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Abstract

Recently, implicit neural representation has been
widely used to generate animatable human avatars. How-
ever, the materials and geometry of those representations
are coupled in the neural network and hard to edit, which
hinders their application in traditional graphics engines.
We present a framework for acquiring human avatars
that are attached with high-resolution physically-based
material textures and triangular mesh from monocular
video. Our method introduces a novel information fusion
strategy to combine the information from the monocular
video and synthesize virtual multi-view images to tackle
the sparsity of the input view. We reconstruct humans as
deformable neural implicit surfaces and extract triangle
mesh in a well-behaved pose as the initial mesh of the
next stage. In addition, we introduce an approach to
correct the bias for the boundary and size of the coarse
mesh extracted. Finally, we adapt prior knowledge of the
latent diffusion model at super-resolution in multi-view
to distill the decomposed texture. Experiments show that
our approach outperforms previous representations in
terms of high fidelity, and this explicit result supports
deployment on common renderers.

Keywords: Human modeling, Rendering, Texture super-
resolution

1. Introduction

Digital avatars have been widely used across various ap-
plications, such as in the metaverse and film production.
However, producing a high-fidelity digital avatar equipped
with complex attributes, including geometry, texture parame-

ters, and material baking, requires complex pipelines and ex-
pensive equipment [44, 55, 54, 13, 46], which limits the use
of ordinary creators. Recently, research on neural implicit
representation [32, 35, 50, 60, 33] has shown impressive
results in multi-view reconstruction. Advances in neural
volume rendering have soon fueled various exciting works
on recovering digital avatars. For the implicit animatable
human reconstruction, recent works [36, 37, 27, 53, 10]
have solved the challenging task of multi-view reconstruc-
tion without the supervision of 3D information and present
the inherent challenges of rendering non-rigid bodies and
skins under dynamic motion. At the same time, inspired
by neural reflectance decomposition[66, 7], Relighting4D
[11] and Relightavatar [59] have attempted to recover human
avatars with decoupled geometry and materials with implicit
representation. However, the implicit geometry and texture
are hard to edit, and the texture produced by those methods
suffers from low clarity. In addition, the digital avatars rep-
resented implicitly cannot be applied in traditional graphics
engines, which hinders their application in various fields.

Obviously, explicit representations appeal to us. Nvd-
iffrec [34] is dedicated to reconstructing general static ob-
jects in explicit representation that can be deployed in tra-
ditional graphics engines with triangle meshes and corre-
sponding spatially-varying materials properties. The phys-
ical differentiable rasterization renderer has natural advan-
tages for learning surface texture and fast rendering. How-
ever, Nvdiffrec struggles to reconstruct geometry and texture
from sparse views. Furthermore, it fails to reconstruct a
human in motion from monocular video. And recently 3D
Gaussian(point-based rendering)[23] has shown great poten-
tial in dynamic human[28]. Although a unity compatibility
plugin has been released in the community[5], the obvious
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Figure 1: Given a monocular video of a performer, our method reconstructs a digital avatar equipped with high-quality
triangular mesh and high-resolution corresponding PBR material textures. The result is compatible with standard graphics
engines and can be edited.

software limitations and lack of editing are truly concerning.
In contrast, our goal is to reconstruct mesh digital avatars,
taking as input the monocular video that records a hu-
man in motion, which is more compatible with traditional
graphics engines and supports relighting and editing.

In this work, we propose a novel framework for acquir-
ing human avatars attached with high-resolution physically-
based (PBR) material textures and triangular mesh from
monocular video. We first reconstruct a human as a de-
formable neural implicit surface using volume rendering.
In this process, the human information of frames in time
sequence is integrated into the deformable neural implicit
surface. From this, we extract the coarse triangle mesh and
synthesize images of the human from dense virtual cameras.
The synthesized images, alongside the input view, serve as
supervisory data for subsequent training. We refer to this
process as an information fusion strategy that combines the
information from sequential video frames to compensate
for the lack of spatial multi-view information. Then, we
optimize the geometry mesh, material decomposition, and
lighting using a differentiable rasterization renderer in the
supervision of the multi-view images.In addition, We correct
the bias for the boundary and size of the coarse mesh ex-
tracted from the implicit field. Finally, we introduce to adapt
prior knowledge of the pretrained latent diffusion model [39]
at super-resolution texture to distill the high-resolution de-
composed texture. The LDM model has demonstrated su-
perior performance and generalization compared to CNN
pretrained network [9] in various vision tasks [39]. It fully
fits our pipeline and enrichs texture space for details repre-
sentation.

In summary, our main contributions are:

• We propose a novel framework that enables reconstruct-
ing a digital avatar equipped with triangular mesh and
corresponding PBR material texture from monocular
video. The digital avatars produced by our method are
compatible with standard graphics engines.

• We propose an information fusion strategy to tackle the

issue of lacking multi-view supervision in reconstruct-
ing explicit geometry and texture, which integrates in-
formation from all frames in the temporal sequence of
video, transforming it into spatial supervision.

• We propose an approach to correct the bias for the
triangular mesh and introduce the latent diffusion model
to conduct distillation on super-resolution PBR texture.
We result in a high-resolution texture and mesh with
greater clarity.

2. Related Work

2.1. Scene Reconstruction

Recently, neural implicit representations have achieved
impressive results in 3D reconstruction [32, 31, 58, 61, 15,
38]. These approaches represent a scene as a field of radiance
and opacity, enabling the synthesis of photo-realistic novel
viewpoints. However, directly using density-based meth-
ods for representation leads to numerous geometric artifacts.
VolSDF [60] and Neus [50] proposed training the Signed Dis-
tance Function (SDF) field using volume rendering, which
facilitates easy access to geometric surface normals. To fur-
ther decouple the material properties, NeRD [7] is capable
of learning geometry and spatially-varying Bidirectional Re-
flectance Distribution Functions parameters of objects from
unconstrained environmental illumination. TensorIR [14]
utilizes the low-rank tensors to simultaneously estimate the
geometry and material of the scene. In addition, some meth-
ods integrate deep learning with texture-based techniques
to model scenes [47, 43, 56]. However, the neural implicit
representation cannot be applied in traditional graphics en-
gines, which hinders their application in various fields. The
recent trend is point-based rendering of 3DGS [23], and
along with it comes a series of improvement work [28, 12].
However, point-based representation present challenges to
editing and compatibility in complex graphic production.
Therefore, mesh-based rendering still has its own unique
advantages. DMTet [45] introduces a deformable tetrahedral
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Figure 2: The overview of HR Human pipeline, which takes a video frame as input to reconstruct explicit avatars with
triangular mesh and PBR texture. The pipeline includes deformable neural representations (used to extract volume surfaces
and enhance spare input view), explicit representations (texture and geometry are jointly optimized), and super-resolution
texture modules (introduced to generate high-resolution textures).

grid with learned mesh topology and vertex positions and
utilizes coordinate-based networks to represent volumetric
texturing. And Nvdiffrec [34] extends DMTet to 2D multi-
view supervision in static scenes, jointly optimizing mesh
and corresponding PBR Texture. Decomposing geometry
and appearance from images contributes significantly to the
progression of downstream tasks.

2.2. Image and Texture SR

Super-resolution is a commonly used approach to en-
hance detail expression in images or textures before be-
ing applied to downstream tasks of computer vision. The
landscape of image super-resolution research encompasses
a variety of influential works. The early super-resolution
neural networks evolved from convolutional neural net-
works [6] to GAN [63], and later Transformer-based super-
resolution [26] has achieved astonishing results. Super-
resolution models are present in many application scenarios,
such as mobisr [25], TexSR [9], NeRFSR [49]. Recently,
diffusion models have also shown talent in the domain of
super-resolution [39, 41], diffusion models achieve highly
competitive performance on various super-resolution tasks,
and exploring their practicality in graphics seems valuable.
In this work, we introduce to adapt prior knowledge of the

pretrained latent diffusion model [39] at super-resolution
texture to distill the high-resolution decomposed texture.

2.3. Human Reconstruction

On the one hand, the single-image-based human body
reconstruction method with implicit functions, such as
PIFu [42] and ECON [57], have demonstrated promising
outcomes. However, these approaches are not fully adapt-
able to video inputs nor capable of generating assets that
include physically-based rendering (PBR) textures. On the
other hand, advances in neural volume rendering have fu-
eled various exciting works on recovering digital avatars.
There have been numerous efforts to reconstruct humans in
motion using multi-view videos [37, 27, 46, 16, 51, 10, 53].
Further, StylePeople [17] and NeuTex [56] introduce neural
texture to restore complex texture features. And Relight-
ing4D and Relightavatar [59, 11] have attempted to recover
human avatars with decoupled geometry and materials im-
plicit representation. Ani-GS[28] demonstrates the potential
of 3DGS in dynamic human reconstruction. However, the
methods mentioned above still have a long way to go before
being directly edited and illuminated on traditional graphics
engines.



3. Method

Figure 2 shows the overview of our method. The frame-
work takes as input a monocular video of a human to re-
construct triangular mesh and corresponding high-resolution
physically-based texture, which is compatible with tradi-
tional graphics engines and supports fast editing and re-
lighting. To achieve this goal, we propose an information fu-
sion strategy to combine human information from sequential
video frames, resulting in coarse geometry mesh and multi-
view synthesized images. Specifically, we first reconstruct
humans as deformable neural implicit volume surfaces with
the supervision of monocular video and extract correspond-
ing high-quality triangle mesh. Then, we refine the human
mesh and optimize the decomposition of corresponding ma-
terials texture using a differentiable rasterization renderer
in the supervision of the dense and cross-view images that
are synthesized by the first stage. Finally, to acquire texture
with high fidelity, we adapt prior knowledge of the latent dif-
fusion model at super-resolution in multi-view to distill the
decomposed texture. Next, we will provide a more detailed
introduction to the various parts of the method.

3.1. Information Fusion Strategy

For monocular video, there is only a single view in each
frame, and the human exhibits different poses across dif-
ferent video frames. Existing methods [34, 45, 64], which
designed for reconstructing static object from mult-view su-
pervison, are unable to reconstruct high-quality trangular
mesh and physical material texture of human body from a
monocular video. Therefore, we propose an information fu-
sion strategy to extract multi-view supervision from monoc-
ular video to augment the parse input view. Information
fusion strategy is composed of two primary components:
firstly, optimizing a deformable neural surface of human
body from video which is aimed at fuse the sequential frame
information of the human body in motion; and secondly, gen-
erating pseudo multi-view images from virtual viewpoints,
which act as supervison for subsequent stages.

Reconstruct Deformable Neural Surface. Inspired by
volsdf [60], we use a SDF-based neural network fs to repre-
sent the human model in the canonical space:

fs : (x
′) → (s(x′), z(x′)), (1)

where s(x′) denotes the value of signed distance field (SDF)
in canonical space, and z(x′) ∈ R256 is a feature vector
that represents implicit geometric information for further
learning of appearance fields. The deformation from point x
in pose space to point x′ in canonical space can be divided
into the sum of rigid deformation and non-rigid deformation:

x′ = x̂+Di(x̂, p(i)), x̂ = Ti(x) (2)

where Di(x̂, p(i)) denotes non-rigid deformation field that
is usually limited to finetune within a small range. And

x̂ is a preliminary result of Ti(x), i.e., we add an off-
set to the result of rigid deformation in canonical space.
p(i) is the SMPL [29] pose parameter of the i-th frame.
Specifically, Di(x̂, p(i)) is also implemented using a MLP
fTn : (x̂, p(i)) → ∆x. In addition, Ti(x) denotes a motion
field that maps point x in the pose space to canonical space.
And points x in pose space can be projected to canonical
space based on skinning weights:

Ti(x) =

K∑
j

wj
i (R

j
ix+ tji ), (3)

where Rj
i and tji denote the rotation and translation at each

joint j, and wj
i is the blend weight for the j-th joint. Fol-

lowing peng et al. [36], we use the initial blend weight from
SMPL to guide the rigid deformation. So we calculate the
wj

i using the sum of the blend weight of SMPL and neural
blend weight as:

wj
i (x) = ∆w + ŵj

i (x), (4)

where ŵj
i is the coarse blend weight, calculated based on the

nearest points on the surface of SMPL. ∆w is the deviation
used to finetune blend weights, predicted by a MLP f∆w :
(x, ψi) → ∆w, and ψi is a latentcode of frame.

As a result, the underlying surface of the human in pose
space or canonical space can be easily defined as a zero-level
set of fs:

S = {x : f(x) = 0} (5)

Following volsdf [60], we optimize the implicit SDF field
and color field of the human in canonical space using volume
rendering end to end. We define the density σ and color c as:

σ(x′) =

α
(
1− 1

2exp
(

s(x′)
β

))
if s(x′) < 0,

1
2αexp

(
− s(x′)

β

))
if s(x′) ≥ 0,

(6)

ci(x) = fc(x
′, n(x′), z(x′), v(x′), ψi), (7)

where α, β > 0 are learnable parameters and s(x′) is the
signed distance value of point x′. The color field fc takes
as input the sample points x′, normal n(x′), view direction
v(x′), geometry feature code z(x′), latent code ψi and pre-
dicts the color of each point in canonical space. Then the
expected color C(r) of a pixel along ray r can be calculated
using:

C(r) =

N∑
n=1

(

n−1∏
m=1

(1− αm)αncn), αn = 1− exp(−σnδn),

(8)
where δn = tn+1 − tn is the interval between sample n and
n+ 1, cn is the color of sampled point along the ray.



Generating Pseudo Multi-view Images After success-
fully constructing the deformable neural surface, the infor-
mation from sequential video frames is effectively integrated
into the neural surface, which captures global body infor-
mation and can be used to synthesize images of the human
from any viewpoint under multiple poses. To train an overall
texture of the explicit mesh of a human in the subsequent
stage, we uniformly sample 50 viewpoints around the per-
son, aiming to cover all observable surfaces of the human
body as much as possible. On the other hand, to ensure that
as many areas of the human body surface are observed as
possible, we select training poses that are as stretched out
as possible. Even though the viewpoints are set in a single
well-behaved pose, after training to acquire the explicit mesh
in the subsequent stage, this human body can be animated
into any pose. Then, we utilize volumetric rendering to gen-
erate images from these viewpoints. The texture information
from the video is encoded into those images and optimized
into the overall texture of explicit mesh in the subsequent
stage. Therefore, the information fusion strategy enables
recovering explicit mesh and corresponding texture from
monocular video.

3.2. Optimizing Explicit Human Avatars

As mentioned in Section 3.1, we can extract a mesh
from the deformable implicit surface using the marching
cubes algorithm [30]. However, the mesh obtained through
marching cubes tends to be coarse due to the inherent bias of
the signed distance field (SDF). To address this, we propose
an unbiased optimization method to refine the mesh. We
then jointly optimize the physically-based material texture
and the mesh using inverse rendering.

Unbiased Optimization for Mesh. To create a triangle
mesh from the neural SDF field, we first create a 2563 res-
olution 3D grid with the same size as the pose bounding
box. We only select points within a certain range of space
around the bone joints to query the SDF value in the MLP
network, which accelerates the time required for the March-
ing Cubes [30], to extract mesh in the 3D grid. We also
use maximum pooling to discard small floating objects that
may exist near the real human body surface. However, We
observe that the neural implicit surfaces may converge in
a biased range. Specifically, the Signed Distance Function
(SDF) value of a well-defined surface often deviates from 0,
such as ranging between 0.001 and 0.003, when the March-
ing Cubes algorithm is applied. This results in the extracted
mesh not matching the human shape and being fatter than
the real human body, which hinders texture optimization.
We introduce a stable and easily trainable offset that works
directly on the extracted explicit mesh. We further observe
that the majority of the SDF bias consistently aligns with the
normal of the human surface, as shown in Figure 4. Conse-
quently, we constrain the offset along the normal direction

of the vertex.
x′s = xs − f0 · ns (9)

where xs is a set of biased vertices, f0 are learnable pa-
rameters, ns are normal vector direction of vertices. x′s is
the result vertices applied trainable offset. Specifically, we
jointly optimize the bias in the early epochs of the second
stage and remove it later.

Material Model. Inspired by Nvdiffrec [34], we represent
the material properties of the human surface as a physically-
based material model from Disney [8] and directly optimize
it using differentiable rendering [24]. We use MLP to pa-
rameterize the decomposed material properties including a
diffuse term kd and an isotropic and specular GGX lobe [48]:

ft : (x
′
s) → (kd, r,m), (10)

where kd denotes albedo color, r is roughness value, m is
metalness factor. And specular color can be defined as:

ks = (1−m) · 0.04 +m · kd, (11)

Specifically, we parameterize the uv texture mapping
for surface mesh using Xatlas [62] and sample the material
model on the surface to create learnable 2D textures. This
is beneficial for us to continue optimizing details with high-
resolution textures and make edits to the texture (Section
3.3).

Physically-based Rendering. In our implementation, we
follow the general rendering equation [22]:

Lo(xs, ωo) =

∫
Ω

fr(xs, ωi, ωo)Li(xs, ωi)(ωi · n(xs))dωi,

(12)
where ωi is the incident direction, ωo is the ougoing direction,
xs is a surface point of humans, fr(xs, ωi, ωo) is the BRDF
term, Li(xs, ωi) is the incident radiance from direction ωi,
and the integration domain is the hemisphere Ω around the
surface normal n(xs) of the intersection point.

In order to fast the performance of differentiable ren-
dering, we use split sum approximation [19] for lighting
representation. And the Equation (12) is approximated as:

Lo(xs, ωo) =

∫
Ω

fr(xs, ωi, ωo)(ωi · n(xs))dωi

∗
∫
Ω

Li(xs, ωi)D(ωi, ωo)(ωi · n(xs))dωi

(13)

where D is a function representing the GGX [48] normal
distribution (NDF), the first term represents the integral of
the specular BSDF with a solid white environment light,
and the second term represents the integral of the incoming
radiance with the specular NDF. Both of them can be pre-
integrated and represented by a filtered cubemap following
Karis [1]. Further, we employ a differentiable version of the
split sum shading model to optimize the lighting represented
in a learnable trainable cubemap and the material properties.



3.3. Super-Resolution Texture.

Inspired by the impressive performance of the Latent
diffusion model(LDM) [39] in the distillation task, we intro-
duce it to help produce super-resolution texture with more
detail. We first interpolate a coarse high-resolution 2D
texture mapping (20482) from the low-resolution texture
mapping(5122) learned from RGB render loss. The coarse
high-resolution 2D texture mapping and explicit mesh are
utilized to render images R in each view using differentiable
rendering. Then, the images R are fed into the LDM model
as low-resolution input, and the pretrained super-resolution
LDM [39] is used as a teacher model. Following the score
distillation, images R is noised to a randomly drawn time
step t,

Rt =
√
ᾱtR+

√
1− ᾱtϵ (14)

where ϵ ∈ N(0, I), and ᾱt is a time-dependent constant
specified by diffusion model. The score distillation loss will
be calculated, and gradients will be propagated from the
rendering pixel to learnable 2d texture.

∇xLSDS = w(t)(ϵϕ(Rt, t, R)− ϵ) (15)

where ϵϕ is the denoising U-Net of the diffusion model, w(t)
is a constant multiplier that depends on ᾱt.

In this manner, the prior knowledge learned from exten-
sive common datasets within the LDM model is gradually
distilled into human textures, resulting in a super-resolution
texture.

4. Training

In the first stage, to optimize the information fusion strat-
egy without 3D supervision, we march the ray from the
camera at each frame and minimize the difference between
the rendered color and the ground truth color. The loss
function L1 is defined as:

L1 = Lcolor + Leik + Lcurv + Loffset + Lw (16)

where Lcolor is a L1 loss between images. The Leik and
Lcurv are the eikonal loss and curve loss applied to smooth
the geometry. In addition, Loffset is a regularization term,
which constrains non rigid deformation within a small range.
Lw is a consistency regularization term to consistent the
neural blend field.

In the second stage, we aim to refine the mesh extracted
from the first stage and produce a high-fidelity decomposed
PBR texture of humans.The loss function L2 consists of the
following parts:

L2 = Lrender +Lbias +LSDS +Lsmooth +Llight, (17)

where the Lrender is the color loss of images. Lbias is
applied to optimize the residual of biased surface. Llight is

regularization term [34] designed to penalizes color shifts.
Lsmooth is a smooth term that smooths the texture in human
surface points. Specially, LSDS is the score distillation loss
defined as Equation (15). Please refer to Section A and
Section B in the appendix for more details.

5. Experiment

5.1. Datasets

We evaluate our method on multiple datasets, including
real-world data and synthesized data.

Real-World Datasets. We validate our method on two
real-world datasets, including ZJU-MoCap [37] and People-
Snapshot [4]. ZJU-MoCap contains multiple dynamic hu-
man videos captured by a multi-camera system. People-
Snapshot contains monocular videos recording humans in
rotation. In addition, the approach [21] is applied to ob-
tain the SMPL parameters within poses. We chose the most
commonly used subjects to train the experiment model, in-
cluding “ZJU313” and “ZJU377” from ZJU-CoMap, “M2C”
and “M3C” from People-Snapshot with a monocular camera.

Synthesized Datasets. In order to more accurately
evaluate and ablate the proposed method, we follow
Renderpeople[3] to capture videos under a virtual monocu-
lar camera in the blender[2], including “Megan”, “Josh”,
“Brain” and “Manuel”. Each human in the synthesized
dataset is equipped with the reference geometry mesh and
material textures. Meanwhile, synthesized data are allowed
to generate videos with more complex actions as input.

5.2. Baseline Comparisons

Comparison Methods We compare our method with other
SOTA methods that focus on reconstructing the relighting
human body from videos without 3D supervision, including
Relighting4D [11], PhySG [64], SDF-PDF [36]. Relight-
ing4d aims to decompose the surface material and geometry,
as well as the environment lighting, from the videos. PhySG
focuses on recovering the geometry and material properties
of static objects from dense input views. Thus, we feed 120
multiview images sampled from the specific video frame
as input. Even if SDF-PDF does not involve material de-
composition, we also compared our method with it, which
demonstrated good performance in reconstructing the dy-
namical human surface. Specifically, the works mentioned
above reconstruct objects or humans in the neural implicit
representation. Additionally, we compare our method with
other popular approaches, such as ECON [57], InstantA-
vatar [20], and Ani-3DGS [28]. Further details can be found
in the appendix.

Metrics Our main evaluation metrics for images include
Peak Signal-to-Noise Ratio (PSNR), Structural Similarity
Index Measure (SSIM)[52], Learned Perceptual Image Patch
Similarity (LPIPS)[65]. In addition, we follow [42] to
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Figure 3: Qualitative comparison results of comparison methods, including albedo, geometric normal, and rendered image.
Specifically, the real-world data from ZJU-MoCap only have the ground truth of the rendering result.

use 3D metrics, including Chamfer Distance(CD), Point-
to-Surface Distance(P2S) and the angle degree difference
between reference normals and predicted normals, which are
applied to evaluate the quality of reconstructed geometry.

Comparison Results As shown in Figure 3, our method
outperforms the state-of-the-art works both on geometry and
color appearance. Our method recovers geometry that is
smoother with accurate geometric details. In addition, our
method recovers convincing and clear texture details, such as
the human face and the accessories of clothes, which benefit
from the correct geometry and the distillate knowledge from
the pretrained LDM model. Table 1 reflects the stronger
capability of our method in reconstructing human body ge-
ometry and texture materials in quantity. We show more
results about materials and geometry Figure 6 and Figure 7.
Meanwhile, to demonstrate the compatibility of our results
in standard graphics engines, Figure 8 shows the results of
relighting, texture editing, novel poses synthesis.

Method PSNR↑ SSIM↑ LPIPS↓ Normal
Degree°↓

CD
(cm)↓

P2S
(cm)↓

PhySG 18.67 0.722 0.284 49.308 - -
SDF-PDF 24.99 0.919 0.096 32.712 0.76 0.70

Re4D 25.09 0.920 0.121 38.508 1.38 1.42
Ours 27.08 0.941 0.027 24.401 0.70 0.55

Table 1: Quantitative comparison results of various methods.
The abbreviation “Re4D” means “Relighting4D”. The result
metrics are the average of all comparison results.

5.3. Ablation Study

We conduct ablation experiments from three aspects, in-
cluding the effectiveness of the information fusion strategy,
optimization of geometric bias, and super-resolution tex-
ture distillate. Below, we provide detailed quantitative and
qualitative results.

Information Fusion Strategy. As previously mentioned,
without an information fusion strategy, it would be impos-
sible to directly train explicit mesh and PBR textures from
monocular videos. Therefore, we take a step back to as-



sess the impact of a coarse mesh on the outcomes. Figure
4 shows that the performance of the differentiable renderer
significantly deteriorates when the coarse mesh, which is
extracted from neural implicit surfaces, is removed. There
are a significant amount of self-intersecting triangles in the
reconstructed mesh. In contrast, our method obtained a
smooth and high-quality mesh and rendering. As shown in
Table 2, our method performs better in both synthesized and
real-world data. Furthermore, we conducted ablation experi-
ments to evaluate the impact of the number of synthesized
virtual viewpoints on the reconstruction results. For more
details, please refer to the appendix.

DATA METHOD
PSNR
↑

SSIM
↑

LPIPS
↓

Normal
Degree°↓

CD
(cm)↓

P2S
(cm)↓

ZJU313
w/o Fusion 24.26 0.87 0.141 - - -
w/ Fusion 30.68 0.96 0.028 - - -

Josh
w/o Fusion 24.80 0.91 0.081 100.25 0.78 0.58
w/ Fusion 30.14 0.96 0.026 24.086 0.75 0.58

Table 2: Quantitative comparison for the effectiveness of
information fusion strategy on real-world data “ZJU313”
and synthesized data “Josh.”

w/ Fusionw/o Fusion

Reference w/ OptOverlap Overlapw/o Opt

Figure 4: Qualitative comparison of the effectiveness of in-
formation fusion strategy and unbiased optimization. The
highlight generated after mesh overlapping represents geo-
metric bias.

Unbiased Optimization. The neural SDF method has
always exited bias when representing zero-level surfaces.
Figure 4 shows that the mesh extracted directly from the
implicit SDF field does not match with the true contour,
which will affect the learning of appearance, especially at the
boundary. After unbiased optimization, the mesh aligns well
with the real shape, yielding better color prediction results.
Table 3 further reflects the improvement of rendering results
by unbiased optimization.

Super-Resolution Texture. We design three ablation ex-

PSNR↑ SSIM↑ LPIPS↓
w/o Unbiased Opt 23.71 0.891 0.100
w/ Unbiased Opt 24.60 0.910 0.043
NeRF SR 31.01 0.955 0.070
w/o SR 30.15 0.910 0.125
w/ SR 30.81 0.951 0.071

Table 3: Quantitative comparison for the effectiveness of
unbiased optimization on synthesized data “Megan”. And
Quantitative comparison for the effectiveness of the super-
resolution texture on synthesized data “Josh”.

Reference w/o SR Texture w/  SR Texture NeRF SR

Figure 5: Qualitative comparison for the effectiveness of
super-resolution. The GT and the rendering results for op-
timized textures at 5122 resolution, optimized textures at
20482 resolution and implicit neural field are shown from
left to right separately.

periments to investigate the performance improvement of
introducing texture super-resolution in the explicit 2D texture
mapping space. Figure 5 shows introducing super-resolution
textures reduces noise in the images and restores more details.
In addition, we try to optimize neural implicit representation
directly under the supervision of super-resolution images.
However, Figure 5 shows that it will blur local details (such
as the buttons). This is because the corresponding projection
within the deformable field from pose space to canonical
space is not stable, which results in the multiple points with
different colors in pose space projected to a single point in
canonical space and further results in the blurring of tex-
tures. We perform super-resolution in the explicit texture
space, which ensures a stable correspondence between ge-
ometry and color and produces more clearer rendering result
as shown in Table 3.

6. Conclusion

This paper proposes HR human, a novel framework that
enables reconstructing a digital avatar equipped with trian-
gular mesh and corresponding PBR material texture from a
monocular camera. We introduce a novel information fusion
strategy to combine the information from the monocular
video and synthesize virtual multi-view images to compen-
sate for the missing spatial view information. In addition,
we correct the bias for the boundary and size of the mesh



extracted from the implicit field. Finally, we introduce a pre-
trained latent diffusion model to distill the super-resolution
texture when jointly optimizing the mesh and texture. The
high-quality mesh and high-resolution texture produced by
our method are compatible with common modern engines
and 3D tools, which simplify the modeling process of dig-
ital avatars in various downstream applications and can be
directly edited and reilluminated.
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Appendices

A. Training Strategy

We divide the complete training into two stages. In the
first stage, we trained the deformable implicit neural repre-
sentation based on volume rendering. We typically took 100k
iterations for the first stage. Then, we use marching cubes
to extract a mesh in a well-behaved pose from deformable
implicit neural fields. Further, we take 15k iterations for the
second stage of training. In the second stage, we aim to opti-
mize the PBR material textures, lighting, and triangular mesh
using a differentiable PBR-based render layer. Specifically,
we first apply an unbiased optimization to adjust the coarse
mesh extracted from the first stage(∼ 1k iters), resulting in a
finetuned mesh aligned with the real human. Equipped with
the finetuned mesh, we optimized the corresponding PBR
texture under the supervision of sparse real camera views
and dense synthesis views. After the coarse texture had
converged(∼ 10k iters), we adapted prior knowledge of the
latent diffusion model at super-resolution in multi-view ren-
dering to distill the texture. In practice, the Adam optimizer
was employed to optimize all networks and parameters. We
set the learning rate to 5× 10−4 with an exponential falloff
during the optimization. The entire experiment was trained
on an NVIDIA A100 GPU.

B. Loss Function

The definition of the loss functions mentioned in the
main paper for the training of the first stage includes, Lcolor

follows the L1 loss:

Lcolor =
∑
r∈R

∥∥∥Ĉi(r)− Ci(r)
∥∥∥
1
. (18)

Leik is the Eikonal term [18] encouraging fs to approxi-
mate a signed distance function, and we set λ1 as 0.1:

Leik = λ1
∑
x′

(∥∇fs(x′)∥2 − 1)2, (19)

Lcurv is the curvature term [40] encouraging to recover
smoother surfaces in reflective or untextured areas:

Lcurv = λ2
∑
x′

(n · nϵ − 1)2, (20)

where n = ∇fs(x′) are the normal at the points x′, nϵ =
∇fs(x′ϵ) are the normal at perturbed points x′ϵ.The perturbed
points x′ϵ are sampled randomly in the tangent plane, x′ϵ =
x′ + ϵ(n× τ). τ is a random unit vector. And we set λ2 as
0.65.

Loffset is the regularization term, which constrains the
non-rigid deformation within a small range. We set λ3 as
0.02, and the loss is defined as:

Loffset = λ3∥∆x∥2 (21)

In addition, we use a consistency regularization term Lw

to minimize the difference between blend weights of the
canonical and observation spaces, which are supposed to be
the same. The loss is defined as:

Lw =
∑
x

∥wi(x)− wcan
i (x′)∥1 , (22)

The definition of the loss functions mentioned in the main
paper for the training of the second stage includes, Lrender

also follows the L1 loss:

Lrender =
∑
r∈R

∥∥∥Ĉi(xs)− Ci(r)
∥∥∥
1
. (23)

Lmask is applied in early epochs(such as 10), to estimate
the residual of biased surface. It is defined as:

Lmask =
∑
r∈R

∥∥∥M̂i(xs)−Mi(r)
∥∥∥
2
. (24)

where M̂i(xs) is the mask after rasterization.
Llight is regularization term [34] designed to penalizes

color shifts. λ4 is set as 0.005. Given the per-channel average
intensities ĉi, we define it as:

Llight = λ4
1

3

3∑
i=0

∣∣∣∣∣ĉi − 1

3

3∑
i=0

ĉi

∣∣∣∣∣ (25)



Lsmooth is a smooth term that calculates texture differ-
ences between surface points xs and its random displacement
xs + ϵ. λ5 is set as 0.002. And we define it as:

Lsmooth = λ5
∑
xs

|kd(xs)− kd(xs + ϵ)| (26)

LSDS is defined as eq.15 of the main paper and is acti-
vated after the Lrender converges.

C. More Results and Application

We present more results in the video on a standard graph-
ics engine, including texture editing, relighting, novel pose
synthesis, and novel view synthesis.

D. Additional Experiments

The effectiveness of the number of synthetic views used
in information fusion strategy. We designed four controlled
to find the most suitable number of synthetic views for the
fusion training. Figure 9 shows the comparison of training
results from different numbers of synthetic views in novel
view. Table 4 shows that increasing the number of synthe-
sized views is beneficial for learning more detailed textures
because unknown surfaces are reduced. We usually choose
50 views as the training baseline to balance training effi-
ciency and effectiveness.

VIEWS PSNR SSIM LPIPS
2 19.71 0.794 0.136

10 22.54 0.853 0.110
50 23.13 0.910 0.057

100 23.27 0.921 0.045

Table 4: Quantitative comparison for the effectiveness of
the number of synthesized views used in fusion strategy on
“Megan”.

gt 2 view 50view10view 100view

Figure 9: Qualitative comparison of the effectiveness of the
number of synthesized views used in fusion strategy. From
left to right, the number of training views is increasing.

Comparison with image-based explicit human recon-
struction. We designed a comparative experiment with the
SOTA method of the single-image-based model, ECON [57].
ECON is an image-based explicit human reconstruction
method that combines implicit representation and explicit
body regularization. Unlike ECON, which only reconstructs
geometry, our approach further delivers triangular meshes
and PBR textures, both of which are highly valued as 3D
assets in the industry. As shown in Figure 10. Our method
offers accurate full-body geometry, including details of the
face, back, and legs.

N/A

Gt

ECON
CD:3.49
P2S:3.14

Ours
CD: 0.65
P2S:0.62

Render Normal

N/AN/A

MaterialsMesh

Figure 10: Comparison result with ECON [57] on Render-
People dataset.

Comparison with fast human reconstruction methods.
We compare our method with the state-of-the-art (SOTA)
method that focuses on reconstruction and rendering accel-
eration. InstantAvatar [20] and Ani-3DGS [28]. InstantA-
vatar represents the human body as an Instant-NGP [33],
and Ani-3DGS represents the human body as 3D Gaussian
points. Both of these are based on surface point priors and
achieve real-time performance. However, they all ignore the
decoupling of PBR materials and high-precision geometry.
Because of the deformation residual field and fine-tuning of
mesh, our approach does not rely on surface initialization
and pose. Thus, as reflected in the metrics, our approach has
a more accurate surface and multi-view consistent textures
in real-world data. Meanwhile, our approach further delivers
triangular meshes and PBR textures, which support direct
editing and relighting in a common graphics engine. Al-
though a unityGS[5] compatibility plugin has been released
in the community, the obvious software limitations and lack
of editing and relighting are truly concerning. As shown
in Figure 11 and Table 5, we have to admit that we have
more train cost, but getting clearer, editable, and relightable
textures and geometry are worth it.



PSNR SSIM LPIPS Train Cost Output
InstantAvatar 26.61 0.930 0.121 < 5min implicit

Animatable GS 29.81 0.974 0.023 < 30min point+gaussian
Ours 32.40 0.971 0.017 > 1h mesh+texture

Table 5: Quantitative comparison of different rendering
methods on the PeopleSnapshot dataset.

InstantAvatar Animatable-GS HR_Human Reference

Figure 11: Comparison result with InstantAvatar [20] and
Ani-3DGS [28] on PeopleSnapshot dataset.

E. Limitation

Our method still has the following limitations. Firstly,
we model the human without distinguishing clothes and the
human body. Thus, our method does not apply to humans
wearing complex or loose clothing. In addition, our method
still lacks competitiveness in terms of training costs, so we
will consider introducing CUDA acceleration or another
strategy. Finally, we choose to accelerate optimization with-
out considering global lighting. Therefore, there is still room
for improvement in the decoupling of our materials.


