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Abstract

The Transformer model has demonstrated immense
potential and significant importance as an efficient tool
in the field of medical image analysis, primarily due to
its capability to capture global context. However, its
limitation in capturing local information to some extent
constrains the full performance of Transformer in this
domain. To mitigate this issue, we propose a novel med-
ical image segmentation network, HIFNet, based on hi-
erarchical attention feature fusion. Specifically, we uti-
lize a pre-trained MaxViT as the encoder. In our newly
constructed decoder, spatial attention is applied to fea-
ture maps of different sizes to focus more on critical re-
gions of the input images. Additionally, we incorporate
multiple attention mechanisms, including criss-cross at-
tention, to capture sensitive spatial relationships within
medical images. Furthermore, we employ coordinate at-
tention in skip connections to embed positional informa-
tion in different directions, thereby generating feature
maps containing sensitive positional information. Ex-
periments conducted on relevant medical image datasets
demonstrate the effectiveness and scalability of our pro-
posed encoder.

Keywords: Medical image Segmentation Transformer
Multi-scale network.

1. Introduction

Medical image segmentation, as a component in image
processing tasks, is not only crucial in the field of com-
puter science but also serves as a key tool for computer-
aided diagnosis in clinical applications. By classifying the
pixels in medical images, it aids doctors in rapidly identi-
fying organs, tumors, and other related lesion areas. Tra-
ditional medical image segmentation networks utilize U-
Net[26] as the backbone to construct a symmetrical U-
shaped network. Most of these networks are based on Con-
volutional Neural Networks (CNNs) and have introduced
a series of related work on this foundation, such as U-
Net++[49], UNet3+[12], nnunet[15], etc[11, 19, 20]. These
networks can generate relatively clear segmentation maps.
However, the use of a single CNN model is limited by fac-
tors such as its restricted receptive field[10] and inherent
inductive biases[2], which constrain the ultimate segmen-
tation performance. Therefore, researchers have also intro-
duced attention mechanisms[29, 37] into related architec-
tures, such as SCAU-net[48], DRAu-net[27]. To mitigate
the limitations of CNNs in capturing long-distance depen-
dencies. Attention enhances segmentation results by cap-
turing salient features in the image[11, 8]. Despite im-
provements in segmentation performance through the in-
troduction of attention mechanisms, there is still room for
enhancement in capturing important feature information in
images.

Recently, Transformers have demonstrated excellent per-
formance in natural language processing-related fields[29],
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attributed to their use of Self-Attention (SA) mechanisms
within their structures. Researchers have subsequently in-
troduced Vision Transformer[10] (ViT) into the image do-
main and achieved great success. By dividing the in-
put image into small patches and leveraging the self-
attention mechanism to capture the relationships among
these patches, Vision Transformer (ViT) aims to extract
global information features. Furthermore, researchers have
developed and proposed various Transformer variants suit-
able for the image domain, such as Swin-Transformer[18],
PVT[34, 35], MaxViT[28], and MERIT[23]. In partic-
ular, the successful application of Transformers in med-
ical images[30, 23, 21, 9, 19] further demonstrates their
great potential. However, due to the limitations of the self-
attention module in understanding local spatial informa-
tion, some methods have incorporated convolutional atten-
tion modules to alleviate this issue[36, 39]. But, because
of the limitations of convolution, these methods struggle to
capture the relationships between long-distance pixels.

To address the above issues, we consider improving the
use of attention mechanisms to capture both global and local
dependencies across all corresponding dimensions. There-
fore, we have designed a new Transformer network for med-
ical image segmentation, namely HIFNet. This network
uses MaxViT as the encoder and incorporates a novel de-
coder designed by us. Additionally, we employ coordi-
nate attention to embed information in the skip connections
within the network. Our contributions are as follows:

•We propose a new decoder. Each decoder is composed
of a mixed attention mechanism across different spatial di-
rections and a multi-scale feature mixing module, allowing
the decoder to obtain more comprehensive and detailed fea-
ture information. By mixing attention results in different di-
rections, the decoder can capture correlations between dif-
ferent positions in the input data, extract more detailed con-
textual information, and facilitate the output of more refined
segmentation results.

•To enhance the model’s learning capability of latent fea-
tures, we process skip connection information using a coor-
dinate attention mechanism between multi-stage encoders
and decoders for feature merging. This method enhances
the model’s acquisition of key location information and im-
proves the final segmentation performance. By combining
dilated convolutions of different scales with related opera-
tions, the model expands its receptive field, enabling it to
capture long-distance dependencies.

2. Related work

2.1. Medical Image Segmentation with CNN

U-Net[26], as a cornerstone in medical image segmen-
tation in recent years, has demonstrated tremendous poten-
tial and achievements in this field. As the first CNN-based

medical image segmentation model, it has sparked numer-
ous subsequent research efforts, including the development
of a series of U-Net-based models such as U-Net++[49],
U-Net3+[12], and Attention-Unet[20]. These U-shaped ar-
chitecture models have shone brightly in various medical
image segmentation tasks due to their simple and effec-
tive encoder-decoder structure, such as segmenting lesions,
tumors, and organs[7, 9, 36, 46]. These studies collec-
tively indicate that U-Net and its related subsequent models
have become the de facto benchmarks for medical image
segmentation[11, 19]. After introducing U-Net to medi-
cal image segmentation, researchers also encountered some
challenges. Although CNN-based U-Net models excel in
segmentation results, they still have issues capturing long-
distance critical information. To overcome this problem,
researchers proposed using attention-based U-Net models,
such as MA-Unet[3], which employs an attention mecha-
nism to manipulate multi-scale features, and APAUnet[16],
which uses axial projection attention. These models demon-
strate that attention can compensate for the long-distance
modeling capabilities limited by using a single CNN. There-
fore, in the encoder we designed, we further enhance the
model’s long-distance modeling capability by incorporating
attention mechanisms in different directions.

2.2. Vision Transformers

Given the tremendous achievements of transformers in
other fields[43, 44, 33, 45], researchers first proposed Vi-
sion Transformer (ViT)[10], the first model to apply trans-
formers to the field of vision. ViT learns global infor-
mation between pixels using a self-attention mechanism.
Subsequent models have improved upon ViT through var-
ious methods, including integrating CNN features into the
architecture (MaxViT[28], PvTv2[35]), using new atten-
tion mechanisms (Swin-Transformer[18]), and proposing
new architectures (PVT[34], SegFormer[39]). The Swin-
Transformer calculates local attention through sliding win-
dow attention shifts, SegFormer leverages MiXFFN to ag-
gregate information from different levels, and MaxViT
computes self-attention after decomposing the spatial axis.
Although many transformer models[6, 5, 38] for computer
vision have mitigated the long-distance modeling limita-
tions of using CNNs, they still face challenges in capturing
local information and feature relationships. In this paper,
we address this limitation by introducing a decoder that in-
tegrates an attention mechanism with a multi-scale feature
convolution module. This encoder models sensitive infor-
mation in the image through coordinate attention and cruci-
form cross-attention, while simultaneously extracting fea-
tures through a multi-scale attention feature mixing module
with a pyramid-like structure. This enhances the model’s
ability to model key information.



2.3. Medical Image Segmentation with Transformers
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Figure 1. As shown in the figure, this is the overall network ar-
chitecture we proposed. On the left side of the network is the
pre-trained MaxViT encoder we utilized, which performs atten-
tion operations using different window sizes.

Despite the tremendous achievements of CNN-based
medical image segmentation networks, the limitation of
their global information modeling poses constraints on
model performance. In the research on medical image
segmentation tasks, researchers prefer to use transformer-
based networks, and proposed a series of models that
utilize Transformer for medical image segmentation.[17,
47, 41, 40, 42] For example, Swin-Unet[4] proposes a
U-shaped pure transformer architecture based on Swin-
Transformer[18], while TransUnet[7] combines CNNs and
transformers to capture low-level and high-level features.
Additionally, some researchers use pre-trained models as
encoders, benefiting from the rich features already learned
by these models on large datasets, which reduces the need
for new data. For instance, PVT-Polyp[9] achieves good re-
sults in polyp segmentation by using a pre-trained PVT as
the encoder, and G-CASCADE[22] generates finer segmen-
tation maps by combining MaxViT as the encoder with a
decoder that includes graph convolution. EMCAD[24] also
employs a pre-trained model as the encoder and captures
complex spatial relationships by constructing a mechanism
that includes spatial, channel, and grouped gating attention.
Therefore, we have decided to adopt a similar approach, uti-
lizing a pre-trained model as the encoder and constructing a
complex architecture that integrates attention and convolu-
tion as the decoder to capture important contextual relation-
ships in medical images.

3. Method

3.1. Overall Architecture

To further enhance the long and short-distance modeling
capabilities of transformer models in medical image seg-
mentation, we drew inspiration from the previous design
of MaxViT[28]. MaxViT achieves information interaction
between global and local scales by decomposing the tra-
ditional self-attention mechanism into two types of sparse
attention: non-overlapping window attention and grid at-
tention, along the spatial axis. In our proposed HIFNet, we
inherited the essence of MaxViT by utilizing a pre-trained
MaxViT model in the encoder stage. Simultaneously, we
innovatively reconstructed the encoder stage. Specifically,
we first constructed a top-down multi-scale information ex-
traction path corresponding to the encoder in the decoder
stage, ensuring that the image can fully utilize information

features of different scales during the decoder stage. Sub-
sequently, we processed the information in the encoder us-
ing skip connections with positional embeddings and fed it
into the corresponding decoder sections. This pyramid-like
structure design enhances the model’s ability to utilize in-
formation of different scales and allows the model to more
comprehensively capture the key location information of the
image, thereby significantly improving the model’s segmen-
tation performance.

3.2. Multi-Scale Attention Feature Extraction Decoder

Due to its inherent limitations in modeling local informa-
tion, Transformer may lose critical details when processing
medical images, thereby affecting the final segmentation
performance of the model. To mitigate this issue, besides
using a pre-trained MaxViT in the encoder, we have re-
designed the decoder stage to include a Multi-Scale Atten-
tion Feature Extraction Decoder (MAFED), as illustrated in
the figure. The decoder begins with layer normalization,
followed by upsampling the input data to match the size of
the encoder output. Then, we use convolution to ensure that
the dimensions match those of the skip connection inputs
before they enter the decoder, and normalization is applied.
The specific formula is shown below:

x = concat((LN(Conv(Up(x1)))), CDA(x1)) (1)

Here, concat denotes concatenation, x1 represents the
corresponding encoder output, CDA stands for Coordinate
Attention[14], LN for Layer Normalization, conv for ap-
plying convolution for dimension processing, and UP for
upsampling. Subsequently, a depthwise convolution is used
to reduce the channel dimension by half, and the result is in-
put into the encoder for further processing. In the encoder,
we introduce cross-shaped attention[14] to process the in-
put data. The horizontal and vertical attention modules ex-
tract contextual information in the horizontal and vertical
directions, respectively, as shown in Figure 2 (a). Given a
feature map H ∈ RH×W×C , The module first generates
feature maps Q,K, and V for attention calculation using
1x1 convolutions along the H dimension. The size of the
mappings for Q and K is H × W × C1, The reason C1 is
smaller than C is to perform dimensionality reduction on
the channels, thereby reducing computational load. Sub-
sequently, through the Affinity operation, a feature map of
size P ∈ R(H+W−1)×W× C is generated, capturing the re-
lationships between each pixel and its horizontally and ver-
tically adjacent pixels in the feature map. The calculation
of Affinity is as follows:

di,u = QuΩi,u (2)

Here,Ωi,u represents the feature vector at position iu in
the feature map, with Ωi,u ∈ Rc, Qu denotes the feature



vector at position u in the feature map P After computa-
tion, a new feature map of size (H +W − 1) ×W × C is
obtained. Subsequently, a softmax operation is applied to
this feature map. Then, the same operation is performed for
each position to reconstruct a feature map of size HWC
that once again contains information about the relationships
between pixels. After applying the cross-shaped attention
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Figure 2. As shown in the figure, the cross-shaped attention is de-
picted at the top (a), and the multi-scale feature extraction module
is shown at the bottom (b). Together, these two components con-
stitute the decoder.

mechanism, we utilize a multi-scale feature extraction mod-
ule to further extract and model key positional informa-
tion. The structure of this module is illustrated in the figure.
By applying spatial attention to features of different scales,
the model can further focus on important regions. Specif-
ically, the feature extraction module employs multiple di-
lated convolutional layers with different dilation rates in the
extraction stage to capture features of various scales. Sub-
sequently, in each output branch stage, an attention mech-
anism is used to further assess the importance of the ex-
tracted features. To avoid information loss when using a
single dilated convolution, we incorporate 1x1 convolutions
and pooling to ensure complete information preservation.
The specific formula for the module is as follows:

P = softmax(R(Conv(xin))
T ×R(Conv(xin)) (3)

Here R and R′ represents the opposite operation, R de-
notes the reshaping of the original input feature vector to
its original size RC×N , N = H × W , Then, the obtained
weights are combined with the input data to produce an en-
hanced feature map output, as shown below.

xout = xin +R′(R(Conv (xin))× PT ) (4)

Subsequently, the model employs the Multi-Scale Atten-
tion Feature Extraction module to further extract features
from the data, as specifically illustrated in Figure 2.

After the computations are completed, each layer of the
decoder will pass through a corresponding 1x1 segmenta-
tion head to generate output segmentation maps. There are
a total of four layers, and these segmentation maps of dif-
ferent sizes will ultimately be upsampled using an interpo-
lation function to produce the final segmentation result.

3.3. Multi-Axis Vision Transformer Encoder

Due to the recent tremendous potential demonstrated by
Transformers in the field of medical image segmentation,

MaxViT, as one of them, has achieved good results in the
medical image domain due to its unique design. Networks
such as G-CASCADE and EMCAD have utilized MaxViT
pre-trained models as encoders and constructed networks
for medical image segmentation. Building on previous suc-
cessful experiences, in our network, we adopt MaxViT as
the encoder. Specifically, we use a pre-trained model with
an input size of 256x256, and in the four stages of down-
sampling, we embed feature vectors of sizes [96, 192, 384,
768]. Each layer employs [2, 2, 5, 2] MaxViT blocks, re-
spectively. Additionally, in the four encoder layers, we
use skip connections to pass the feature representations to
the corresponding decoders, enabling the corresponding de-
coder segmentation heads to achieve precise segmentation
of the results. The final segmentation results are as follows:

SegOut = p1 + p2 + p3 + p4 (5)

3.4. Loss Function

In our model, we follow previous research[25] by uti-
lizing activation functions and training the model by mix-
ing features from multiple stages. The advantage of this
approach is that it enables the model to converge better
and is also beneficial for medical image segmentation tasks.
According to the loss function we use during the training
phase, we generate 2n − 1 non-empty subsets containing
n prediction maps, and aggregate all non-empty subsets to
produce the final prediction maps used for calculating the
loss value. We then compute both the DICE loss and the
cross-entropy loss for these generated prediction maps. The
final loss function equation is as follows:

Loss = 0.3Ldice + 0.7Lce (6)

Where 0.3 and 0.7 are the weights for the DICE and CE
loss functions, respectively.

4. Experiments and Results

4.1. Datasets

ACDC Dataset: We used both the ACDC dataset and the
Synapse dataset to train our model. The ACDC dataset con-
tains 100 patient cases, each including annotations for the
left ventricle (LV), right ventricle (RV), and myocardium
(Myo). During model training, we split the dataset into a
training set, validation set, and test set in a 7:1:2 ratio.

Synapse Dataset: The Synapse dataset comprises 30
abdominal CT scans, totaling 3779 abdominal CT axial
contrast-enhanced slices. Our dataset setup follows a sim-
ilar approach to previous work with TransUNet, where we
randomly divided the dataset into 18 cases for training and
12 for validation. We segmented eight organs in the results:



Table 1. The segmentation results on Synapse. We labeled the segmentation results for each individual organ using DICE, and we also
labeled the average value of the segmentation results with DICE. The results of the various comparison models are referenced from
previous research.Among the various indicators, the bold font represents the best, and the underlined represents the second best, higher
DICE indicates a better performance, while a lower HD95 indicates a better performance as well.

Methods DICE↑ HD95↓ Aorta GB KL KR Liver PC SP SM

UNet[26] 70.11 44.69 84.00 56.70 72.41 62.64 86.98 48.73 81.48 67.96
AttnUNet[20] 71.70 34.47 82.61 61.94 76.07 70.42 87.54 46.70 80.67 67.66
R50+UNet[7] 74.68 36.87 84.18 62.84 79.19 71.29 93.35 48.23 84.41 73.92
R50+AttnUNet[7] 75.57 36.97 55.92 63.91 79.20 72.71 93.56 49.37 87.19 74.95
SSFormer[32] 78.01 25.72 82.78 63.74 80.72 78.11 93.53 61.53 87.07 76.61
PolypPVT[9] 78.08 25.61 82.34 66.14 81.21 73.78 94.37 59.34 88.05 79.4
TransUNet[7] 77.61 26.9 86.56 60.43 80.54 78.53 94.33 58.47 87.06 75.00
SwinUNet[4] 77.58 27.32 81.76 65.95 82.32 79.22 93.73 53.81 88.04 75.79
MT-UNet[31] 78.59 26.59 87.92 64.99 81.47 77.29 93.06 59.46 87.75 76.81
MISSFormer[13] 81.96 18.20 86.99 68.65 85.21 82.00 94.41 65.67 91.92 80.81
PVT-CASCADE[21] 81.06 20.23 83.01 70.59 82.23 80.37 94.08 64.43 90.1 83.69
TransCASCADE[21] 82.68 17.34 86.63 68.48 87.66 84.56 84.43 65.33 90.79 83.52
PVT-EMCAD[24] 83.16 15.68 88.20 73.34 84.28 82.13 94.76 68.52 90.08 83.96
HIF-Net(our) 83.81 18.63 88.38 74.17 86.12 83.59 95.25 68.53 90.43 84.06
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Figure 3. As shown in the figure, we have visualized the results of the model on Synapse, displaying images from the same case but
obtained from different models. GT represents the ground truth segmentation results. We used different colors to represent the organs,
including the aorta, gallbladder, left kidney, right kidney, liver, pancreas, spleen, and stomach, from left to right.

aorta, left kidney, right kidney, liver, pancreas, stomach, and
spleen.

ISIC Dataset: We evaluated our model on the ISIC2017
and ISIC2018 datasets. During training, we randomly split
the datasets into training, validation, and test sets in a 8:1:1
ratio. To ensure that our results are more realistic and ac-
curate, we validated our results on the ISIC dataset using
five-fold cross-validation.

4.2. Experiments Details

We conducted our experiments on an NVIDIA A100
GPU, using PyTorch 1.11.0 to implement model training.
We initialized the model’s encoder with MaxViT weights
pre-trained on the ImageNet dataset. For the Synapse
dataset, we trained the model for a total of 800 epochs. Dur-
ing training, we used the AdamW optimizer with a learning
rate set to 0.0001 and weight decay set to 0.0001. As the
loss function during training, we used a weighted combina-
tion of the DICE and CrossEntropy functions. For all of the
ACDC, ISIC and Synapse datasets, we resized the images
to 256x256 for input and set the batch size to 12. Addition-
ally, we applied various data augmentation techniques to the
datasets, such as rotation, scaling, and translation.

4.3. Evaluation Metrics

For the ACDC dataset, we used DICE as the final eval-
uation metric. For the Synapse dataset, we assessed the
model’s final performance using both DICE and HD95
(95% percentile Hausdorff distance). On the ISIC dataset,
we evaluated the model based on DICE, Specificity (SP),
Sensitivity (SE), and Accuracy (ACC). The calculation for-
mulas for DICE and HD95 are as follows:

DICE =
2 | X ∩ Y |
| X | + | Y |

(7)

HD (X,Y ) = max {dXY , dY X}

= max

{
max
x∈X

min
y∈Y

d(x, y),max
y∈Y

min
x∈X

d(x, y)

}
(8)

Here, X and Y represent the real image and the predicted
segmentation result image respectively.

On the ISIC 2017 and 2018 datasets, we used DSC,
ACC, SP, and SE. Among them, ACC stands for Accuracy,
which is a commonly used indicator to measure the perfor-
mance of a classifier. It represents the proportion of pixels



Table 2. This table presents a comparison of our proposed method with recent similar methods on the ISIC2017 and ISIC2018 datasets. We
employed five-fold cross-validation to obtain the results presented here, with the best results bolded and the second best results underlined
in the table.

Methods ISIC2017 ISIC2018

DICE SE SP ACC DICE SE SP ACC

U-Net[26] 0.8159 0.8172 0.9680 0.9164 0.8545 0.8800 0.9697 0.9404
AttU-Net[20] 0.8082 0.7998 0.9776 0.9145 0.8566 0.8674 0.9863 0.9376
TransNorm[1] 0.8933 0.8535 0.9859 0.9582 0.8951 0.8750 0.9790 0.9519
Swin-Unet[4] 0.8845 0.8893 0.9778 0.9476 0.8946 0.9056 0.9798 0.9645
PVT-GCASCADE[21] 0.9089 0.9380 0.9732 0.9684 0.9007 0.9333 0.9662 0.9609
PVT-EMCAD[24] 0.9006 0.9370 0.9682 0.9656 0.8974 0.9243 0.9675 0.9617
HIF-Net(our) 0.9155 0.9396 0.9759 0.9706 0.9070 0.9300 0.9709 0.9683
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Figure 4. Qualitative comparison of our method on the ISIC2017 dataset, where blue represents the ground truth boundary and green
indicates the predicted boundary. Compared to previous methods, our method is able to segment the boundary more accurately.

that are correctly classified by the model out of all the pix-
els. The formula for calculating ACC is:

ACC =
TP + TN

TP + TN + FP + FN
(9)

SP stands for Specificity, and its value range is also be-
tween 0 and 1. A higher value of SP indicates that the model
has stronger ability to recognize background or non-target
regions. The formula for calculating SP is as follows:

SP =
TN

TN + FP
(10)

SE stands for Sensitivity, also known as Recall. It mea-
sures the completeness of the model’s recognition of the tar-
get region. The formula for calculating SE is:

SE =
TP

TP + FN
(11)

4.4. Comparative Analysis of Results

We compared our proposed network with other convo-
lutional neural network-based methods and recent state-of-
the-art (SOTA) methods on the Synapse, ACDC, and ISIC
datasets. Table 1 presents the comparative results of our
network against CNN-based and Transformer-related meth-
ods on the Synapse multi-organ segmentation dataset, our
network achieved excellent results compared to the compar-
ison methods, indicating that our method can clearly iden-
tify organs in the images and provide more refined segmen-
tation maps. Additionally, we visualized the results on the
Synapse dataset as shown in Figure 3. In medical image
segmentation, segmenting small organs is often challenging
due to their complex structures and ambiguous boundaries

with other organs. However, our proposed method can bet-
ter understand and identify the shapes and boundaries of
small organs, thereby improving the segmentation results.

Tables 2 and 3 respectively detail the segmentation per-
formance of our model on the ISIC skin disease dataset
and the ACDC dataset. From the results, it can be seen
that our model has demonstrated excellent performance on
both datasets. On the ACDC dataset, our method also per-

Table 3. The segmentation results on the ACDC dataset. RV stands
for the right ventricle, Myo represents the myocardium, and LV
represents the left ventricle. The bold font indicates the best per-
formance, while the underlined indicates the second best.

Methods DICE RV Myo LV
R50+UNet[7] 87.55 87.10 80.63 94.92
R50+AttnUNet[7] 86.75 87.58 79.20 93.47
ViT+CUP[7] 81.45 81.46 90.71 92.18
R50+ViT+CUP[7] 87.57 86.07 81.88 94.75
TransUNet[7] 89.71 86.67 87.27 95.18
SwinUNet[4] 88.07 85.77 84.42 94.03
MT-UNet[31] 90.43 86.64 89.04 95.62
MISSFormer[13] 90.86 89.55 88.04 94.99
PVT-CASCADE[21] 91.46 89.97 88.90 95.50
Cascaded MERIT[21] 91.85 90.23 89.53 95.80
PVT-EMCAD[24] 92.12 90.65 89.68 96.02
HIF-Net(our) 92.34 91.18 89.84 96.00

formed exceptionally well, achieving remarkable perfor-
mance. Specifically, our model achieved an improvement
of 0.12 in the average DICE metric, significantly surpassing
existing methods. Furthermore, our method also delivered
significantly better results in the segmentation tasks of the
left ventricle (LV), right ventricle (RV), and left ventricular
myocardium (MYO), fully demonstrating the superior abil-



ity of our model in detailed processing.
Table 2 displays the outcomes of our method on the ISIC

2017 and ISIC 2018 datasets. We compared our method
with recent approaches and classic medical image segmen-
tation models from the past. The table highlights that our
model has achieved satisfactory results. Specifically, the
excellent outcomes of our model across different types of
datasets demonstrate its robust generalization ability.

4.5. Ablation Studies

Table 4 presents the results of ablation experiments con-
ducted on the components of our model. From the results,
we observe that after incorporating Multi-Scale Feature Ex-
traction (MSFE) into the baseline model, there is a slight
improvement in the DICE and LV scores, indicating that
MSFE aids in capturing more detailed features at different
scales. Subsequently, the addition of Coordinate Attention
(note: originally referred to as Cross-Domain Attention but
corrected here for clarity, assuming it was a typographical
error) led to an increase in the scores, suggesting that it en-
hances the model’s sensitivity and capture ability for po-
sitional information. We then tested CDA alone, and the

Table 4. Ablation experiments on the model using the ACDC
dataset. Bold numbers indicate the best results, and underlined
numbers represent the second-best results.

Method DICE RV Myo LV

Baseline 92.19 90.82 89.76 95.99
MSFE 92.27 90.84 89.91 96.07
CDA 92.25 91.00 89.85 95.59
CDA+MSFE 92.30 90.81 90.01 96.09
CDA+MSFE+CCA 92.34 91.18 89.84 96.00

results validated the rationality of using CDA. When MSFE
and CDA are used simultaneously, the segmentation metrics
further improve, demonstrating that these two components
are complementary during model training. Finally, we in-
corporated the Cross-Attention Mechanism , and the met-
rics were further enhanced. Meanwhile, the results for Myo
and LV remained competitive, indicating that the Cross-
Attention Mechanism further boosts the model’s ability to
perceive important information in the image. This demon-
strates that all the components we proposed contribute to
the final segmentation results.

5. Conclusion

We introduce a medical image segmentation network
named HIFNet, which leverages dilated convolutions with
varying parameters to capture broader spatial context,
thereby enhancing detail perception and segmentation accu-
racy. Additionally, to bolster the model’s capacity for cap-
turing local information, we utilize a pre-trained MaxViT

as the encoder, effectively extracting local features from the
data. To optimize the capture of sensitive information, we
incorporate cross-shaped attention, which is pivotal for un-
derstanding complex anatomical structures. Coordinate at-
tention further enables the model to focus on key regions,
thereby improving the localization precision of lesions or
organs. Our model exhibits outstanding performance on
multiple datasets, surpassing other advanced methods in
terms of accuracy and segmentation fineness.

Additionally, our model boasts excellent scalability. In
the future, we plan to conduct further experiments by ap-
plying different pre-trained encoders to the decoder we pro-
posed. We will also experiment with medical images of var-
ious modalities to further demonstrate its generalization ca-
pability.
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