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Abstract

Low-dose CT (LDCT) can significantly reduce health
risks associated with radiation exposure compared to
normal-dose CT (NDCT). However, the lower radia-
tion dose may result in projection data being contami-
nated by noise, which can hinder the accurate identifi-
cation of lesion details. Currently, most LDCT image
denoising techniques employ supervised learning meth-
ods that rely on paired noisy and noise-free datasets for
model training. In practical applications, however, ob-
taining such paired data is often challenging. To address
this issue, we propose an unsupervised LDCT denois-
ing method called MANet-CycleGAN, which can train a
high-quality denoising model via unpaired data.Our de-
sign approach is as follows: 1. Eliminate the dependency
of the denoising model training on paired data through
a cyclic generative adversarial network architecture; 2.
Apply the UNet architecture to generator for feature
extraction and NDCT image generation, while using a
PatchGAN discriminator to enhance the details of the
generated images; 3. Introduce channel attention and
multi-scale feature extraction capabilities through the
Squeeze-and-Excitation (SE) module, Efficient Channel
Attention (ECA), and Atrous Spatial Pyramid Pooling
(ASPP) to improve image generation quality; 4. Uti-
lize perceptual loss in training process to better preserve
the structural features of the image while denoising. We
conducted comparative experiments on the Mayo Clinic
LDCT Grand Challenge dataset. The results demon-
strate that the proposed method outperforms existing
methods in both qualitative and quantitative aspects.
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1. Introduction

Computed Tomography (CT) plays a crucial role in iden-
tifying subtle tissue abnormalities. In recent years, the ap-
plication of CT technology has surged dramatically, partic-
ularly during the COVID-19 pandemic, when CT provided
essential imaging assessments for the diagnosis and treat-
ment of the disease [18]. Scanning the human body with
high-dose X-ray beams can yield clear CT images, however,
this radiation poses a risk of cellular and tissue damage,
potentially adversely affecting human health [14]. LDCT
significantly reduces harm compared to NDCT [16], but it
typically results in lower image quality. The reconstructed
images often contain substantial noise and artifacts, which
can obscure lesion details and ultimately affect diagnostic
accuracy [21]. Suppressing noise in LDCT images while
preserving texture and pathological information is a highly
challenging task, highlighting the significant research value
of denoising methods for LDCT images.

Compared to NDCT, LDCT scans have a reduced radi-
ation dose, resulting in a relatively lower number of pho-
tons detected by the detectors [12]. This decrease in pho-
ton count increases the likelihood of noise being introduced
during the data acquisition process, leading to the appear-
ance of white noise spots and blocky or waxy artifacts in
the reconstructed images, which can adversely affect subse-
quent diagnoses. Traditional denoising methods used to en-
hance the clarity of LDCT images primarily fall into three
categories: sine wave filtering, model-based statistical it-
erative reconstruction, and image domain denoising algo-
rithms [17]. These denoising methods typically treat the
noisy image as a simple superposition of a clean image and
noise. These methods require a detailed estimation of the
prior knowledge regarding the image and the noise distribu-
tion, resulting in a strong dependency on the noise model.
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Consequently, such denoising algorithms often incur high
computational costs and are prone to losing important im-
age details.

Deep learning-based LDCT denoising algorithms do not
require explicit modeling of noise, instead they can directly
learn the mapping relationships between images through
neural networks. These algorithms generate corresponding
NDCT images from input LDCT images, offering stronger
generalization capabilities compared to traditional methods.
However, most current deep learning based image denois-
ing approaches rely heavily on supervised learning, which
requires the use of manually labeled data along with appro-
priate training tasks to optimize the parameters of the deep
neural network. This necessitates a substantial amount of
paired data consisting of noisy and noise-free images for
model training. The primary challenge of applying super-
vised deep learning algorithms to LDCT image denoising is
the high cost of acquiring medical images such as LDCT.
Typically, only a single NDCT or LDCT image can be ob-
tained for the same patient, making it difficult to gather suf-
ficient paired image data for model training. To address
this issue, recent studies often employ methods to artifi-
cially add noise to NDCT images in order to generate sim-
ulated LDCT images, thereby constructing paired datasets
for model training.

In this study, we approach the image denoising problem
from a novel perspective by utilizing an unsupervised learn-
ing method to eliminate the dependence on paired datasets
for LDCT image denoising. We conceptualize the task of
LDCT image denoising as an image translation problem,
where the objective is to transfer images from one domain,
A (the noisy image domain), to another domain, B (the
noise-free image domain), without altering the primary con-
tent, such as the anatomical structures present in the CT im-
ages.

To implement this approach, we designed a denoising
framework based on CycleGAN. We enhanced the UNet
architecture, which serves as the generator, by integrating
channel attention mechanisms and multi-scale feature ex-
traction to improve the quality of the generated noise-free
images. Additionally, we employed a patch-based discrim-
inator to enhance image details. Throughout the training
process, we utilized a perceptual loss mixed with other loss
functions to better preserve the structural integrity of the
images. As a result, we achieved precise LDCT denoising
without the need for paired datasets. Our main contributions
are summarized as follows:

• We propose a CycleGAN-based image denoising
framework that facilitates the mutual transformation
of LDCT images between the noisy image domain and
the noise-free image domain through two cycles, while
preserving the integrity of the image content to achieve
effective denoising.

• UNet is employed as the image generator, utilizing its
U-shaped architecture and skip connections to effec-
tively preserve structural information in the images,
thereby generating high-quality noise-free images.

• Based on the characteristics of convolutional neural
networks, we introduce a channel attention mechanism
into the backbone network to quantify the importance
of different channels in the feature maps. This mech-
anism assigns appropriate weights to enhance signifi-
cant features while suppressing redundant or ineffec-
tive ones.

• In the spatial dimension, we integrate features with
different receptive fields to obtain more comprehen-
sive multi-scale information, which is beneficial for
addressing the various scales of anatomical structures
present in CT images.

• Perceptual loss is applied during the training process
of CycleGAN, combined with the pixel-wise L1 loss
as hybrid loss function. This approach assesses the
differences between the generated images and the real
images at the patch scale, thereby enhancing the effec-
tiveness of model training.

2. Related Works

With the advancement of deep learning in recent years,
numerous studies have demonstrated that many deep
learning-based denoising methods significantly outperform
traditional approaches. The image denoising problem can
be represented by the degradation modelX = Y −N , where
X denotes the noisefree clean image, Y and N represent the
noisy image and additive Gaussian white noise with a stan-
dard deviation of σ respectively. Image denoising meth-
ods without deep learning often rely on prior knowledge to
estimate the noise in the images, which typically requires
manual parameter selection for noise modeling and com-
plex optimization algorithms to achieve satisfactory denois-
ing results[7, 34, 19, 3, 25]. The key point of these methods
lies in obtaining a detailed estimate of the noise distribution,
however, in most realworld scenarios, the noise distribution
is unknown, and significant variations often exist between
the noise distributions of different datasets, greatly limiting
the denoising performance and generalization ability of the
models.

Deep learning-based denoising framework have gained
widespread application in the field of image denoising due
to their exceptional performance. Unlike traditional meth-
ods, deep learning algorithms do not rely on manual noise
modeling, instead, they directly utilize data and specific
training tasks to optimize the parameters of neural networks
for end-to-end image denoising[22], These algorithms can



effectively learn the mapping from noisy images to noise-
free images, resulting in high generalization capabilities.

The process of deep learning-based image denoising can
be summarized as follows: it first involves dimensionality
reduction and feature extraction from the noisy images, fol-
lowed by the generation of noise-free images using the ex-
tracted features. Both feature extraction and image genera-
tion are accomplished through neural networks, and a loss
function is designed to minimize the difference between the
generated noise-free images and the real noise-free images,
with network parameters optimized using gradient descent.

Convolutional Neural Networks (CNNS) have been
widely used in various image processing tasks due to their
simple and efficient network structure. The inherent induc-
tive biases of CNNs enable them to effectively extract im-
age features, many studies have attempted to use CNNs for
image denoising with success. RED-CNN[2] proposed a
convolutional neural network that integrates an autoencoder
network with a residual structure to map LDCT images to
their corresponding NDCT images in an end-to-end man-
ner, the network is composed entirely of convolutional lay-
ers, allowing it to theoretically handle images of any size.
It optimizes network parameters using a mean squared er-
ror loss function to achieve image denoising. Subsequent
research introduced batch normalization techniques and di-
lated convolutions to enhance denoising capabilities while
reducing model parameters[36]. In addition to 2D images, a
denoising algorithm based on 3D ResNet[9] models the spa-
tial distribution of noise through 3D convolutions, thereby
achieving denoising of 3D CT images. In recent years, new
CNN based architectures have continuously been proposed
and applied in the field of image denoising, aiming to im-
prove denoising performance through improve the network
structures[35, 6, 8].

Despite the success of CNN-based methods in vari-
ous image denoising tasks, using convolutional neural net-
works to generate noise-free images often leads to over-
smoothing, presenting significant challenges in preserving
image edges and texture details. The UNet architecture was
originally applied to image segmentation tasks[20], where
an encoder encodes and reduces the dimensionality of the
input image, followed by a decoder that generates the mask
image. The encoder and decoder form a U-shaped struc-
ture, with skip connections that concatenate feature maps at
the same depth, facilitating information transfer. The pres-
ence of skip connections allows the network to leverage the
feature maps from shallow encoders to recover structural
features that may have been degraded by down-sampling,
thus producing higher-quality generated images.

Inspired by this, some studies have attempted to use
UNet to convert noisy images into noise-free images while
utilizing skip connections to preserve structural details.
RatUNet [31] replaces the UNet convolutional blocks with

residual blocks to avoid performance saturation, while also
improving the upsampling method in the decoder and the
skip connection structure to better recover image details,
significantly enhancing image clarity in denoising tasks.
FEUNet [27] employs UNet as an image generator, reduc-
ing network performance loss and accelerating training by
generating a residual map between noisy and noise-free im-
ages. Many related studies utilize UNet as a generator to
produce high-quality noise-free images, exploring improve-
ments to the network’s encoder, decoder, and skip connec-
tion structure to enhance overall performance.[32, 33, 15,
4].

Optimizing network parameters through supervised
learning can yield good image denoising results, however,
this process often requires a large amount of paired data,
which is challenging to obtain for medical images like
LDCT images. An alternative approach is to use unsuper-
vised learning methods for network training, thereby elim-
inating the dependence on paired data. Generative Adver-
sarial Networks (GANs) do not directly compute the dif-
ference between generated images and real images, instead,
they rely on a discriminator to assess the authenticity of the
images. This provides a solution for unsupervised image
denoising. GAN[5]employs a generator and a discrimina-
tor that learn the distribution of the image domain through
adversarial training to achieve image generation. Subse-
quently, WGAN[1]improved GANs by utilizing Wasser-
stein distance, enhancing the stability of the learning pro-
cess and addressing the issue of mode collapse. A WGAN-
based deep learning method enforced cycle consistency us-
ing Wasserstein distance to establish a nonlinear end-to-end
mapping from noisy input images to noise-free output im-
ages, achieving semi-supervised image denoising[30].

CycleGAN[38] offers a method for image transforma-
tion that does not rely on paired data for model train-
ing, enabling images to be converted between two differ-
ent domains without altering their content. Some studies
have already applied CycleGAN in the image denoising
field[23, 37, 29, 26]. However, issues such as training in-
stability, model collapse, and poor image generation qual-
ity still persist. To address these problems, we propose a
CycleGAN-based image denoising framework that aims to
improve the denoising performance by improve the gener-
ator network and loss function, while also incorporating a
patch-based discriminator for unsupervised image denois-
ing.

3. Proposed Method

3.1. CycleGAN Based Denoising Model

To achieve unsupervised LDCT image denoising, we de-
signed an image denoising framework based on CycleGAN,
as shown in Fig. 1. Fig. 1-A illustrates the training process



of CycleGAN, where LDCT and NDCT refer to LDCT im-
ages and NDCT images, respectively, images generated by
the model are indicated with an asterisk superscript. We
treat image denoising as an image translation task, where
the goal is to convert images from the noisy image domain
A to the noise-free image domain B without altering the
content of the images. To achieve this goal, we simultane-
ously trained two image generators GAB and GBA as the
mapping functions from domain A to domain B and from
domain B to domain A respectively. We set up two adver-
sarial discriminators, DA and DB , to train these two gener-
ators. The discriminators are used to differentiate between
real images and generated images in domains A and B re-
spectively. In addition, to strengthen the constraints on the
mapping functions, we introduced two cycle consistency
losses. These losses ensure that images, after being trans-
formed from one domain to another, can be mapped back to
the original domain while remaining as consistent as possi-
ble with their initial states. The training process consists of
two parts: the forward cycle and the backward cycle, The
forward cycle is illustrated by the blue arrows in Fig. 1-A,
A randomly selected LDCT image A is processed through
the generator GAB to produce a synthetic NDCT image
B∗, adversarial loss LGAN is calculated through discrimi-
nator, and simultaneously employ the identity mapping loss
LIdentity to constrain the content difference between the
generated synthetic image and the original image. This en-
sures that the content of the image remains undistorted af-
ter the domain transformation. Finally, we use the gener-
ator GBA to map the synthetic image B∗ back to image
domain A and get the cycle consistency loss LCycle. The
backward cycle, illustrated by the yellow arrows in Fig. 1-
A, is the inverse process of the forward cycle. A randomly
selected NDCT image B is used as input to generate a syn-
thetic image and calculate the aforementioned three losses.
Finally, all the losses are summed to perform backpropaga-
tion and optimize the network parameters. The three losses,
along with the final overall loss computed, are shown in
Eq. 1 to Eq.4, In this context, we set two hyperparame-
ters λGAN and λIdentity to adjust the proportions of the
adversarial loss and the identity mapping loss, respectively.
Through experiments, we found that set λGAN = 10 and
λIdentity = 5 yields better results. The function Err(x, y)
measures the difference between images x and y, and we
chose to use the L1 loss function for this purpose.

LGAN = Ea∼p(A)[(DB(G(a))− 1)2]+

Eb∼p(B)[(DA(G(b))− 1)2]
(1)

LIdentity = Ea∼p(A)Err(GAB(a), a)+

Eb∼p(B)Err(GBA(b), b)
(2)

LCycle = Ea∼p(A)Err(GBA(GAB(a)), a)+

Eb∼p(B)Err(GAB(GBA(b)), b)
(3)

Loss = λGANLGAN + λIdentityLIdentity + LCycle (4)

To balance image generation quality and computational
complexity, we adopted a classic UNet architecture as the
backbone generator, which consists of both an encoder and
a decoder. The encoder reduces the dimensionality of the
image and extracts features through multiple convolutional
layers and downsampling operations. The decoder trans-
forms the extracted low-dimensional high-level semantic
information through upsampling and convolution, gradually
restoring it to the original size to generate the target image.
During the upsampling process in the decoder, skip con-
nections are used to integrate feature maps from the corre-
sponding depths of the encoder, recovering information lost
during downsampling and ensuring that the output image
maintains complete structural content. We improved the
UNet architecture by incorporating channel attention and
multi-scale feature extraction to enhance network perfor-
mance. The network structure and details are illustrated in
Fig. 1-B to Fig. 1-E.

For the discriminator, we adopted the PatchGAN design
approach, where the discriminator assesses image authen-
ticity at the scale of image patches rather than the entire im-
age. This allows the discriminator to capture finer textures
and local details, thereby guiding the generator to produce
higher-quality images. We employed a 70 × 70 PatchGAN
discriminator, as shown in Fig. 2. The discriminator net-
work is entirely composed of convolutional layers, allowing
it to theoretically process images of any size and produce
corresponding output at that size. By adjusting the convo-
lutional kernel size and stride, we control the receptive field
of the final output feature map to be 70× 70 pixels. This is
equivalent to using a sliding window of 70 pixels in width
across the original image, generating a judgment result for
each position. Compared to producing a single judgment re-
sult for the entire image, this approach effectively captures
the content of different regions in the spatial dimensions,
thereby obtaining more comprehensive information.

3.2. Channel Attention in Convnet

Traditional convolution and pooling processes struggle
to effectively recognize the importance differences among
various feature channels. The Squeeze-and-Excitation (SE)
module enhances the network’s expressive power by model-
ing the interdependencies between the feature channels pro-
duced by the convolutional layers. The fundamental princi-
ple of the SE module is to explicitly weight the different
channels in the network’s feature maps to distinguish their



Figure 1. The overall structure of MANet-CycleGAN. A: CycleGAN based image denoising framework; B: The proposed MANet generator
network structure, which uses a UNet as the backbone. SE, ECA, and ASPP modules are added at the end of the encoder and the beginning
of the decoder to enhance image generation performance; C: Structure of the SE module; D: Structure of the ECA module; E: Structure of
the ASPP module.

Figure 2. The structure of the PatchGAN discriminator

importance. This is achieved by adding an attention mech-
anism along the channel dimension, as shown in Fig. 1-
C, Ftr represents a standard convolution operation. The
key components of the SE module lie in the two steps:
Squeeze and Excitation, Fsq represents the Squeeze step,

which essentially performs a global average pooling opera-
tion (Eq. 5), By calculating the mean across the spatial di-
mensions of the feature map, each channel is compressed
from the original feature map into a single scalar, result-
ing in a compact feature representation. Fex represents the



Excitation step, which is used to accurately model the de-
pendencies between feature channels. This is accomplished
by concatenating two fully connected layers along with an
activation function, as shown in Eq. 6, First, the first fully
connected layer g transforms and reduces the dimension-
ality, followed by applying the activation function δ to in-
troduce non-linearity, The activation function the ReLU is
selected as δ, the output is then passed through a second
fully connected layer f to restore the original dimension-
ality. This bottleneck structure design effectively reduces
computational complexity. Finally, a Sigmoid activation
function (denoted as σ in the figure) compresses the out-
put values into the range [0, 1] to serve as the channel atten-
tion scores. These scores are then applied to each channel
through element-wise multiplication Fscale assigning the
corresponding attention weights.

Fsq(X) =
1

HW

H∑
i=1

W∑
j=1

Xij (5)

Fex(X) = σ(f(δ(g(X)))) (6)

The SE module adds attention weights along the channel
dimension of the feature map, which enhances the model’s
response to important information in the input features.
However, an analysis of its computation reveals two key
issues. First, while the bottleneck structure of the two con-
secutive fully connected layers reduces computational com-
plexity, it may lead to information loss, adversely affect-
ing the precise prediction of channel attention. Second, us-
ing fully connected layers only captures global information
along the channel dimension, resulting in a limited receptive
field that can create redundant features. To address these is-
sues, the ECA module replaces the fully connected layers of
the SE module with a one-dimensional convolution of adap-
tive kernel size, as shown in Fig. 1-D, Fsq and Fscale remain
the same as in the SE module, representing global average
pooling and element-wise multiplication respectively. The
function σ denotes the Softmax function, The channel at-
tention weights are computed using a one-dimensional con-
volution, with the kernel size determined by the number of
input feature map channels C. The calculation method is
detailed in Eq. 7, the parameters γ and b are used to adjust
the kernel size, where we set γ = 2, b = 1 in this study,
|·|odd indicates rounding up while ensuring that the kernel
size k is an odd number.

P (C) =

∣∣∣∣ log2(C)

γ
+

b

γ

∣∣∣∣
odd

(7)

3.3. Multi Scale Feature Extraction

In the process of image feature extraction using convo-
lutional layers, different sizes of convolutional kernels can

capture information at various scales in the spatial dimen-
sions of the image. Larger convolutional kernels have a
greater receptive field, allowing them to capture the macro
structure of the image content, while smaller kernels have a
relatively smaller receptive field, making them more effec-
tive for extracting fine details. The ASPP module integrates
multi-scale information from the image, enabling the net-
work to obtain a more comprehensive view for noise iden-
tification and removal while preserving the integrity of im-
age details and structure. The structure of the ASPP mod-
ule is shown in Fig. 1-E, It first employs multiple dilated
convolutions with different dilation rates to obtain feature
maps with varying receptive fields. Then, pointwise convo-
lutions are used for feature fusion while adjusting the output
channel count. The use of dilated convolutions allows the
ASPP module to capture multi-scale information without
introducing additional computational complexity, resulting
in a more comprehensive feature representation.

3.4. Perceptual Loss

In the training phase of image translation tasks based
on deep learning (such as image denoising, style transfer,
and image super-resolution), the Mean Squared Error (L1)
loss is often used to minimize the pixel-wise error between
the input image and the target image. However, L1 loss
can lead to blurry images and result in detail distortion or
loss. Unlike L1 loss, which compares images on a pixel-by-
pixel basis, perceptual loss first extracts high-level semantic
information from images using a pre-trained convolutional
neural network before calculating the error between the out-
put vectors. Perceptual loss aligns more closely with hu-
man perception of image quality, placing greater emphasis
on semantic information and being less sensitive to minor
differences in pixel values. The calculation formulas for L1
loss and perceptual loss are given in Eq. 8 and Eq. 9, where
N is the number of pixels in the image; || · ||F denotes the
Frobenius norm; G represents the denoising network; ϕ is
the pre-trained network used to extract image features, and
dim is the dimension of the image feature vector encoded
by ϕ.

During the training process of CycleGAN, we replaced
the identity mapping loss LIdentity with a mixed loss func-
tion that combines perceptual loss and L1 loss, ϕ in the per-
ceptual loss refers to the pre-trained VGG16 network. The
mixed loss function is formed by encoding images with the
VGG network to obtain semantic features, which are then
combined with pixel-wise L1 loss.

LL1(G) = E(x,z)

[
1

N
||G (z)− x||21

]
(8)

LPerceptual(G) = E(x,z)

[
1

dim
||ϕ(G(z))− ϕ(x)||2F

]
(9)



4. Experiments and results

4.1. Data and Details of Implementation

4.1.1 Dataset for experiments

This study evaluates the performance of the proposed
LDCT image denoising method using the clinical CT
dataset released by the Mayo Clinic for the ”2016 NIH-
AAPM-Mayo Clinic LDCT Grand Challenge” [13]. This
dataset serves as a standard reference for assessing CT re-
construction and denoising techniques, covering X-ray pro-
jection images and reconstructed images of the head, chest,
and abdomen from 10 anonymized patients. Each case in-
cludes paired NDCT images (NDCT) and simulated LDCT
images at 25% of the normal dose. The images have a thick-
ness of 3 mm and a resolution of 512×512 pixels.

4.1.2 Comparison Metric

For quantitative analysis, this study employs four evaluation
metrics to assess the image denoising performance: Peak
Signal-to-Noise Ratio (PSNR), Structural Similarity Index
Measure (SSIM), Gradient Magnitude Similarity Deviation
(GMSD), and Root Mean Square Error (RMSE).

RMSE quantifies the difference between images by cal-
culating the root mean square error on a pixel-by-pixel ba-
sis, making it the most direct method for comparing pixel
value differences between two images. The calculation for-
mula is shown in Eq. 10, where A and B represent the orig-
inal noisy image and the denoised image, respectively, and
M and N denote the height and width of the images. PSNR
is commonly used to compare the differences between the
denoised image and the original image to assess denoising
effectiveness. A higher PSNR value indicates a greater ratio
of retained information to suppressed noise in the denoised
image, suggesting better denoising performance [24], as
shown in Eq. 11.

RMSE =

√√√√ 1

MN

M∑
i=1

N∑
j=1

(Aij −Bij)
2 (10)

PSNR = 10× lg

(
(2n − 1)

2

RMSE2

)
(11)

SSIM is an important metric for assessing image simi-
larity, with the calculation formula provided in Eq. 12. In
this formula, µx and µy represent the mean values of the
images, serving as estimates of image brightness, σx and
σy denote the standard deviations of the images, providing
estimates of image contrast, and σxy indicates the covari-
ance between the two images, also related to their contrast.
By considering the three factors of brightness, contrast, and

structure, SSIM compares the differences between two im-
ages. A value closer to 1 indicates greater similarity be-
tween the images.

SSIM(x, y) =
(2µxµy + c1) (2σxy + c2)(

µ2
x + µ2

y + c1
) (

σ2
x + σ2

y + c2
) (12)

The gradient magnitude of an image reflects the struc-
tural information of its content. GMSD (Gradient Magni-
tude Similarity Deviation) quantifies the perceptual qual-
ity of an image by analyzing the variations in pixel-level
gradient magnitude similarity between the reference image
and the denoised CT image, using standard deviation as a
measure. This approach effectively captures changes in lo-
cal image quality. The calculation formulas are provided in
Eq. 13 and Eq. 14, where N represents the total number of
pixels in the image, GMS denotes the gradient magnitude
of the image (which can be computed using the Sobel oper-
ator), and GMSM is the mean of the gradient magnitudes.
The value of GMSD reflects the range of distortion severity
in the image. The higher the GMSD score, the greater the
distortion range, and the lower the perceived image quality.
For more detailed information about this evaluation metric,
refer to[28].

GMSM =
1

N

N∑
i=1

GMS(i) (13)

GMSD =

√√√√ 1

N

N∑
i=1

(GMS (i)−GMSM)
2 (14)

4.1.3 Experimental setup

We randomly selected 1,000 pairs of data from the Mayo
abdominal CY dataset as the training set and 200 pairs as
the validation set. The training data, consisting of NDCT
and LDCT images, was shuffled to create unpaired dataset.
To enhance training speed, we randomly cropped 256×256
pixel regions as input images during the network training
phase, with a batch size set to 4, using the Adam optimizer.
The validation set consists of paired NDCT and LDCT im-
ages, each with a resolution of 512× 512pixels.

Due to the inconsistency between the loss function and
image generation quality in GAN-based image generation
methods, this study computes the RMSE between the net-
work output and the NDCT images using the validation set
after each training epoch. This serves as an evaluation met-
ric to quantify the network’s denoising performance. Dur-
ing the training phase, we employed an early stopping strat-
egy to prevent overfitting, setting the patience of the early
stopping mechanism to 5. This means that training will stop
if the validation set RMSE does not decrease for 5 consec-
utive epochs, and the parameters with the minimum error
will be retained as the optimal parameters.



4.2. Results

First, we validated the effectiveness of the improve-
ments made to the generator network through ablation ex-
periments. Using the same dataset, denoising framework,
and experimental configuration, we tested different genera-
tor networks, all composed of UNet along with SE, ECA,
and ASPP modules. We quantitatively assessed and com-
pared the performance of each network using four evalu-
ation metrics: PSNR, SSIM, GMSD, and RMSE. The ex-
perimental results are presented in Table 1. Ours indicates
training MANet using a perceptual loss function to replace
LIdentity, while the other methods employed L1 loss. From
the table, it is evident that the generator using our improved
network, MANet, performs better in denoising compared to
the original UNet. Additionally, training with perceptual
loss leads to further improvements across multiple evalu-
ation metrics, with the most significant enhancement ob-
served in PSNR. While RMSE directly reflects the differ-
ences between the generated denoised image and the true
noise-free image by comparing them pixel-by-pixel, pro-
viding the most straightforward indication of their disparity,
the other three metrics focus on the structural content of the
images and the distribution characteristics of the noise. Our
proposed MANet achieves the best performance in PSNR,
SSIM and RMSE, indicating its effectiveness in preserving
the structural integrity and details of the image content.

Through the visual results shown in Fig. 3, rows 1, 3,
5, and 7 clearly demonstrate that the images generated by
MANet exhibit sharper edges and more detailed structures.
Rows 2, 4, 6, and 8 present the residual heatmaps between
the generated noise-free images and the true noise-free im-
ages, these heatmaps are obtained by taking the absolute
difference between each image and its corresponding label
image, followed by normalization. Pixels in the images that
appear more red indicate greater differences from the label
image at those locations, while pixels that are more blue
signify smaller differences. It is important to note that due
to normalization, the pixel values in the heatmaps only re-
flect relative differences within the images and do not indi-
cate absolute differences in values between different resid-
ual maps. By comparing the residual heatmaps in columns
D, E, and F, it is evident that using both the SE and ECA
modules together yields better results. It is worth noting
that when the SE module is used alone in the original UNet
network, there is a slight improvement in the PSNR met-
ric but a higher GMSD score. However, when both the SE
module and ECA module are used together, it is possible to
achieve a higher PSNR while reducing the score of GMSD.
This demonstrates the effectiveness of adding channel at-
tention mechanisms to the network. Furthermore, the re-
sults after adding the ECA module show that performance
can be further improved by optimizing the channel attention
mechanism.

The ASPP module utilizes convolutional kernels of dif-
ferent sizes for feature extraction, allowing it to effectively
handle structures of various scales within the image. Exper-
imental results indicate that adding the ASPP module sig-
nificantly enhances performance, resulting in clearer edges
and detailed structures in the generated images. However,
when the ASPP module is used alone, noticeable noise ap-
pears in the edge regions of the images. This issue is effec-
tively mitigated when the ASPP module is paired with the
other two channel attention modules, as shown in columns
G and H of row 8 in Fig. 3.

Generator PSNR SSIM GMSD RMSE
LDCT 26.932 0.967 0.026 12.169
U-Net 30.486 0.968 0.028 7.751
U-Net+SE 31.137 0.974 0.037 7.150
U-Net+ECA 31.612 0.979 0.027 6.951
U-Net+SE ECA 31.734 0.985 0.022 6.939
U-Net+ASPP 32.076 0.980 0.023 6.506
MANet 32.990 0.985 0.026 5.875
Ours 34.239 0.988 0.023 5.137

Table 1. Comparison Study of the Generator

Ablation experiments demonstrate that using a mixed
loss function composed of perceptual loss and L1 loss as the
identity mapping loss during network training can achieve
better denoising results. To further investigate the impact of
the mixed loss function on network performance, we used
two parameters, α and β, to adjust the ratio of perceptual
loss to L1 loss, as shown in Eq.15. Based on this, we
conducted two sets of comparative experiments: i) setting
β = 1 and gradually increasing α from 0 to 1 in increments
of 0.1; ii) setting α = 1 and gradually increasing β from
0 to 1 in increments of 0.1. We trained the denoising net-
work using different combinations of the identity mapping
loss function and evaluated the network performance. The
experimental results are shown in Fig.4.

We observed that using both perceptual loss and on-
tology mapping loss simultaneously for network training
yields better denoising results compared to using either one
alone. The denoising performance is optimal when α = 0.8
and β = 1. The trend of the curves in the figure indicates
that the L1 loss plays a dominant role during training, so
changing the proportion of L1 loss alone leads to more un-
stable network performance. However, adding an appropri-
ate amount of perceptual loss improves the denoising per-
formance.

LIdentity = αLPerceptual(G) + βLL1(G) (15)

Additionally, we compared our proposed MANet-
CycleGAN denoising framework with six advanced LDCT
denoising methods, including two conventional CNN-based
algorithms: UNet and RED-CNN, three GAN-based meth-



Figure 3. The visual comparison of denoising results for each model is presented as follows: Rows 1-2 show the CT images and the residual
maps between the images and the noise-free images. Rows 3-4, 5-6, and 7-8 display the images for three selected ROI (Regions of Interest).
Column A represents the NDCT images, column B represents the LDCT images, and columns C-H illustrate the denoising results using
different models as encoders, C: UNet; D: UNet+SE; E: UNet+ECA; F: UNet+SE+ECA; G:UNet+ASPP; H: Our proposed MANetUNet,
which combines UNet with all the aforementioned modules.

ods: WGAN, WGAN-VGG [11] and the original Cycle-
GAN network, and a Diffusion-based method: Dn-Dp[10].
In this comparison, UNet, RED-CNN, and the two WGAN-
based methods utilized their original network structures and
employed paired data during training. The CycleGAN gen-

erator first extracted features using 9 residual blocks and
then upsampled the images through transposed convolu-
tions. The discriminator used the standard CycleGAN dis-
criminator network and operated by unpaired dataset. Dn-
Dp utilize two interconnected diffusion models: one for de-



Figure 4. Analyze the impact of the proportion of perceptual loss and L1 loss in the change of the identity mapping loss function on network
performance. The red and blue curves represent the effects of gradually increasing α with a fixed β = 1 and gradually increasing β with a
fixed α = 1, respectively, on denoising performance.r

noising low-resolution images and the other for converting
low-resolution images to high-resolution images, The train-
ing can be accomplished using only NDCT images.

The results are shown in Table 2. Our proposed unpaired
data denoising method achieved optimal results in PSNR,
SSIM, and RMSE, even outperforming some algorithms
trained with paired data. The improvement compared to
the original CycleGAN algorithm, which also used unpaired
data, was particularly significant, demonstrating the effec-
tiveness of our proposed solution.

Model PSNR SSIM GMSD RMSE
LDCT 26.932 0.967 0.026 12.169
UNet 29.857 0.978 0.025 8.721
RED-CNN 32.332 0.985 0.021 6.532
WGAN 30.339 0.973 0.033 7.924
WGAN-VGG 31.244 0.976 0.024 7.083
CycleGAN 28.551 0.967 0.043 9.956
Dn-Dp 28.582 0.916 0.047 11.421
Ours 34.239 0.988 0.023 5.137

Table 2. Comparison of Various Denoising Methods

Model PSNR SSIM GMSD RMSE
LDCT 26.358 0.964 0.030 13.199
UNet 29.123 0.974 0.026 9.798
RED-CNN 31.452 0.983 0.024 7.493
WGAN 27.477 0.961 0.047 11.732
WGAN-VGG 30.417 0.976 0.031 8.342
CycleGAN 27.477 0.961 0.047 11.732
Dn-Dp 28.311 0.955 0.021 10.191
Ours 32.798 0.985 0.027 6.470

Table 3. Comparison of Various Denoising Methods (The first 200
pairs of images)

To further validate the model’s generalization ability, we
added more test data and conducted experiments on multi-
ple different test sets. We tested each model using the first
200 and the last 200 pairs of NDCT and LDCT images,

Model PSNR SSIM GMSD RMSE
LDCT 27.725 0.964 0.024 11.367
UNet 30.292 0.975 0.026 8.415
RED-CNN 33.047 0.983 0.019 6.109
WGAN 32.150 0.970 0.027 6.523
WGAN-VGG 34.203 0.981 0.027 5.139
CycleGAN 29.384 0.954 0.045 9.012
Dn-Dp 29.644 0.917 0.042 10.478
Ours 34.584 0.983 0.024 4.931

Table 4. Comparison of Various Denoising Methods (The last 200
pairs of images)

which were not included in the training data, as test sets.
The results are shown in Table 3 and Table 4. Overall, the
supervised method training by paired data outperforms the
method training by unpaired data. Our approach achieves
the best results across different test sets and demonstrates
relatively stable performance.

5. Conclusion

This study proposes an improved framework, MANet-
CycleGAN, to address the denoising problem of LDCT im-
ages, successfully tackling the issue of training with un-
paired data. We selected UNet as the backbone network
for the GAN generator and enhanced it using a channel at-
tention mechanism and an ASPP module that employs con-
volutional kernels of varying sizes for multi-scale feature
extraction, thereby improving denoising performance.

For the GAN discriminator, inspired by PatchGAN, we
calculated the loss function using image patches rather than
mapping the entire image to a single value. Additionally,
we employed a mixed loss function that combines percep-
tual loss from a pre-trained VGG network and L1 loss for
training the network. Through ablation studies and compar-
ative experiments, we demonstrated the effectiveness of our
approach.

We found that even without paired data, satisfactory de-



noising results can be achieved, which is significant for sce-
narios where paired data is difficult to obtain. Training the
model directly on unpaired real data, instead of relying on
simulated paired data, enhances the model’s denoising per-
formance in practical applications. Our future work will
continue to explore image denoising methods based on un-
paired data to further improve model performance and train-
ing stability.
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