of
which hinder effective model training. To address this, we
improve the threshold setting by narrowing the gap between
thresholds across different classes. Specifically, we cal-
culate the average of all class thresholds and adjust each
class’s threshold to move closer to this average.

θ =
1

C

C∑
i=1

θi, (13)

θ̂c = (1− γ) · θc + γ · θ, (14)



Figure 3. Illustration of Neighborhood Consistency Validation.

where θ represents the average threshold across all classes,
and γ ∈ [0, 1] is a hyper-parameter used to control the prox-
imity of each class’s threshold to the average. A larger γ
pulls the adjusted threshold θ̂c for class c closer to the mean
threshold.
Neighborhood Consistency Validation. In addition to the
initial filtering based on confidence thresholds, we intro-
duce a further filtering mechanism that utilizes neighboring
samples. This approach improves the reliability of pseudo-
labels by leveraging the local consistency of samples in the
feature space. As shown in Figure 3, if a sample’s pseudo-
label matches those of its neighboring samples, it is more
likely to be correctly labeled. Specifically, we first apply the
K-nearest neighbors (KNN) algorithm to find the k nearest
neighbors {P t

n|n = 1, ..., k} of the central sample P t
0 in

the feature space, with their corresponding similarity scores
denoted as {stn|n = 1, ..., k}. Note that st0 = 1 represents
the similarity between the central sample and itself. The
original classification prediction pt0 for P t

0 is then adjusted
using the predictions of its neighboring samples P t

n. This
adjustment is performed through a weighted sum, where the
weights are determined by the similarity scores stn:

wt
n =

g(stn)∑k
j=0 g(s

t
j)
, (15)

g(sti) =

{
ρsti if i = 0

sti if i ̸= 0
. (16)

where ρ > 1. This ensures that the central sample has a
larger weight in the weighted sum, giving it more influence
over the final prediction while still considering the neigh-
boring samples’ contributions. The more similar a neigh-
boring sample is to P t

0 , the greater influence its prediction
has on the adjustment of the central sample’s predicted dis-
tribution. The adjusted classification prediction for P t

0 is

defined as:

pt
adj,0 =

k∑
n=0

wt
n · pt

n, (17)

where {pt
n|n = 1, ..., k} denotes the classification predic-

tion of the neighboring samples. Note that the adjusted clas-
sification prediction is only used for filtering pseudo-labels
and is not involved in subsequent training. The pseudo-label
acquisition strategy can be defined as:

ŷti,c =

{
1 if c = argmax

c
ptadj,i,c, p

t
adj,i,c > θ̂c

0 otherwise.
(18)

After careful filtering, we have ensured that the pseudo-
labels used for self-training are sufficiently accurate. To fur-
ther improve the process, we refine the pseudo-labels to in-
crease the model’s confidence in the predicted class while
reducing it for other classes. This improves the model’s
ability to distinguish the target class, reduces uncertainty,
and enhances overall performance. The refined classifica-
tion prediction can be expressed as:

pt
ref,i = (1− µ) · pt

i + µ · ŷt
i , (19)

where ŷt
i is the one-hot vector of the predicted pseudo label

for the i-th target sample P t
i , and pt

i is its original classifi-
cation prediction. Finally, the loss function for self-training
is defined as follows:

Lt
cls = − 1

n̂t

n̂t∑
i=1

C∑
c=1

ŷti,c log p
t
ref,i,c, (20)

where n̂t represents the number of pseudo-labeled samples
in the target domain.

3.5. Overall Loss

The overall training loss of our method is:

L = Lrl + λnlLcr + ηLs
cls + Lt

cls, (21)

where λnl is the dynamic growing weight proposed in this
paper, which controls the influence of the structural consis-
tency constraint during training. Meanwhile, η is hyper-
parameter used to balance the weight between methods.
Following previous work, we utilize a two-stage optimiza-
tion process to train the model. In the first stage, the model
relies on the first three loss terms to facilitate domain adap-
tation and generate more accurate pseudo-labels for the un-
labeled target samples. In the subsequent stage, more reli-
able pseudo-labels are selected for self-training.

4. Experiments

4.1. Datasets

PointDA-10 [20] is a widely used dataset for point cloud
domain adaptation, consisting of three subsets: Model-



Method SSL PS M → S M → S∗ S → M S → S∗ S∗ → M S∗ → S Avg.
Supervised 93.9 ± 0.2 78.4 ± 0.6 96.2 ± 0.1 78.4 ± 0.6 96.2 ± 0.1 93.9 ± 0.2 89.5 ± 0.3
w/o Adapt 83.3 ± 0.7 43.8 ± 2.3 75.5 ± 1.8 42.5 ± 1.4 63.8 ± 3.9 64.2 ± 0.8 62.2 ± 1.8
DANN [8] 74.8 ± 2.8 42.1 ± 0.6 57.5 ± 0.4 50.9 ± 1.0 43.7 ± 2.9 71.6 ± 1.0 56.8 ± 1.5
PointDAN [20] 83.9 ± 0.3 44.8 ± 1.4 63.3 ± 1.1 45.7 ± 0.7 43.6 ± 2.0 56.4 ± 1.5 56.3 ± 1.2
RS [22] ✓ 79.9 ± 0.8 46.7 ± 4.8 75.2 ± 2.0 51.4 ± 3.9 71.8 ± 2.3 71.2 ± 2.8 66.0 ± 1.6
DefRec + PCM [1] ✓ 81.7 ± 0.6 51.8 ± 0.3 78.6 ± 0.7 54.5 ± 0.3 73.7 ± 1.6 71.1 ± 1.4 68.6 ± 0.8
GAST [31] ✓ 83.9 ± 0.2 56.7 ± 0.3 76.4 ± 0.2 55.0 ± 0.2 73.4 ± 0.3 72.2 ± 0.2 69.5 ± 0.2
GAI [23] ✓ 85.8 ± 0.3 55.3 ± 0.3 77.2 ± 0.4 55.4 ± 0.5 73.8 ± 0.6 72.4 ± 1.0 70.0 ± 0.5
MLSP [13] ✓ 83.7 ± 0.4 55.4 ± 1.8 77.1 ± 0.9 55.6 ± 0.7 78.2 ± 1.5 76.1 ± 0.5 71.0 ± 0.8
DAPS [28] ✓ 84.6± 0.9 59.2 ± 0.4 77.1 ± 0.6 56.0 ± 0.8 73.1 ± 0.8 76.2 ± 0.9 70.8 ± 0.7
COT [11] ✓ 83.2 ± 0.3 54.6 ± 0.1 78.5 ± 0.4 53.3 ± 1.1 79.4 ± 0.4 77.4 ± 0.5 71.0 ± 0.5
Ours ✓ 84.6 ± 0.3 63.6 ± 0.2 82.0 ± 0.8 57.3 ± 0.7 78.3 ± 0.3 75.7 ± 0.2 73.6 ± 0.4
GAST [31] ✓ ✓ 84.8 ± 0.1 59.8 ± 0.2 80.8 ± 0.6 56.7 ± 0.2 81.1 ± 0.8 74.9 ± 0.5 73.0 ± 0.4
GLRV [7] ✓ ✓ 85.4 ± 0.4 60.4 ± 0.4 78.8 ± 0.6 57.7 ± 0.4 77.8 ± 1.1 76.2 ± 0.6 72.7 ± 0.6
GAI [23] ✓ ✓ 86.2 ± 0.2 58.6 ± 0.1 81.4 ± 0.4 56.9 ± 0.2 81.5 ± 0.5 74.4 ± 0.6 73.2 ± 0.3
MLSP [13] ✓ ✓ 85.7 ± 0.6 59.4 ± 1.3 82.3 ± 0.9 57.3 ± 0.7 82.2 ± 0.5 76.4 ± 0.5 73.8 ± 1.0
DAPS [28] ✓ ✓ 86.9 ± 0.5 59.7 ± 0.5 78.7 ± 1.2 55.5 ± 1.1 82.0 ± 2.0 80.5 ± 0.7 73.9 ± 1.0
DAS [28] ✓ ✓ 87.2 ± 0.9 60.5 ± 0.2 82.4 ± 0.7 58.1 ± 0.8 84.8 ± 2.3 82.3 ± 1.5 75.9 ± 1.1
COT [11] ✓ ✓ 84.7 ± 0.2 57.6 ± 0.2 89.6 ± 1.4 51.6 ± 0.8 85.5 ± 2.2 77.6 ± 0.5 74.4 ± 0.9
Ours (SPST) ✓ ✓ 87.6 ± 0.3 64.1 ± 0.3 86.9 ± 0.6 58.5 ± 0.3 82.9 ± 0.5 81.7 ± 0.7 77.0 ± 0.5
Ours ✓ ✓ 87.8 ± 0.1 64.5 ± 0.2 90.2 ± 1.0 59.0 ± 0.5 85.2 ± 0.2 86.4 ± 1.2 78.9 ± 0.5

Table 1. Comparative evaluation in classification accuracy (%) averaged over 3 seeds (± SEM) on the PointDA-10 dataset. The best results
in each column are in bold.

M → S M → S∗ S → M S → S∗ S∗ → M S∗ → S Avg.
ObsS 83.7 59.4 81.2 55.3 74.7 74.1 71.3
+FeaS 84.3 59.6 81.7 56.9 75.7 75.0 72.2
+StrC 84.6 63.6 82.0 57.3 78.3 75.7 73.6

Table 2. Ablation Study on Different Components of the Self-Supervised Module: ObsS denotes augmentation in the observation space
only, +FeaS adds feature space augmentation, and +StrC further incorporates structural consistency constraint under dynamic growth. The
best results in each column are in bold.

M → S∗ Non λl λ1
nl λnl

Accuracy 59.6 55.3 61.1 63.6

Table 3. The Impact of Different Approaches for Introducing
Structural Consistency Constraint.

Net40 [26], ShapeNet [2], and ScanNet [5]. For the ex-
periments, 10 common categories such as sofa, lamp, and
chair are selected from these datasets, forming ModelNet-
10 (M), ShapeNet-10 (S), and ScanNet-10 (S*). Both M
and S are synthetic datasets generated from CAD models.
M contains 4, 183 training samples and 856 test samples,
while S includes 17, 378 training samples and 2, 492 test
samples. In contrast, S* consists of real-world point clouds
collected from indoor scenes, with 6, 110 training samples
and 2, 048 test samples, which are incomplete due to occlu-
sions from nearby objects.

4.2. Implementation

In this work, we employ DGCNN as the feature extrac-
tor. During training, we apply the Adam optimizer with an
initial learning rate of 0.001 and a weight decay of 0.00005.
Additionally, we use a cosine annealing scheduler to adjust
the learning rate over epochs. The hyper-parameters m, γ,
µ, and η are empirically set to 0.5, 0.4, 0.2, and 0.5, respec-
tively. The number of neighboring samples k is set to 1, and
ρ is assigned a value of 4. All methods are trained for 200
epochs with a batch size of 32, using three different random
seeds, on an NVIDIA RTX 4090 GPU.

4.3. Comparison to the State-of-the-art

We compare our method with several state-of-the-art
point cloud domain adaptation methods on the PointDA-
10 dataset, including Domain Adversarial Neural Network
(DANN) [8], Point Domain Adaptation Network (Point-
DAN) [20], Reconstruction Space Network (RS) [22],
Deformation Reconstruction Network with Point Cloud



M → S M → S∗ S → M S → S∗ S∗ → M S∗ → S Avg.
SSL 84.6 63.6 82.0 57.3 78.3 75.7 73.6
w/o Source 84.0 58.9 81.1 52.9 74.4 72.0 70.6

Table 4. Ablation Study Across Different Domains, where w/o Source means only target domain data is used for self-supervised learning.

DymT NeiC Refine M → S M → S∗ S → M S → S∗ S∗ → M S∗ → S Avg.
SPST 87.6 64.1 86.9 58.5 82.9 81.7 77.0

Ours
✓ 87.7 64.3 87.4 58.8 83.2 83.8 77.5
✓ ✓ 87.8 64.3 88.6 58.7 83.8 85.9 78.2
✓ ✓ ✓ 87.8 64.5 90.2 59.0 85.2 86.4 78.9

Table 5. Ablation Study on Different Components of Self-training.

Mixup (DefRec+PCM) [1], Geometry-aware self-training
(GAST) [31], Global-Local Structure Modeling with Re-
liable Voted Pseudo Labels (GLRV) [7], Geometry-Aware
Implicits (ImplicitPCDA) [23], Masked Local Structure
Prediction (MLSP) [13], Domain Adaptive Point Sam-
pling (DAPS) [28] and Contrastive Learning and Optimal
Transport (COT) [11]. Note that DAPS uses the tradi-
tional pseudo-labeling (PS) method, while DAS [28] em-
ploys a more complex network architecture. The supervised
method trains the model using only labeled target samples,
while the w/o adapt method is trained exclusively on labeled
source samples.

As shown in Table 1, our proposed method outperforms
all baselines, surpassing the current SOTA method DAS by
3%. Specifically, in the sim-to-real settings (M → S∗ and
S → S∗), we achieve improvements of 4% and 0.9% re-
spectively, demonstrating its superior ability to reduce the
domain gap between significantly different distributions.
Our method achieves the best results in 5 out of 6 settings.
Although it falls behind COT by 0.3% in the S∗ → M set-
ting, the standard deviation is 2% lower, indicating greater
stability. Even when applying the standard self-training
strategy (SPST), our method achieves significant gains, out-
performing COT by 2.6%. Overall, these results demon-
strate the effectiveness and robustness of our method across
various domain adaptation tasks.

4.4. Ablation Study

The Impact of Self-supervised Task Components. To
investigate the impact of feature space augmentation and
structural consistency constraint under dynamic growth, we
conduct an ablation study on the PointDA-10 dataset. As
shown in Table 2, both components have a positive im-
pact, with consistency constraint contributing notably to im-
provements in the M → S∗ and S∗ → M settings, where
performance increases by 4% and 2.6%, respectively.
The Impact of Different Approaches for Introducing
structural consistency constraint. To investigate the im-
pact of different approaches for introducing structural con-

k ρ R/A (acc) Accuracy

S → S∗

1
4

7730/8476 (91.20%) 86.4
2 6406/6806 (94.12%) 85.7
3 5293/5505 (96.15%) 84.9

1
3 7443/8029 (92.70%) 86.1
4 7730/8476 (91.20%) 86.4
5 7988/8829 (90.47%) 86.3

Table 6. Ablation Study of Neighborhood Consistency in Exper-
imental Setting S → S∗ , where R/A represents the accuracy of
the predicted pseudo-labels.

sistency constraint, we apply it using three methods: linear,
concave, and the proposed dynamic growth approach. Table
3 presents the results, where ”Non” indicates the absence of
consistency constraint. The linear approach λl results in a
sharp 4.3% performance drop due to the excessive introduc-
tion of noise early in training. The concave approach λ1

nl

improves performance by 1.5% as it reduces early noise,
but the rapid weight increase in the later stages limits further
gains. In contrast, our proposed dynamic growth approach
mitigates the weight surge in the later training phase, allow-
ing the model to learn in a more gradual manner, ultimately
leading to a 4% improvement.
The Impact of Domain Usage. To assess whether the
knowledge from the source domain is effectively transferred
to the target domain, we perform self-supervised learning
using data from both domains as well as using only tar-
get domain data. As shown in Table 4, the results indi-
cate that the proposed self-supervised method effectively
reduces the domain gap, particularly in the two sim-to-real
settings (M → S∗ and S → S∗), where it achieves im-
provements of 4.7% and 4.4%, respectively.
The Impact of Self-training Task Components. To ex-
plore the impact of the proposed pseudo-label filtering
mechanism on self-training, we conduct an ablation study
on the PointDA-10 dataset. As shown in Table 5, the results
indicate that our dynamic thresholding method outperforms



(a) w/o Adapt: M → S∗ (b) Our: M → S∗ (c) w/o Adapt: S → S∗ (d) Our: S → S∗

Figure 4. Confusion matrices for the classification of test samples on the target domain. Darker colors within the visualization reflect higher
levels of accuracy.

(a) w/o Adapt: S∗ → M (b) Our: S∗ → M
Figure 5. The t-SNE visualization of feature distribution on the
target domain. Different colors represent different classes.

SPST, which applies the same threshold for all categories,
with a 0.5% improvement. Further improvement of 0.7% is
achieved by incorporating neighbor consistency validation
to filter more reliable pseudo-labels. Finally, refining the
pseudo-label predictions leads to an additional 0.7% gain.
The Impact of k and ρ on Neighbor Consistency Veri-
fication. The proposed pseudo-label filtering mechanism
based on neighborhood consistency involves two key hyper-
parameters, k and ρ. To investigate the influence of these
two hyper-parameters, we conducted an ablation study un-
der experimental setting S → S∗ with different values of k
and ρ. As shown in Table 6, to investigate the effect of k,
we fix ρ at 4. The results show that as the number of neigh-
bors increases, the accuracy of predicted pseudo-labels im-
proves, but fewer samples are assigned pseudo-labels. To
explore the influence of ρ, we fix k at 1. As the weight of
the central sample decreases, meaning the relative weight
of neighboring samples increases, the accuracy of pseudo-
label predictions also improves. This suggests that relying
on neighboring samples can effectively enhance the relia-
bility of pseudo-labels. Considering both the number of as-
signed pseudo-labels and prediction accuracy, the best re-
sults are achieved when k = 1 and ρ = 4.
Class-Wise Accuracy Visualization. We use confusion
matrices to visualize the model’s accuracy across cate-

gories, with rows as actual categories and columns as pre-
dictions. This method shows overall accuracy and high-
lights categories prone to misclassification. As shown in
Figure 4, the confusion matrix displays the class-wise clas-
sification accuracy for both the baseline (w/o Adapt) and
our method on M → S∗ and S → S∗. Figure 4a and 4c
show the results without adaptation, while Figure 4b and
4d show the results using our proposed adaptation method,
where the darker diagonal lines in the confusion matrices
indicate better overall accuracy.

Feature Visualization. We employ t-SNE [25] to visualize
the feature distribution on the target domains for the UDA
task S∗ → M . Figure 5a shows the distribution without
adaptation, while Figure 5b shows the result using the meth-
ods proposed in this paper. Without domain adaptation,
features from different classes in the target domain tend to
overlap. However, with domain adaptation, the feature dis-
tribution in the target domain begins to converge, forming
distinct clusters and significantly reducing the overlap be-
tween features from different classes.

5. Conclusions

In this paper, we propose a novel approach to bridge the
domain gap in unsupervised domain adaptation for point
cloud classification. We employs a dual-augmentation re-
lational learning scheme to incorporate low-dimensional
manifolds to encourage domain-invariant representations,
thereby improving the accuracy of pseudo-label genera-
tion. Additionally, we design a filtering mechanism that
adaptively adjusts thresholds for each semantic category
based on confidence distributions and validates neighbor-
hood consistency to further mitigate feature ambiguities,
resulting in more reliable pseudo-label selection for self-
training. Experiments on the widely-recognized PointDA-
10 dataset show that our approach achieves state-of-the-art
performance, demonstrating its effectiveness in addressing
the domain gap.
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