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Abstract

Early detection and diagnosis of skin cancers is essen-
tial to improve patient survival. However, traditional di-
agnostic methods have limitations due to the complexity
and diversity of skin lesions. Although deep learning-
based skin disease detection methods are available, the
ambiguity of the boundaries of skin lesion regions may
lead to model neglect and misclassification, generating
suboptimal results and affecting clinical decisions. To
address this problem, this paper proposes a hybrid net-
work based on Adaptive Grouped Transformer (AGT)
and curvature information fusion for skin lesion detec-
tion, called AGTCNet. AGTCNet enhances the net-
work’s adaptive multi-scale learning capability by intro-
ducing AGT. In addition, a curvature-based guidance
enhancement module (CGEM) is proposed in this pa-
per, which utilizes the curvature information to effec-
tively guide the model in enhancing its capture of com-
plex lesion edge information. To further optimize the
model performance, the deep supervision mechanism
is used to dynamically calculate the loss at each stage
and adjust the learning strategy based on the loss feed-
back. Through comprehensive experimental validation
on the ISIC2016, ISIC2017, and PH2 skin lesion seg-
mentation datasets, the results show that AGTCNet sig-
nificantly outperforms the existing mainstream methods
on all datasets, and especially exhibits excellent perfor-
mance in detailed feature processing and fuzzy region
segmentation.

Keywords: Skin Lesion Segmentation Adaptive
Grouped Transformer Curvature Information Deep Su-

pervision

1. Introduction

Medical image segmentation [1] aims to separate differ-
ent anatomical structures and tissues from an image to help
physicians accurately locate and measure lesions or abnor-
mal regions, which plays a key role in disease diagnosis
and treatment. In recent years, skin diseases are still a seri-
ous health threat, but they may mislead doctors’ diagnosis
due to the variability and similarity of their visual features.
Therefore, clinicians need more detailed information to sup-
port their decisions.

Traditional medical image segmentation techniques help
clinicians understand images more intuitively and make ac-
curate diagnoses by extracting image features. However,
these methods rely on hand-designed features, and their
performance is affected by subjective factors and domain
knowledge, leading to a decrease in the accuracy and con-
sistency of segmentation results. In addition, when deal-
ing with medical images with complex textures, traditional
methods are difficult to effectively capture and abstract their
complex features, exposing technical limitations.

To address the limitations, the application of deep learn-
ing methods in the medical field is rapidly expanding, espe-
cially in medical image segmentation showing higher accu-
racy and robustness. Deep learning methods are free from
the limitation of hand-designed features and can automati-
cally learn and extract complex textural and structural fea-
tures from large amounts of data. Convolutional neural
networks (CNNs)[2] perform particularly well in medical
image segmentation tasks, where features are usually ex-
tracted through convolutional layers and further abstracted
through fully connected layers. CNN architectures, rep-

1



Figure 1. Performance comparison of AGTCNet with other models.

resented by AlexNet[3], have achieved significant success
in image classification. However, classification tasks only
need to recognize image categories without involving object
boundaries or pixel-level distinctions. Fully Convolutional
Networks (FCNs)[4] extend image prediction to the pixel
level for the first time, achieving a key breakthrough from
image classification to image segmentation.

However, excessive attention to pixel-level information
may lead to the loss of boundary details. U-Net[5] par-
tially mitigates this problem by introducing jump connec-
tions in the encoder-decoder structure, which preserves
more boundary information. Based on its simplicity and
scalability, several improved models have been derived. U-
Net++[6] incorporates a Dense structure to fuse features of
different resolutions and bridge the semantic differences in
the convolutional layers; MALUNet[7] enhances feature in-
teractions at different stages through a bridge attention mod-
ule; and EGE-UNet[8] employs dilation convolution[9] to
integrate multiscale features, realizing the combination of
global and local information. However, CNNs are diffi-
cult to capture long-distance dependencies due to the sen-
sory field limitation. Transformer[10], on the other hand,
utilizes the self-attention mechanism[11, 12] to effectively
solve this problem by dynamically adjusting the attention
weights, which significantly enhances the ability to cap-
ture global information. Taking TransUnet[13] as an ex-
ample, the model combines the global modeling capability
of Transformer and the local information recovery of U-Net
and demonstrates superior performance in multi-organ and
heart segmentation tasks.

However, the pure Transformer model[14, 15] has lim-
itations in capturing local details and lacks the transla-
tion invariance and local correlation of CNN, which leads
to its underperformance in processing low-level informa-
tion. To address this problem, hybrid models[16] com-

bine the advantages of CNN and Transformer in vision
tasks. TransFuse[17] significantly improves detail capture
and overall characterization by parallel fusion of the local
feature extraction capability of CNN with the global model-
ing capability of Transformer. Inspired by this, we propose
a dual backbone network architecture, AGTCNet, which
combines the detailed extraction of CNN and the global
modeling of Transformer to achieve efficient feature rep-
resentation and learning performance.

Furthermore, we note that some Transformer-based ar-
chitectures use a fixed convolutional kernel for fine-grained
feature extraction before operating on the attention mech-
anism, which limits the ability to capture multi-scale fea-
tures. For this reason, we optimize this approach to better
learn and characterize multi-scale features by dividing the
input features into multiple channel groups and introduc-
ing depth-separable dynamic convolution, which allows the
network to dynamically adjust the sensory fields according
to the different scales of the image.

The contributions of this paper are as follows:

• We propose an Adaptive Grouped Transformer or
AGT. This module efficiently combines adaptive
grouped convolution and the Transformer architecture
to achieve adaptive learning of multi-scale features.

• We propose the Curvature-based Guidance Enhance-
ment Module or CGEM. This module directs the
model to focus on the salient regions at the feature
edges by capturing the curvature information of the
feature maps.

• We construct a hybrid network based on AGT and
curvature information for skin lesion detection, i.e.,
AGTCNet. Through extensive experimental validation
on three publicly available skin lesion datasets, the re-



sults show that AGTCNet exhibits significant compet-
itive advantages in several key performance metrics.

2. The proposed method

2.1. Adaptive Grouped Transformer

2.1.1 Patch Embedding Layer.

For a layered representation, we apply a patch embedding
layer to adjust the properties of intermediate features. This
layer specifically consists of two key steps: a 2 × 2 step-
wise convolution as well as a normalization layer compo-
sition. The patch embedding layer is used to tune the fea-
ture scales as well as the channel dimensions, enabling the
network to generate multi-scale feature representations at
different stages.

2.1.2 Local Perception Module

In vision tasks, the absolute positional encoding used by
the Transformer model introduces unique positional infor-
mation for each image patch, thus potentially destroying
translational invariance and increasing the instability of the
model, making it difficult to generalize to new data with
translational variations. To address this challenge, we intro-
duce a local-awareness module. In this module, we borrow
the idea of Res2Net[18], adopt a multi-scale processing ap-
proach, and develop the hierarchical representation into a
single-block implementation. As shown in Fig.2, we group
the feature images along the channel axis at different stages,
and the number of channels in each group is C

S , where C
represents the number of input feature image channels, S
represents the number of groups in the group, and S takes
the value of S ∈ {1, 2, 3, 4}. The specific implementation
scheme is to partition the input tensor along the channel
axis into S subsets, each of which has the shape of H×W×C

S ,
and then apply a 3 × 3 deep convolutional process to each
feature subset, and finally, through the Concatenation oper-
ation to integrate the feature subsets into one feature rep-
resentation. This strategy significantly enhances the spatial
awareness of the output feature representation, making it
more flexible and adaptive, while significantly reducing the
computational complexity. The adaptive grouped convolu-
tion module can be defined as:

ACT (X) = Cat (DW3 (X1) , · · · , DW3 (Xs)) ,sϵ {1, 4}
(1)

Where X denotes the feature input from the previous stage,
X ∈ RH×W×C , H × W is the resolution of the input in
the current stage, and C denotes the dimensionality of the
features. Cat stands for Concatenation, DW3 denotes deep
convolution with a convolution kernel of 3, e denotes the

Sth subset of features, and XS ∈ RH×W×C
S , depending on

the stage S takes the value {1, 2, 3, 4}.

2.1.3 Lightweight Multihead Self-Attention Module

To improve the stability of the input distribution during for-
ward propagation and the stability of the gradient in back-
propagation, we first perform LayerNorm[19] on the output
of the feature from the LPM, with the normalization oper-
ation performed on the hidden dimension. Subsequently,
the normalized features are fed into the Lightweight Multi-
Headed Self-Attention Module (LMHSA). Different from
the traditional self-attention mechanism, we reduce the
computational complexity effectively by processing the
deep convolution of K × K convolution kernel to reduce the
spatial dimensions of K and V before computing the atten-
tion weights. Next, the combination of Q and K is utilized
to compute the attention weights, which are applied to V to
generate the weighted feature output.

In addition, to enhance the model’s ability to model
the relative positional relationships between elements in se-
quence data, we introduce a relative positional bias for each
self-attention module B. The core process of the lightweight
multi-head self-attention module can be defined as follows:

K ′ = DWk×k (K) ∈ R
n
k2 ×dk (2)

V ′ = DWk×k (V ) ∈ R
n
k2 ×dk (3)

LightAttn (Q,K, V ) = Softmax

(
QK ′T
√
dk

+B

)
V ′.

(4)
After that, according to the number of input heads h, h

sequences of size h × d are generated and these sequences
are connected into a comprehensive sequence of n × d to
integrate the information of each attention head to form a
more comprehensive feature representation. Next, the gen-
erated sequence information is normalized through the Lay-
erNorm layer, and the processed feature information is di-
rected to the IRFFN.

2.1.4 Inverse Residual Feedforward Network

As shown in Fig.2, the structure of IRFFN consists of two
1 × 1 convolutional layers for extending the feature dimen-
sions and projecting to a lower dimensional feature space,
respectively. To realize deeper feature transformations, we
introduce a 3 × 3 deep convolutional layer between these
two convolutional layers. The expanded features are pro-
cessed by the GeLU[20] activation function and BatchNorm
to further enhance the expressive power of the model. With



Figure 2. Hybrid network based on AGT and curvature information for skin lesion detection. (a) shows the main framework architecture
of AGTCNet. (b) shows the detailed architecture of the AGT module, where (d) shows the inverse residual feedforward network (IRFFN)
structure in the ACT module. (c) The figure shows the specific design of the CGEM module.

the introduction of residual structure, IRFFN effectively im-
proves the propagation efficiency of gradient between dif-
ferent layers. Finally, the output features of IRFFN are nor-
malized by BatchNorm to ensure the stability of the output
features in a statistical distribution. The mathematical ex-
pression of IRFFN is as follows:

IRFFN (X) = Conv1 (DW3 (Conv1 (X))) (5)

Where X represents the feature sequence output by
LMHSA, Conv1 represents the convolution with convolu-
tion kernel 1, and DW3 represents the depth-separated con-
volution with convolution kernel 3.

The above four modules constitute our proposed ACT
module, which is mathematically represented as:

Pi = PE (Xi−1) (6)

Li = LPM (Pi) (7)

Yi = LMHSA (Li) + Li (8)

Xi = IRFFN (Yi) + Yi (9)

Where Pi, Li, and Yi denote the output characteristics of
the PE, LPM, and LMHSA modules of the ith block, re-
spectively.

2.2. Curvature-based Guidance Enhancement Module

To effectively deal with the problem of edge ambiguity
in skin lesion regions, we propose a curvature-based guid-
ance enhancement module (CGEM), whose detailed archi-
tecture is shown in Fig.2. In terms of curvature feature se-
lection, we adopt the mean curvature as the main feature
parameter because it can reflect the non-uniformity on the
image surface more accurately, which helps to improve the
model’s ability in edge feature capture. By borrowing the
simplified linear convolutional computation method pro-
posed by Gong et al.[21]. we can efficiently approximate
the mean curvature solution, which enhances the model’s
performance in recognizing and segmenting edge region
features. The relevant formulas are as follows:

C = [C1 C2 C3]⊛X (10)

Where the values of C1 = [α, β, α]
T , C2 = [β, γ, β]

T ,
C3 = [α, β, α]

T , α, β, and γ are -1/16, 5/16 and -1, respec-
tively. ⊛ denotes convolution, X denotes the input image
and C denotes the mean curvature.

2.3. AGTCNet

Medical images usually contain multimodal information,
such as morphological and textual information. Convolu-
tional neural networks excel at extracting both low-level
and high-level visual features from images, while the Trans-
former model performs well in processing sequence data as
well as linguistic information while being able to capture
high-level semantic information in images. In this paper,



we construct a hybrid network based on AGT and curvature
information for skin lesion detection. The model signifi-
cantly improves the segmentation accuracy while maintain-
ing high efficiency. The specific model parameters (Params)
and floating point operations (FLOPs) are shown in Fig.1.

The specific structure of AGTCNet still utilizes a U-Net-
like encoder-decoder architecture. In the encoder stage, we
design a two-branch feature extraction backbone network
fusing CNN and Transformer to obtain multimodal feature
representations. The CNN branch employs simple resid-
ual blocks to focus on capturing local features. The Trans-
former branch generates multi-scale feature maps through
a hierarchical cascade structure by stacking different num-
bers of ACT modules at each stage. In the first to fourth
stages, 3, 3, 16, and 3 ACT modules are stacked, respec-
tively, and the feature information extracted in each stage
is retained and passed layer by layer to ensure multi-scale
feature fusion.

To achieve the dual-branch interaction, we employ a sim-
plified Convolution-Batch Normalization-Activation (CBR)
with MaxPooling operation at each stage to facilitate the
feature fusion between the CNN and Transformer branches.
Meanwhile, a CGEM module is introduced between the en-
coder and decoder to strengthen the model’s ability to learn
and extract edge features. In addition, to supervise the fea-
ture reconstruction process, the network employs a deep su-
pervision mechanism to compute the loss at different stages,
which strengthens the training process by optimizing the
loss. The mathematical representation of the loss function
is as follows:

li = BCE (y, ŷ) +Dice (y, ŷ) (11)

L =

4∑
i=0

λi × li (12)

Where BCE and Dice represent binary cross-entropy loss
and Dice loss, respectively. λi denotes the weights of the
different stages. In the network, the values of λi ’s at each
stage are 0.4, 0.3, 0.2, 0.1.

3. Experiments

3.1. Experimental Parameters

All experiments were conducted in the Ubuntu 18.04 op-
erating system and completed in the PyTorch 1.7.1 environ-
ment. Computational resources are provided by NVIDIA
TITAN RTX to support efficient computation during train-
ing. Through extensive experimental validation, we set the
initial learning rate of the model to 5e-4, the maximum
number of training rounds to 400, and saved the optimal
model and the latest rounds of the model during the train-
ing process. To enhance the generalization ability of the

Table 1. Performance metrics results for the various comparison
methods on the ISIC2016 dataset. The best results are marked in
red and the second best results are marked in blue (%).

Method F1 mIoU Precision Recall
U-Net 88.66 81.92 90.48 91.17

U-Net++ 90.20 83.83 92.94 90.68
Attention U-Net 88.34 81.22 93.77 87.32

MSNet 89.40 83.22 91.54 91.52
MedT 88.95 82.03 90.11 91.78

SSformer 91.37 85.63 90.18 93.22
CASF-Net 91.46 85.50 92.26 88.22

DCSAU-Net 92.72 87.18 91.42 94.05
Ours 94.09 88.77 93.49 94.70

model, we introduce a variety of data enhancement tech-
niques, including vertical flipping, horizontal flipping, and
random rotation, to increase the diversity of samples and the
robustness of the model.

3.2. Comparative Experiments

Fig.3 shows the segmentation results of representative
samples in the ISIC2016 test set. It can be seen that the Ours
method significantly outperforms the other methods in the
segmentation of the overall lesion contour and local detail
capture, and especially exhibits stronger performance when
dealing with blurred regions. For sample A, although U-
Net, MSNet[22], and CASF-Net can separate lesion regions
with similar colors to the environment, Ours performs more
finely in capturing edge details. For samples B and C, due to
their complex edge features, although DCSAU-Net[23] and
Ours can accurately capture the overall contours, Ours ex-
hibits higher edge detection accuracy and robustness when
dealing with complex edges (e.g., the lower right of sample
B and the upper right of sample C), which further proves its
superiority in dealing with complex lesion edges.

Fig.4 demonstrates the segmentation results of the Ours
method with other methods on the ISIC2017 dataset. In
sample A, the previous method misidentifies the lesion re-
gion as background, resulting in significant deviation from
GT, which may stem from insufficient capture of complex
features; Ours accurately identifies the lesion region by en-
hancing the capture of contextual information, with delicate
edge processing, and the result is more closely aligned with
GT. Sample C is subjected to the interference of hair, which
generates obvious noise by methods such as U-Net.

In contrast, Ours effectively reduces the noise by com-
bining local and global features through the two-branch
backbone network. Sample D, the other methods failed to
accurately reduce the noise, and the result is highly consis-
tent with GT. In sample D, other methods fail to accurately
segment the fuzzy lesion area, while Ours is closer to GT



Figure 3. Visual presentation of predictions for selected samples from ISIC2016.

Figure 4. Visual presentation of predictions for selected samples from ISIC2017.



Figure 5. Visual presentation of predictions for selected samples in PH2.

Table 2. Performance metrics of the different compared methods
on the ISIC2017 dataset. The best results are marked in red and
the second best results are marked in blue (%).

Method F1 mIoU Precision Recall
U-Net 78.73 64.92 89.66 70.18

U-Net++ 80.16 66.89 92.54 70.70
Attention U-Net 80.66 67.59 88.15 74.34

MSNet 83.31 71.41 91.07 76.79
MedT 73.99 58.72 88.15 68.13

SSformer 83.43 71.30 81.51 85.54
CASF-Net 84.20 72.71 85.14 84.51

DCSAU-Net 85.93 75.71 83.93 88.01
Ours 87.36 77.49 82.95 92.26

by its stronger feature extraction ability.
Fig.5 illustrates the segmentation prediction visualiza-

tion of the different methods on some samples of the PH2
dataset. The local zoom analysis of samples A, B, and C
reveals subtle differences between SSFormer, CASF-Net,
DCSAU-Net, and Ours. In Sample D, U-Net++ and Atten-
tion U-Net misidentify the background as a lesion, while
U-Net and DCSAU-Net avoid this problem but are insuffi-
cient in capturing the edge details; Ours, on the other hand,
significantly improves the overlap with GT through accu-
rate edge processing.

Table 3. Performance metrics of the different comparison methods
on the PH2 dataset. The best results are marked in red and the
second best results are marked in blue (%).

Method F1 mIoU Precision Recall
U-Net 86.43 76.21 84.43 88.51

U-Net++ 93.57 88.07 93.40 93.74
Attention U-Net 92.35 85.93 91.66 93.05

MSNet 94.55 89.82 94.93 94.18
MedT 92.18 85.65 92.70 91.67

SSformer 93.12 87.28 94.53 91.76
CASF-Net 94.60 90.08 95.44 93.78

DCSAU-Net 94.11 89.03 95.00 93.23
Ours 95.12 90.69 96.05 94.20

In Sample E, the boundary processing of U-Net and
MedT is confusing, while Ours achieves more accurate edge
recognition by introducing curvature information. The seg-
mentation results of Sample F show that the other methods
have irregular boundaries in fuzzy regions, while Ours ex-
cels in accuracy and consistency and is closer to GT. Tab.1,
Tab.2, and Tab.3 respectively summarize the performance of
each method on the ISIC2016, ISIC2017, and PH2 datasets.
AGTCNet achieved the best results in terms of F1 score,
mIoU, precision, and recall, demonstrating its superior seg-
mentation accuracy.



Table 4. Structural demonstration of different ablation variants.
Method ACT CGEM Deep supervision ISIC2016 ISIC2017 PH2

F1 IoU F1 IoU F1 IoU

AGTCNet-1 × ✓ ✓ 92.63 86.72 85.75 75.11 93.83 88.39
AGTCNet-2 ✓ × ✓ 93.39 87.65 86.55 76.17 94.58 89.72
AGTCNet-3 ✓ ✓ × 93.80 88.27 86.92 76.79 94.76 90.11
AGTCNet ✓ ✓ ✓ 94.09 88.77 87.36 77.49 95.12 90.69

3.3. Ablation Experiments

In this section, we validate the effectiveness of the pro-
posed module through ablation experiments, all of which
are conducted based on the ISIC2016, ISIC2017 and PH2
datasets. Specifically, Tab.4 shows the different model vari-
ants. AGTCNet-1 removes the ACT module and uses only
the Residual Block as the backbone structure to evaluate the
role of the ACT module in global feature capture.

According to Tab.4, the three ablation variants have sig-
nificant gaps with the AGTCNet model in terms of F1 and
mIoU metrics, indicating that the ACT module, CGEM
module, and the depth supervision mechanism play a key
role in enhancing edge feature extraction, improving seg-
mentation accuracy, and dealing with fuzzy regions ro-
bustly, verifying their effectiveness.

In the second set of samples, the edge processing results
reveal the degree of misclassification of the models, espe-
cially AGTCNet-1 incorrectly recognizes the surrounding
environment as the lesion region, validating the importance
of the ACT module in contextual understanding and separa-
tion of lesion and background. In addition, the performance
metrics in Tab.4 further support the effectiveness and ro-
bustness of AGTCNet in fuzzy region processing and edge
detail recognition.

This conclusion is further supported by the data in Tab.4,
which shows that the overall performance of the three abla-
tion models is lower than that of AGTCNet, validating the
effectiveness of the proposed module.

4. Conclusion

In this paper, a novel hybrid network named AGTCNet is
proposed for skin lesion detection and targeted to solve the
problem of incomplete extraction of the edge region of skin
lesions. AGTCNet adopts a two-branch backbone network
structure based on CNN and Transformer, which is able to
capture both global features and local detail information,
thus significantly enhancing the network’s characterization
ability. In order to improve the model’s deficiency in edge
detail processing, a CGEM module is designed to guide the
model to accurately recognize lesion edges by collecting
curvature information. In addition, AGTCNet introduces a
deep supervision mechanism to dynamically supervise the
feature loss and optimize the learning strategy in real time

based on feedback. The effectiveness and superiority of the
AGTCNet network architecture is verified through exten-
sive experiments on three public datasets.
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